
Edge-MAP: Auction Markets for Edge Resource
Provisioning

Argyrios G. Tasiopoulos, Onur Ascigil, Ioannis Psaras, and George Pavlou
Department of Electronic and Electrical Engineering, University College London, UK.

Email: {argyrios.tasiopoulos, o.ascigil, i.psaras, g.pavlou}@ucl.ac.uk

Abstract—New and emerging applications in the entertain-
ment (e.g., Virtual/Augmented Reality), IoT and automotive
domains will soon demand response times an order of magnitude
smaller than can be achieved by the current “client-to-cloud”
network model. Edge- and Fog-computing have been proposed
as the promise to deal with such extremely latency-sensitive
applications. According to Edge-/Fog-Computing, computing re-
sources are available at the edge of the network for applications
to run their virtualised instances. We assume a distributed
computing environment, where In-Network Computing Providers

(INCPs) deploy and lease edge resources, while Application Service

Providers (AppSPs) have the opportunity to rent those resources
to meet their application’s latency demands. We build an auction-

based resource allocation and provisioning mechanism which
produces a map of application instances in the edge computing
infrastructure (hence, acronymed Edge-MAP). Edge-MAP takes
into account users’ mobility (i.e., users connecting to different cell
stations over time) and the limited computing resources available
in edge micro-clouds to allocate resources to bidding applications.
On the micro-level, Edge-MAP relies on Vickrey-English-Dutch
(VED) auctions to perform robust resource allocation, while
on the macro-level it fosters competition among neighbouring
INCPs. In contrast to related studies in the area, Edge-MAP can
scale to any number of applications, adapt to dynamic network
conditions rapidly and reallocate resources in polynomial time.
Our evaluation demonstrates Edge-MAP’s capability of taking
into account the inherent challenges of the provisioning problem
we consider.

I. INTRODUCTION

Cloud computing has been a tremendous technological and
commercial success in provisioning applications due to its es-
sentially boundless elasticity in terms of computing resources.
However, remote data centres where cloud services usually
reside are associated with long network RTTs and traffic
bottlenecks [24]. This can prohibit certain applications with
stringent latency and bandwidth requirements—which we refer
to as “Low Latency Applications” (LLAs)—from achieving a
satisfactory Quality of Service (QoS). In particular, LLAs such
as augmented reality, voice/image recognition, mobile gaming,
and so on presents a challenge for the current centralised,
cloud-based infrastructure [2].

As a result, there is a pressing need for alternative infras-
tructures to augment and complement centralised, remote data-
centres, in order to enable such applications [32]. Cloudlets
have been proposed as “data centres in a box” [33] that
can be placed at the edge and middle-tier locations of the
network, as shown in Fig. 1. Provisioning resources to run
instances of LLAs over the cloudlet infrastructure, as opposed
to cloud, brings the applications “closer” to the end users.
This reduces the inherent cloud access latency while avoid-
ing network bottlenecks. At the same time, the provisioning
of cloudlets’ resources is challenging due to their limited
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elasticity, rendering static application provisioning—i.e., one
where resources are statically partitioned and each partition is
dedicated to a specific application—inefficient. Clearly, how
to manage the limited resources available at the distributed
cluster of cloudlets is of paramount importance in provisioning
resources for LLAs.

In this work, we assume a set of geo-distributed cloudlet
infrastructures, each of which is owned by an in-network com-
puting provider (INCP) that is willing to lease its resources to
host LLAs. On the other hand, LLAs are owned by Application
Service Providers (AppSPs) who are willing to pay INCPs
in order to run their applications in the edge infrastructure.
Therefore, AppSPs provide higher QoS to their customers,
while INCPs are incentivised to both maintain and expand their
edge infrastructure. In this setting in order to support dynamic
LLA provisioning for mobile users, we have to address the
interdependent problems of:

1) Cloudlet monetary profit generation, i.e., how INCPs
make money, and

2) Real-time cloudlet resource management, i.e., which LLA
should be deployed and where.

We assume interactive applications with strict deadlines (in the
order of 10-50 ms, as in the case of augmented reality [11] for
example) and users that move between cells. Similarly to cloud
systems, the computing resources of the cloudlets are available
in the form of Virtual Machines (VMs) and are located i)
at base-station cells and ii) at middle-tier network locations.
Provisioning of resources at base-station cells (hexagons at
the edge in Fig. 1) is particularly challenging due to users’
mobility, which we explicitly consider in this work. The back-
end clouds serve as the final-call provisioning location (Fig. 1)
for user requests that fail to obtain resources at the cloudlets.

In this paper, we argue for a market-based solution that
brings together INCPs who lease their resources, and AppSPs
who are interested in renting edge resources to improve the
QoS of their mobile users. To this end, we propose a market
mechanism tailored to the mobile users demand dynamics that



benefits both LLAs’ QoS and INCPs’ income. We introduce
Edge-MAP, as the underlying framework that enables the in-
network, on-demand provisioning market for LLAs. A distinct
novelty of Edge-MAP, compared to related studies, is that it
perceives the INCPs’ resources as a “pool of interconnected
virtualised hardware” offered via independent marketplaces
located at each cell. According to this view of the network,
resources physically located but under-utilised at some cell,
e.g., cell B in Fig. 1, can be advertised in neighbouring cell
markets where demand exceeds supply, e.g., cell A in Fig. 1.
We assume that a Vickrey-English-Dutch (VED) auction [5] is
deployed at each cellular market to provision LLAs’ instances
over the offered VMs in polynomial time. Edge-MAP fosters
competition among INCPs (located at various cells) by provid-
ing feedback related to their VMs’ value in local and remote
marketplaces.

The main technical contributions of this paper are as
follows:

1) We study the problem of resource provisioning over a
distributed INCPs’ infrastructure for LLAs.

2) We design the Edge-MAP mechanism for LLAs’ provi-
sioning in the challenging case of mobile users.

3) We apply VED auctions in problems where the de-
mand/supply conditions evolve over time.

4) We evaluate Edge-MAP on realistic vehicle traffic pat-
terns.

II. EDGE-MAP DESIGN AND SYSTEM MODEL

In this section we present Edge-MAP’s design principles,
that support on-demand provisioning markets for mobile users,
followed by the system model description.

A. Edge-MAP’s Design Principles

Application provisioning refers to the allocation of cloud
resources, in the form of VMs, for serving the demand of
LLAs’ end users [26]. LLA provisioning over geo-distributed
cloudlet resources differs from typical application provisioning
in the sense that the allocation of resources has to take into
account the impact of the network conditions, i.e., the latency
between the end users and cloudlets’ points of presence [3], on
applications’ QoS. Moreover, in the case of mobile users, the
latency to an allocated VM changes as soon as users handover
their connections to another base-station. Hence, even optimal
VM allocations to user requests get outdated over time; that
is, users’ mobility/handoffs should be followed when required
by VM reassignments—a process referred to as VM handoffs
in [33]. In static provisioning, where a static number of VMs
are allocated to an application for long periods of time, VM
handoffs might lead to idle VMs that could instead be used
by other applications’ users. Here, in order to avoid VMs’
underutilisation, we argue for the need of on-demand LLA
provisioning, where a VM for an application is instantiated
upon an end-user request for the duration of the end-user’s
engagement.

On-demand LLA provisioning process consists of the
stages of i) discovery of available resources, ii) resource
allocation, and iii) resource configuration (i.e., booting up
of VMs) [15]. In order to obtain a responsive and efficient
provisioning system for mobile users, we focus on minimising
the amount of time spent for resource discovery and resource
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Fig. 2: VM offerings by the INCPs and user biddings for VMs
in three adjacent cells.

allocation. With the latest advances in virtualisation technol-
ogy, the configuration overhead is greatly reduced. For instance
Unikernel VMs boot in less than 100-150 ms [25]. The VM
configuration overhead is expected to further reduce in the
future, and therefore, we focus on reducing the overhead of
discovery and allocation of resources.

In the competitive setting of INCPs that we envision, the
discovery and allocation of resources (i.e., VMs) take place
in individual markets, located at the base-station of each cell,
via auction mechanisms [19], [35]. In a cellular market, the
offered VMs are items, while the mobile users, connected to
the corresponding cell, are bidders that wish to acquire at
most a single VM/item. The auction’s purpose is to derive
the price vector as well as the item-bidder assignments that
characterise a competitive equilibrium. That is, the auction has
to: i) satisfy bidders’ demand for the given price vector, and
ii) fully allocate every item with a positive price, i.e., the price
of each unallocated item is 0.

A distinct feature of Edge-MAP is that INCPs can offer
their VMs in other cellular markets with the condition that a
particular VM can only be offered uniquely at any point in
time. As an example, consider Fig. 2, where three adjacent
cells (numbered 1–3) are depicted along with their connected
mobile users and INCPs. All cells have a dedicated market for
serving their connected users while INCPs are present only
in cells 1 and 2. We assume that INCP 2 offers part of their
VMs to cellular markets 2 and 3 since offering VMs to adjacent
cells’ users leads to profit opportunities. In Edge-MAP these
profit opportunities are provided by a feedback mechanism, as
we explain in detail later in Section III.

Provisioning of VMs happens through periodic/discrete-
time execution of auction mechanisms, where the minimum
duration of each period/time-slot is restricted by the aggregated
time overhead of auction execution and VM configuration,
as we show in Fig. 3. In each period, the bidders adjust
their demand subject to their local cell, and the associated
network conditions, while the INCPs adjust their supply, in
terms of offered VMs, subject to their current utilisation.
That is, the objective of minimising the time overhead of
resource discovery and resource allocation is equivalent to
minimising the time of accessing a market and execute an
auction mechanism.

Along these lines, the proposed Edge-MAP mechanism
relies on VED auctions [5] for on-demand provisioning for
the following reasons:

• VED auctions derive the unique minimum competitive
equilibrium prices [34], known as Vickrey-Clarke-Groves
(VCG) prices; that is, the bidders cannot acquire their
assigned items for a lower price in any other competitive
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equilibrium.
• The VED auctions result in the VCG prices starting at

any possible initial price for each one of the items.

Because the Edge-MAP is executed repetitively, a VED
auction can re-utilise previously found VCG prices and reduce
the execution time of the mechanism, e.g., if the supply and
demand conditions of the market remains the same, the VCG
prices of the new time-slot will be identical to the previous one,
and the auction will terminate immediately since it starts from
its equilibrium prices. Moreover, the bidders are truthful since
they acquire an item in its minimum possible price; therefore,
they do not have incentives to deploy complex strategies that
would prolong the execution of the auction.

Finally, in Edge-MAP instead of considering a single
centralised market, we approach each cell as a distinct market-
place, organised by a local auctioneer to serve the on-demand
provisioning requests of its currently connected users. This
choice of cell-based markets comes with the advantages of:

• Resource discovery and allocation time overhead min-
imisation, since a user request is accessing a market
immediately at her local cell. At the same time, the auc-
tion’s execution involves a considerably smaller number
of bidders, leading to a significantly lower execution time.

• Providing profit opportunities to INCPs, which can offer
their VMs to different cellular markets at different prices.
In particular, Edge-MAP provides feedback to INCPs
regarding their demand in each market, fostering their
competition as we explain in III-B.

1) Edge-MAP Overview: Our design, on top of the already
introduced AppSPs and INCPs, involves the following players:

• Auctioneer: The entity that collects arriving bids for LLA
provisioning and allocates INCPs’ VMs to the highest set
of bids. There is exactly one auctioneer per market.

• AppSP Agents: The entities that represent AppSPs in
every cellular market. These entities actually bid on behalf
of the mobile users for VMs offered in each market, with
respect to the requested LLA requirements.

In Fig. 4, we depict the Edge-MAP’s provisioning process
upon the arrival of a new user in a cellular market. At first, the
mobile user sends an application request to the local market
which is directed to the corresponding AppSP Agent (step a).
The AppSP Agent is aware of the application requirements,
i.e., in terms of how the latency affects its QoS. In particular,
the AppSP has pre-estimated the potential gain in QoS that
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a VM provisioning can produce at each INCP for a specific
LLA request arriving at the local cellular market. Since the
VED auction is an incentive-compatible mechanism [5], the
AppSP Agent acts truthfully and bids for resources by just
setting the bids equal to the actual gain, in terms of QoS, of
the application (steps b and c).1 Next, the VED auction is
executed followed by the INCPs’ feedback phase about profit
opportunities (step d) that aim to attract more VM resources to
the market (step e); concluding in the VM provisioning for the
user at a specific price for the next time-slot utilisation (step
f). Finally, the AppSP Agent periodically informs the AppSP
for her expenses at this market (step g) in order to arrange the
payment of the involved INCPs (step h).

B. System Model

We consider the state of a cellular market before the
execution of the auction mechanism, e.g., the beginning of
period t

1

in Fig. 3, that will define the LLA provisioning for
the next time-slot. Let S , {1, 2, 3, ..., S} be the set of LLAs,
where each LLA s is requested by Ms unit demand users, i.e.,
interested in at most a single VM, that are currently connected
to the cell of the market. We denote by M , {1, 2, 3, ...,M}
the set of all mobile users, i.e., M =

S
s2S Ms, that bid

for H , {1, 2, 3, ..., H} VMs, offered at the price vector
p , (ph : 8h 2 H). The VMs are submitted to the market
by a set of C , {1, 2, 3, ..., C} INCPs, where each c 2 C
contributes Hc VMs, such that Hc ✓ H and Hc\Hc0 = ; for
all c, c0 2 C when c 6= c0.

We assume that each AppSP Agent is aware of the latency
between the current cell and the location of nearby INCPs.
Based on the latency information, the AppSP Agent of a LLA
s 2 S , derives the expected QoS produced by provisioning
a VM at INCP c 2 C for serving an s LLA request for the
next time-slot, us,c. Furthermore, assuming an always available
default provisioning (i.e., back-end cloud) infrastructure for
LLA s, the AppSP Agent can similarly estimate the default
expected QoS, us,;. Then, the valuation (i.e., QoS gain) of a
user m 2 Ms with respect to a VM h 2 Hc is:

vm,h = us,c � us,;. (1)

Note that vm,; = 0. The notation used throughout the paper
is given in Table I.

1These bids can be customised to the needs of each mobile user by
incorporating the VM migration cost, given the user current allocation, a case
that we do not consider in detail here.



TABLE I: MODEL NOTATION

S Set of LLAs.
M,Ms Set of users connected to the cell, Users requesting LLA s.
C Set of INCPs.
H,Hc Set of offered VMs, Set of offered VMs by INCP c.
˜H Universally allocated VMs.
p, ph Vector price of offered VMs, Price of VM h.
us,c QoS produced by serving a request of LLA s at INCP c.
us,; QoS produced by serving LLA s at its default location.
vm,h Valuation of user m for VM h.
Dm(p) Demand correspondence of user m function to price vector p.
˜S, S⇤, E⇤ Set of VMs in positive excess demand, excess supply, and excess demand.

p
VCG

VCG price vector of offered VMs.

III. EDGE-MAP MECHANISM

In this section, we introduce Edge-MAP’s micro- and
macro- level operating components of:

1) Edge-MAP Cellular: That is deployed in each cellular
market to perform the on-demand provisioning of LLAs.

2) Edge-MAP Orchestrator: That provides feedback to
each INCP regarding profit opportunities of its over-
demanded VMs in each cellular market.

A. Edge-MAP: Cellular Operation

We describe Edge-MAP’s micro-level operating component
by focusing on a single cellular market. At first, we define
the set of over-demanded/supplied VMs that characterise any
Multi-item auction with unit demand bidders. After that, we
provide details about how VED auctions derive the VCG equi-
librium by increasing (decreasing) the price of the VMs that
are considered over-demanded (over-supplied) in the context
of Edge-MAP mechanism.

1) VMs in Excess Supply and Excess Demand: We consider
the extended market of H⇤ = H [ {;} VMs, where the null
item {;} corresponds to the default VM provisioning of each
request at the corresponding back-end cloud.2 Let ph be the
price of VM h 2 H⇤ and vm,h be the valuation of bidder/user
m for VM h (Eq. 1). The demand correspondence of user m
is defined as:

Dm(p) , {h 2 H⇤ : vm,h�ph � vm,h0�ph0 , 8h0 2 H⇤} (2)

in other words, the Dm(p) set includes the VMs that maximise
the user’s valuation after the price reduction, known as net-
valuation, i.e., vm,h�ph. Note that at the default provisioning
location the VMs’ price equals to zero, i.e., p; = 0. In Fig. 5,
a market of four VMs and four users is depicted forming
the following demand correspondence sets: Dm1(p) = {h

1

},
Dm2(p) = {h

2

}, Dm3(p) = {h
2

, h
3

}, and Dm4(p) = {h
3

}.3
We use the example of Fig. 5 as a point of reference in the
upcoming definitions.

Given the users’ demand correspondence to a price vector,
the universally allocated items, H̃, are defined as the set of
VMs which either have a price equal to 0 or satisfy at their
current price at least 2 bidders, i.e., ph = 0 or 9m,m0 2 M :
h 2 Dm(p)\Dm0(p) where m 6= m

0
for each h 2 H̃. That is,

in the example of Fig. 5 the set of universally allocated items
is H̃ = {h

2

, h
3

}. Then for a set of universally allocated items,
authors in [5] define the set of positive excess demand, S̃, as
the universally allocated items/VMs with positive price, i.e.,

2The null item is allocated to requests as many times as necessary; that is,
there is no request without an assigned VM.

3We do not depict the null element.
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Fig. 5: VMs assignment example.

S̃ , {h 2 H̃ : ph > 0}. In the example of Fig. 5 for H̃ =
{h

2

, h
3

}, the positive excess demand set is S̃ = {h
2

} since
ph2 > 0 while ph3 = 0. Furthermore, they prove that set S̃ can
be identified in polynomial time by the FindUnivAllocItems
procedure presented in [31].

On the other hand, the set of excess supply, S⇤, is defined
as the set of not universally allocated items/VMs with positive
price, i.e., S⇤ = {h 2 H : ph > 0} \ S̃; meaning, that in the
example of Fig. 5 the excess supply set is S⇤ = {h

1

, h
4

} since
both VMs have a positive price while not belonging to the set
of positive excess demand. Finally, the concept of the excess
demand set is introduced. Intuitively, a set of VMs E is in
excess demand at a given price vector, if i) the number of VMs
in each proper subset T of E, T ⇢ E, is strictly smaller than
the number of users that demand a VM in T , and ii) the users
that demand at least a VM in E do not request VMs outside
E. Furthermore, in [4] the authors prove that there exists a
unique set in excess demand with maximal cardinality E⇤ that
can be identified in polynomial time by using the “Ford and
Fulkerson” algorithm, presented in [17]. In the example of
Fig. 5, E⇤ = {h

2

, h
3

}.
2) VCG Equilibrium Derivation: In this section, we explain

how Edge-MAP mechanism applies VED auctions on micro-
level to reach the VCG equilibrium of the cellular market.
VED auctions can derive the VCG equilibrium prices, pVCG,
as well as the corresponding users to VMs assignment, i.e.,
xVCG : M ! H, starting from any initial price vector p.4
At a given time-slot, e.g., time-slot t

2

in Fig. 3, Edge-MAP
exploits VED auctions by initialising the price of each VM
in the market according to the pVCG solution found in the
previous time-slot, e.g., t

1

. At the core of VED auctions is
the elimination of the VMs in excess demand, E⇤, and excess
supply, S⇤, since they are associated to the price vector pVCG

by the following theorem, proved in [28]:

Theorem 1. A price vector, p, equals the VCG price vector,
pVCG, if and only if the sets of excess demand and excess
supply are empty, i.e., E⇤ = {;} and S⇤ = {;}.

Therefore, VED auctions eliminate sets E⇤ and S⇤ itera-
tively by updating the price of each VM h at the k-th iteration,
pkh, according to:

pkh =

8
<

:

pk�1

h +�p, if h 2 E⇤,k�1,

pk�1

h ��p, if h 2 S⇤,k�1,

pk�1

h otherwise.

where if h 2 E⇤,k�1 (i.e., eliminating the excess demand set
upon iteration k � 1), the price is increased by �p; on the

4Other Multi-item auctions like the ascending (descending) Vickrey-English
(Vickrey-Dutch) auctions [27], [31] require to start their execution from the
lowest (highest) possible price in the market for each item.



other hand, if h 2 S⇤,k�1 (i.e., eliminating the excess supply
set upon iteration k � 1), the price is decreased by �p. The
policy of increasing the prices of each VM in E⇤ is known as
E⇤-increase while the policy of decreasing the prices in S⇤ is
known as S⇤-decrease.

Lemma 1: Consecutive applications of E⇤-increase (S⇤-
decrease) policy eliminate the excess demand E⇤ (excess
supply S⇤) set in polynomial time.

Proof: There is a maximum price that any VM in the
market could be allocated p̄ = max8m2M,h2Hvm,h. Thus,
the E⇤-increase policy takes at most dp̄/�pe steps to exclude
every VM in E⇤ from the users’ demand correspondence, by
increasing their price as their net valuation vm,h�ph declines;
resulting, in the elimination of E⇤. Similarly, for the S⇤-
decrease policy it takes at most dp̄/�pe steps for every VM in
S⇤ to have a price equal to 0, eliminating S⇤. During the E⇤
(S⇤) elimination process the “Ford and Fulkerson” algorithm
(FindUnivAllocItems procedure) is called to identify the E⇤
(S⇤) at most dp̄/�pe times; therefore, since the “Ford and
Fulkerson” algorithm (FindUnivAllocItems procedure) runs in
polynomial time the elimination process is also polynomial.

However, applying both E⇤-increase and S⇤-decrease poli-
cies at the same iteration might trap the process in a cycle,
i.e., the set of excess supply and demand return to their
previous state after a number of iterations as it is shown
in [27]. Therefore, the E⇤-increase (S⇤-decrease) policy has
to be applied in isolation in each iteration until completely
eliminating E⇤ (S⇤) before changing to policy S⇤-decrease
(E⇤-increase) targeting the set S⇤ (E⇤). The convergence to
a price vector where both sets of excess supply and excess
demand are empty, E⇤ = S⇤ = {;}, is guaranteed by the
following monotonicity lemma proved in [5]:

Lemma 2: For any price vector p > 0, i) If S⇤,k =
{;} and an E⇤-increase price adjustment policy is applied at
iteration k, then S⇤,k+1 = {;}; similarly, ii) if E⇤,k = {;} and
an S⇤-decrease price adjustment policy is applied at iteration
k, then E⇤,k+1 = {;}.

A typical iteration of VED auction is presented in proce-
dure “VED-Iteration” of Algorithm 1. Essentially the proce-
dure applies a E⇤-increase policy (line 24) as long as E⇤ is
not empty; otherwise, an S⇤-decrease policy is applied (line
21) until set S⇤ is empty too and the VCG equilibrium has
been found (lines 18-19).

B. Edge-MAP: Orchestrator Operation

Edge-MAP Orchestrator component, is responsible for
providing sufficient information to the INCPs participating
in a market about profit opportunities. In that way, Edge-
MAP aims to act beneficially for both AppSPs and INCPs by
promoting the competition between INCPs, who can develop
their own VM supply strategies over different cells/markets in
their proximity. First of all, VMs offered by the same INCP
are identical from the user perspective since her valuation
is specific to the cloudlet location; therefore, she has no
preference between two VMs that coexist at the same cloudlet.
The following lemma associates the price of identical VMs
with the set of VMs in excess demand.

Lemma 3: Identical VMs, in terms of users’ valuation,
can only co-exist in the set of excess demand, E⇤, if their
prices are equal.

Data: p, M, H,�p,�|h|
1. Result: pVCG,xVCG,
2 Initialisation: k = 1, p1 = p.
3 while True do
4 Collect Dm(pk) 8m 2 M
5 Estimate E⇤,k,xk.
6 if (E⇤,k 6= ;) then
7 H0:=E⇤-dimensioning(E⇤,k, pk,H,�|h|).
8 H = H [H0

9 pk+1, xk+1, f lag:=VED-Iteration(pk, M,H,�p)
10 if (flag) then
11 return: pk+1,xk+1

12 k+:=1
13 end
14 VED-Iteration(pk, M,H,�p)
15 Initialisation: Collect Dm(pb,k), 8m 2 M,

Estimate E⇤,k,xk,pk+1 = pk.
16 if (E⇤,k == ;) then
17 Estimate S⇤,k.
18 if (S⇤,k == ;) then
19 return: pk+1,xk, True.
20 else
21 pk+1

h = pkh ��p, 8h 2 S⇤,k
22 end
23 else
24 pk+1

h = pkh +�p, 8h 2 E⇤,k
25 end
26 return: pk+1,xk, False.

Algorithm 1: Edge-MAP on demand provisioning mecha-
nism.

Proof: Given the way that the demand correspondence,
Dm(p), is defined in Eq. (2), the users show a preference
among identical VMs with the same valuation, v, for the
one with the smallest price, p⇤, since it maximises their net-
valuation, i.e., v � p⇤. Therefore, the only VM that could
belong to E⇤ set is the one with the smallest price.

Next, consider an INCP managing a cloudlet that partici-
pates at a cellular market at time-slot t with 10 VMs. If all of
the VMs are in excess demand, then according to Lemma 3,
the VMs have the same price ph. Then Edge-MAP gives to the
INCP the options of i) waiting for the E⇤-increase policy to
increase the ph price by �p and go to the next VED auction
iteration, or ii) increasing the number of the VMs participating
in the market of the cell by at most �|h| additional VMs.
We refer to the second option as E⇤-dimensioning policy
(Algorithm 1 line 7). In other words, via E⇤-dimensioning
identical VMs to the ones in excess demand are supplied into
the cellular market in order to eliminate the excess demand set
as we show next.

Lemma 4: The combined application of E⇤-dimensioning
and E⇤-increasing policies in a single iteration of Algortihm 1,
eliminates the excess demand set, E⇤, in polynomial time.

Proof: Assume that |M̃| number of users request VMs
from E⇤, i.e., |M̃|> E⇤. Then if there are available VMs
to be offered by the INCPs, the E⇤-dimensioning policy
requires |M̃|�|E⇤| steps, when �|h|= 1, or only 1 step,



when �|h|= |M̃|�|E⇤|, to eliminate the excess demand E⇤,
since the number of VMs in E⇤ will no longer be less
than the number of users. However, in the worst case the
“Ford and Fulkerson” algorithm is called to identify set E⇤
in each iteration of Algortihm 1 twice, once for the E⇤-
dimensioning and once for the E⇤-increasing policy. But again
the identification of set E⇤ is bounded by 2dp̄/�pe; that is,
E⇤ elimination takes place in polynomial time.

For example, in Fig. 5 where the set of excess demand
is E⇤ = {h

2

, h
3

}, if the E⇤-dimensioning policy introduce
a VM h0 that is identical to h

2

, the excess demand set is
immediately eliminated as we see in Fig. 6. Essentially, an
INCP receives information about her VMs price and number in
excess demand in a specific market. Then by applying her own
profit maximisation strategy, the INCP estimates a minimum
price that she would accept for contributing additional VMs,
denoted by p

min

. If p
min

is higher than the current market
price, ph, the INCP will wait for the E⇤-increase policy to
be applied and increase the ph price. On the other hand,
if p

min

< ph she will supply this market with additional
VMs. Nevertheless, elaborating on the INCPs’ strategies is
beyond the scope of this work. Note that Edge-MAP allows the
application of the E⇤-dimensioning policy for an INCP under
the conditions that a) all of the INCPs’ VMs are in excess
demand, and b) the VMs to be included to the cell market are
not currently involved in any other market.

Theorem 2. Edge-MAP mechanism, as described in Al-
gorithm 1, converges to the VCG equilibrium in polynomial
time.

Proof: From Lemma 4 we have that the initially applied
E⇤-dimensioning and E⇤-increase policies in Algorithm 1
eliminate E⇤ in polynomial time. After the E⇤ elimination,
the S⇤-decrease policy eliminates the excess supply S⇤ in
polynomial time (Lemma 1) without affecting the already
eliminated E⇤ set (Lemma 2). Thus from Theorem 2, Al-
gorithm 1 derives the VCG equilibrium after 2 sequential
polynomial time processes; rendering Algorithm’s 1 execution
time polynomial.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the performance of Edge-
MAP. We begin by describing the setup of our evaluation
before presenting our results.

A. Evaluation Setting

Mobility traces and cellular setting: The evaluation is
based on a mobility dataset5 developed in the context of
TAPASCologne project by using a state of the art mobility gen-
erator tool [36]. The dataset consists of 700,000 car journeys
covering a region of 400 square kilometres over 24 hours. We
construct a cellular infrastructure by dividing the region into
864 hexagon cells of 1Km radius for each cell. We consider
each vehicle as a mobile user, associated with a mobile device,
and we focus on a single off-peak hour of the dataset, i.e.,
11am, which presents a good ratio of average vehicle speed and
number of vehicles moving at each second, i.e., ⇠30 Km/h and
⇠5200 vehicles, respectively. During this period the population
remains relatively constant, with approximately 13 vehicles

5http://kolntrace.project.citi-lab.fr

TABLE II: DEFAULT EVALUATION SETTING

Cells Distance Separation 1 Km
Number of VMs per Cloudlet 20
Number of LLA categories 10
�p, �|h| 1
pmin 0
Time-slot duration 60s
Per hop in between cell latency 10 ms
INCP market participation in cellular hops 1

leaving/arriving every second. The number of vehicles per cell
for a snapshot of the data, at 11am, is shown in Fig. 7.

LLA categories: The QoS of the LLAs is expressed as
a decreasing function of the end user perceived round-trip
time (RTT), in terms of latency x, to each cloudlet [13], [38].
Similarly to [20] for abstract resource allocation gains, we
consider that each LLA is characterised by a decreasing QoS
function of the general form:

u(x) =

✓
u
min

u
max

+
⇣
1� u

min

u
max

⌘⇣
1� x� l

min

l
max

⌘ 1
↵

◆
⇥u

max

(3)

The constants u
max

(u
min

) represents the maximum (min-
imum) QoS that the application user can achieve at the
minimum (maximum) latency l

min

(l
max

), i.e., u(l
min

) = u
max

and u(l
max

) = u
min

. We set u
max

= 100, l
min

= 4 ms6, and
l
max

= 500 ms assuming that all applications have identical
latencies to their default cloud locations7. Moreover, function
u(·) is convex for 0 < ↵  1; that is, we set ↵ = 0.2 since
LLAs’ QoS is expected to be more sensitive to latency changes
closer to l

min

. We depict the QoS function for ↵ values 0.2
and 1.0 in Fig. 8.

Based on Eq. 3, we create ten LLA categories, each
associated with a QoS function that models a certain sensitivity
of the LLA to network latencies. We use a different u

min

value
assigned {0, 10, 20, . . . , 90} for each category of LLA. In this
way, different application categories have different gains from
being provisioned at the edge, varying from 10, for u

min

= 90
and less latency sensitive LLAs, to 100, for u

min

= 0 and
latency critical LLAs. We consider the number of ten LLA
categories sufficient for the purpose of our evaluation since it
is comparable to the currently considered types in the context
of IoT [10], [23] and Tactile Internet [16].

Setting parameterisation: In the mobile environment we
consider, we focus only on cloudlets located at the network
edge, i.e., base-station cells. In the default setting, cloudlets are
allowed to advertise and offer their VMs to cellular markets
that are up to 1 cell away, covering the cells denoted by
r
0

and r
1

in Fig. 9 when the cloudlet is located at r
0

.
We set the inter-cell latency to 10 ms and assume a tree-
like backhaul topology [29], where the latency between cells
increases linearly with the hop distance, e.g., if a cloudlet is
located 2 cells away from the cell a user is connected to,
then the involved latency is 20ms. Given the network topology
latencies, we round up the non-integer QoS values produced
by Eq. 3, we parametrise Edge-MAP mechanism by setting
�p = 1, �|h|= 1, p

min

= 0, and we set the time-slot duration
equal to 60s.

6With recent advances in LTE technology, mobile operators reported
handset-to-base-station latencies around 2 ms (RTT of 4 ms), see:
http://news.itu.int/with-5g-looming-sk-telecom-reduces-lte-latency-to-just-2ms

7500 ms is the maximum latency observed for Amazon Web Services
according to CloudPing, available at http://www.cloudping.info.



Fig. 6: E⇤-dimensioning ex-
ample.

Fig. 7: Users per cell in de-
scending order, at 11am.
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Fig. 8: QoS function we consider
for a LLA category.
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Fig. 9: Allowed Market Par-
ticipation of a cloudlet at r

0
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Considering the statistics provided by the Smart In-
sights’ [1] survey regarding i) the user application engagement
duration over a day, and ii) the smartphones market penetration
percentage, we consider that the 10% of the mobile users are
engaged to a LLA at any second, i.e., 520 users on average. We
set the capacity of each cloudlet to 20VMs, which is on average
sufficient for serving even the most crowded cells given the
10% users’ participation we consider. Note that we limit each
cell to host at most a single cloudlet in all the experiments.
The default values of the experiment parameters are provided
in Table II.

LLA requests generation: We consider two approaches
of generating service requests, namely:

• Probabilistic requests: Each user selects one of the 10 LLA
categories according to a Zipf distribution that favours the
most QoS sensitive application categories, i.e., the most
popular applications are the ones with the highest u(l

min

).
Similarly to edge caching systems [9] we set the Zipf’s
distribution exponent equal to 0.8.

• Realistic requests: Each user selects one of the 10 LLA
categories based on the sequence of request arrivals in
Google’s cluster dataset8. In detail, we associate each LLA
category to a “ParentID” field, that identifies the service, of
the 10 most popular services in the dataset accounting for
more than 200K requests. Then by selecting random time
intervals in the period of the seven hours that the dataset
covers, users request LLA categories based on the sequence
of “ParentID” fields that arrive into Google’s cluster.

In both cases, we assume that the users remain engaged to
their requested LLA throughout their journey.

Cloudlet deployment: We evaluate the impact of the Edge-
MAP in relation to the availability of cloudlet resources, which
are incrementally deployed over the cells starting from the
most crowded ones. In this way, we capture Edge-MAP’s
behaviour over the spectrum of different cloudlets’ infrastruc-
ture conditions; starting from under-deployed, where a cloudlet
exists only at the most crowded cell, to over-deployed, where
there is an installed cloudlet at each cell. The turning point
between the over- and under- deployed infrastructure is taking
place upon the deployment of the 26th cloudlet, where the
available VMs, i.e., 26⇥20=520 VMs, equals the average
number of participating users, i.e., 10% of the 5200 users in
the dataset. Note that all cells support a marketplace no matter
if a cloudlet is locally deployed.

8Available at https://research.googleblog.com/2010/01/google-cluster-
data.html.

(a) Probabilistic Requests (b) Realistic Requests
Fig. 10: Edge-MAP vs. Static, and Self-Tuning Provisioning

B. Simulation Results

The results presented next have been averaged over 100
executions.

Impact of on-demand provisioning: We compare Edge-
MAP against i) Static and ii) Self-Tuning [22] provisioning in
terms of average QoS. In static provisioning, we assume that
each AppSP is aware of her aggregate service demand and
allocates a portion of VMs at each cloudlet that corresponds
to this demand. For example, given the cloudlet capacity of 20
VMs and a LLA s 2 S that accounts for half of the generated
requests, static provisioning will allocate statically 10 instances
of s at each cloudlet for the entire duration of the simulation.

On the other hand, in self-tuning approach the provisioning
of LLAs takes place periodically, repeating at regular time-
slots, at each cell. The provisioning of LLAs in self-tuning
approach at a time-slot t is based on i) the demand of each
LLA observed during the time-slot t� 1 and ii) the QoS gain
of LLAs from being provisioned at the edge. For instance,
if LLA s was requested on average by 7 users throughout
time-slot t at a specific cell, the AppSP will bid for up to
7 VMs at the respective cellular market at time-slot t + 1.
If LLA s is the service with the highest QoS gain it will
allocate seven VMs at the price of the next seven bids, i.e.,
generalised second price auction. Note that the original self-
tuning approach proposed in [22] is a generalised second price
combinatorial auction requiring an offline execution. In order
to create an online distributed variation of the self-tuning
approach that it is comparable to Edge-MAP, we limit cellular
markets in offering VMs that are located only at the current
cell. That is, we eliminate the combinatorial difficulty of the
problem by offering identical VMs in terms of QoS gain, since
the gain of each AppSP increases linearly with the number of
allocated VMs until reaching its expected demand.

Edge-MAP outperforms the other approaches in terms
of average QoS in both probabilistic and realistic request
generation settings, while self-tuning approach is superior only
to the static provisioning approach, as we see in Fig. 10.



Fig. 11: Time-slot Duration
QoS Impact

Fig. 12: Centralised Markets:
Execution Time Impact.

(a) Avg. QoS. (b) Avg. Price.
Fig. 13: Local vs. PooI of Virtual Resources

Clearly, the average QoS is lower for the Zipf-based proba-
bilistic request generation due to the correlation between each
service’s popularity and QoS gain, i.e., the most demanding
service is the most popular, and lack of resources results in
the faster deterioration of the average QoS. In the remaining
experiments due to space limitation we present the results of
the probabilistic request generation which is a more challeng-
ing case.

Impact of time-slot duration: In Fig. 11 we depict the av-
erage QoS under different time-slot durations, namely 10, 60,
and 120 seconds, capturing an increasing configuration time
overhead related to the VM management and potential applica-
tions state migration. As expected, a longer time-slot duration
leads to QoS deterioration due to the decrease in Edge-MAP
provisioning responsiveness to LLA demand changes, caused
by mobile users’ i) handovers and ii) arrivals/departures from
the system.

Benefit of per-cell markets: Fig. 12 demonstrates the
increase in the execution time of the mechanism when the
provisioning of resources takes place via a fixed number of
markets instead of deploying one marketplace at each cell.
In particular, we consider a centralised scenario, i.e., a single
market in the system, a scenario with two markets, i.e., each
market is responsible for roughly half of the cells in the
system, and three markets, i.e., each market is in charge of
one third (1/3) of the cells in the system. The reason behind
Edge-MAP’s negligible execution time compared to the fixed
number of markets is that the cellular based markets involve
a considerably smaller number of bidders, since they include
only the users that are connected to the current base station, as
well as number of VMs. Note that Edge-MAP scales gracefully
as the number of cloudlets in the system increases while in
the case of fixed markets the time increases linearly, due to
the polynomial execution time nature of VED auctions.9

Benefit of interconnected virtualised resources: Fig. 13a
depicts the QoS gain from allowing cloudlets to offer their
VMs to distant markets, defined by the cellular advertisement
range with respect to the location of the cloudlet offering its

9The execution times are computed using a 2.2 GHz Intel Core i5 processor.

(a) Iterations Comparison. (b) Execution Time Comparison.
Fig. 14: VED vs. English Auctions

resources. Consider the cell r
0

at the center in Fig. 9, where
the hexagons tagged r

1

and r
2

are within advertisement range
one and two from r

0

, respectively. For an advertisement range
of zero, the INCP at cell r

0

can advertise its resources only at
r
0

’s local market for only to be utilised by the users connected
to r

0

. With a range of one, on the other hand, the INCP at
r
0

can now advertise its resources at the markets of r
1

cells
in addition to its local one at r

0

, which makes INCP r
0

’s
resources accessible by the users connected to r

0

and r
1

cells.

Undoubtedly, there is a higher QoS gain when INCPs act
as a pool of interconnected virtualised resources that can be
offered over different cells than offering their resources only to
the local cellular market. The reason is that idle VMs have the
opportunity of being utilised by users connected to a different
cellular markets, where due to the limited elasticity of the
local cloudlet there are not available VMs for serving their
requests. Furthermore, from Lemma 3 we know that VMs
offered by a single cloudlet to a single market can be allocated
only if they have identical prices. In other words, the price
that a INCP can get from her resources is market specific.
Therefore, offering VMs to distant markets is beneficial for
the income of the INCPs since they have the opportunity to
diversify their prices. This is clear in Fig. 13b, where over
the under-deployed zone, i.e., number of cloudlets 1 to 26,
the average price of VMs is substantially higher than the case
when VMs are only offered locally. On the other hand, at
the over-deployed zone, i.e., number of cloudlets 26 onwards,
the average price is approaching the value of zero, due to the
abundance of resources and the competition conditions that are
created.

Benefit of VED auctions: Lastly, in order to demonstrate
Edge-MAP’s scalability in increasing workloads, we consider
the extreme case where all mobile users request a LLA in
a setting where 26 cloudlets are deployed, each one capable
of supporting 200 VMs. Figures 14a and 14b present the
comparison of Edge-MAP against an Edge-MAP’s variation
that relies on Vickrey-English (VE) ascending auctions instead
of VED. Clearly, VED auctions dominate over the VE ones
both in terms of iterations and execution time, since VED
requires less than a second to derive the new VCG equilibrium
as opposed to VE whose execution time might exceed the
4 seconds threshold. Therefore, VED auctions are ideal for
repetitive allocation settings where they can take advantage of
the previously found equilibrium for decreasing their execution
time.

V. RELATED WORK

Cloudlets have been proposed in [33] as a surrogate
infrastructure where mobile devices could offload intensive
tasks to complement their computing capabilities and battery



limitations [7], [14]. Since then a considerable amount of
research has focused on task offloading technologies [12], [33]
targeting either the augmentation of mobile devices computing
capabilities [30], [37] and/or battery duration [8]. In our pre-
vious work [6], we address the problem of application-specific
task offloading (i.e., a task requires the corresponding virtual
instance of the application stored at a cloudlet before getting
offloaded), but do not take into account user-mobility and
focus instead on efficient allocation of services to computation
nodes across the edge-to-core path. Lastly, other approaches
considered the maximisation of admitted task volume [18],
while task offloading from a competitive perspective is pre-
sented in [21]. Specifically, authors in [21] present a double
auction scenario between end users and cloudlets but their
centralised market raises questions about the scalability of
such a system. Furthermore, the execution frequency of the
auction mechanism is not investigated since the users’ demand
is considered static. Closer to our work, Landa et al. proposed
a self-tuning service provisioning auction mechanism over
the in-network computational resources that are organised in
execution zones [22]. However, their solution does not achieve
fine grained utilisation of resources since it is based on an
offline execution that relies on each LLA’s demand expectation.
To the best of our knowledge, we are the first to define a
polynomial time market mechanism for LLA provisioning over
an edge-computing infrastructure taking into account end user
mobility and fostering competition among INCPs.

VI. CONCLUSIONS

We studied the emerging market of LLAs’ provisioning
over edge-/fog-computing. Along these lines we proposed
Edge-MAP, a polynomial time mechanism tailored to the on-
demand provisioning of LLAs for mobile users. At the micro-
level, Edge-MAP operates on cellular-based markets using
VED auctions to perform robust resource allocation. At the
macro-level, Edge-MAP fosters competition among INCPs by
providing feedback with respect to profit opportunities on
different markets. Our evaluation verified Edge-MAP’s design
capability to take into account the inherent challenges of
LLAs and allocate resources according to demand, adapting
to network conditions and avoiding underutilisation of edge-
computing infrastructure.
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