
An integrated and systematic approach for the development of telematic
services in heterogeneous distributed platforms

D.X. Adamopoulosa,*, G. Pavloua, C.A. Papandreoub

aCentre for Communication Systems Research (CCSR), School of Electrical Engineering, IT and Mathematics, University of Surrey, Surrey, UK
bHellenic Telecommunications Organisation (OTE), Athens, Greece

Received 18 May 1999; revised 22 May 2000; accepted 23 May 2000

Abstract

The advent of deregulation combined with new opportunities opened by advances in telecommunications technologies has signi®cantly

changed the paradigm of telecommunications services, leading to a dramatic increase in the number and type of services that telecommu-

nication companies can offer. Building new advanced multimedia telecommunications services in a distributed and heterogeneous environ-

ment is very dif®cult, unless there is a methodology to support the entire service development process in a structured and systematic manner,

and assist and constrain service designers and developers by setting out goals and providing speci®c means to achieve these goals. Therefore,

in this paper, after a brief examination of important service engineering matters and service modelling issues, a service creation methodology

a proposed and presented focusing on its essential characteristics. The application of this methodology to the development of a multimedia

conferencing service for education and training is then examined and a possible enhancement of the methodology through the use of design

patterns and frameworks is considered ®nally. q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Service development methodology; Service creation; Service engineering; New telecommunications services; Service life-cycle

1. Introduction

The telecommunications industry is currently undergoing

a fundamental restructuring as the evolving synergy

between information and telecommunications technology,

termed telematics, is gradually gaining momentum. This

evolution and diversi®cation is being driven mainly by

liberalisation, increasing competition in the marketplace,

technological advancements, and demands from all custo-

mer segments for an increasingly sophisticated portfolio of

telecommunication services, tailored to their speci®c needs.

It is expected that the forthcoming integrated (®xed and

mobile) broadband networks will be available openly to

the existing and the new service providers, consisting of a

world-wide common shared communications platform for a

multitude of new advanced telecommunications services

(telematic services). The proliferation of these services

will lead eventually to the transformation of the global

information infrastructure to an open services market

fuelled by deregulation, strategic partnerships, and joint

interoperability activities [23].

There is much incentive to stay ahead of this global

market, and offer new and/or improved services before the

competition. Pressure on service providers is increased as

they need to be able to react quickly and ¯exibly to the ever

changing customer needs by developing and offering

services of enhanced functionality and signi®cant diversity

in shorter time-frames. Therefore, the rapid deployment of

new or improved services is critical, and the service life-

cycle has to accelerate so that new services can be provided

fast enough to meet the changing customer demands in a

competitive manner. However, the fast and cost-effective

provision of the new ef®cient services requires not only an

open service architectural framework, like the one speci®ed

by the Telecommunications Information Networking Archi-

tecture Consortium (TINA-C) [5,27], but also appropriate

support for the service development process [2,11].

The creation of telecommunications services within an

open environment is a highly complex activity. This

complexity stems not only from the technical nature of the

tasks involved, but also from the number of the participating

actors and the variety in their roles, concerns, and skills.

Therefore, there is a need to support the complex service

Computer Communications 24 (2001) 394±415

www.elsevier.com/locate/comcom

0140-3664/01/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0140-3664(00)00230-9

* Corresponding author.

E-mail addresses: d.adamopoulos@eim.surrey.ac.uk

(D.X. Adamopoulos), g.pavlou@eim.surrey.ac.uk (G. Pavlou),

kospap@org.ote.gr (C.A. Papandreou).



creation process in order to ensure that resulting services

actually perform as planned and as required by customers

and service providers [12]. A methodology is an important

part of such an attempt, as it provides a systematic and

structured base for the ¯exible and ef®cient management

of the development of telecommunications services, also

ensuring that the roles of the participating actors are identi-

®ed clearly and that their behaviours are consistent through-

out the whole process of service creation.

In this paper, in order to structure and control the service

development process from requirements capture and analy-

sis to service implementation, to reduce the inherent

complexity, and to ensure the thorough compatibility

among the many involved tasks, a TINA-C conformant

service creation methodology is proposed. Its intention is

to provide valuable answers to several important service

engineering matters and thus facilitate the transition to a

telecommunications environment where many different

(enhanced) services are offered by a multiplicity of service

providers to several categories of customers within an open

market.

2. The need for an integrated and systematic approach

An architectural framework is by its de®nition an abstract

entity, which consists of a set of concepts/principles and a

set of guidelines and rules. For this reason, TINA-C is more

descriptive rather than prescriptive, and its application can

be a complex task [26]. Furthermore, there seems to be no

end to the emergence of new services, each requiring a new

set of communications capabilities. In a world already

replete with a multitude of services, the addition of new

intricate services can be a daunting challenge.

The basic factors that shape this challenge are addressed

by the discipline of integrated service engineering, which

includes the technologies and engineering processes

required to de®ne, design, implement, test, deploy, main-

tain, and manage telecommunications services [2,3]. The

attribute ªintegratedº makes reference to the need for infor-

mation, management, service, component, and interface

integration (integration aspects), required to support effec-

tively new telecommunications services.

The concept of the service life-cycle has a central role in

integrated service engineering. All services go through a

service life-cycle, which contains descriptions of activities,

in the form of an ordered collection of processes or steps,

that are required to support the development, the operation,

and the maintenance of a service [9]. The logical grouping

of these activities gives rise to a number of distinct sets,

which are known as stages (service creation, service deploy-

ment, service operation/utilisation, and service withdrawal).

Further grouping of the activities within a stage gives rise to

the concept of actions (or phases). The description of the

actions includes all the essential details of the activities that

take place in a given stage. The service life-cycle establishes

a common terminology to be used when discussing a

service, and thus facilitates a common understanding of

service matters.

Fig. 1 depicts a graphical representation of a service life-

cycle, which is an enriched variation of the TINA-C life-

cycle model [27]. The rectangles are the actions/phases,

while the ellipses are the main states that a service goes

through. In this ®gure, the following states are identi®ed:

² Conceived but not plannedÐthe service has been

conceived, but no details about its implementation are

known.

² Planned but not installedÐthe service has been planned,

but it does not exist in a (TINA-C) service execution

environment (although it might have existed in the past).

² Installed but not activatedÐthe components of the

service exist in a (TINA-C) service execution environ-

ment, but the service cannot be instantiated.

² Activated but not instantiatedÐthe service has the

potential for being instantiated.

² Instantiated(executing)Ðan instance of the service is

available.

The service life-cycle of Fig. 1 is a combination of tradi-

tional software engineering methodologies (focusing on

development issues) with the activities required to operate,

use, and maintain a service (focusing on post-development

issues) [10]. It should be noted that it is not a strict waterfall

model (it is not a strict top±down approach) of system

development. It is possible in each phase of the life-cycle

(and especially in the service creation phases) to return to a

previous phase if the re®nements and requirements are

added during system development.

Among all the stages of the service life-cycle of Fig. 1, in

TINA-C, service creation is one of the most abstract and

general, since it does not provide many guidelines on how to

structure each of its phases. Furthermore, it is also one of the

most important as it determines the ef®ciency with, which

the services will be developed, and thus the success of

service providers in a highly competitive market. For this

reason, considerable effort is being devoted in Europe to the

de®nition of advanced service creation practices and the

development of Service Creation Environments (SCEs)

[1,30].

In order to meet these challenges, a service creation meth-

odology is proposed to enable TINA-C to satisfy the

required expectations on long-term ef®ciency of service

design, provision, and management. This methodology,

given a set of requirements that a service should meet, a

set of the available service independent features (normally

in the form of service components), and a target TINA-C

compliant Distributed Processing Environment (DPE)

wherein the service will be deployed, facilitates the design

and implementation of a TINA-C compliant service, which

meets the desired requirements by promoting the use of the

service independent features [14,25].

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 395



Such a methodology can result in an ef®cient and effec-

tive standardised process for the systematic development of

telematic services, at lower cost, higher quality, increased

speed, meeting the needs of the users and the enterprise

better, and leading to lower maintenance costs. Moreover,

a common approach can be used throughout an enterprise,

which means that more integrated systems can result, the

management of related projects will be facilitated signi®-

cantly, staff can change easily from project to project with-

out much retraining, the reuse of service speci®cations and

software will be supported greatly, and a base of common

experience and knowledge will be achieved [2,10].

3. The modelling approach

A telematic service, due to its (potentially) enhanced

functionality and its inherent distributed nature, is usually

overwhelmingly complex and thus, it is necessary to decom-

pose it into understandable parts/segments in order to

comprehend fully its semantics and manage the complexity.

These parts/segments may be represented as models that

describe and abstract essential aspects of the telematic

service.

Therefore, a useful activity during the development of a

telematic service is to create models of the service, which

organise in a concise way and communicate with accuracy

the important details of the telematic service under exam-

ination. These service models should contain cohesive,

strongly related elements and are composed usually of

other (simpler) models or artifacts, comprising basically

diagrams and documents, which describe concepts and enti-

ties, and reveal the relations between them.

Service models in the proposed methodology are

presented using the Uni®ed Modelling Language (UML),

which is an emerging industry standard for specifying,

constructing, visualising, and documenting software-inten-

sive systems [6,15]. UML is an elegant, expressive, and

¯exible object-oriented modelling language, capable to

support effective and consistent communication and to

enhance the ability to understand and act. Although UML

must be applied in the context of a process, it does not

de®ne a standard development process, as it has been

experienced that different organisations and problem

domains require different processes. Therefore, UML

consists only of a metamodel (which uni®es semantics)

and a notation (which provides a human rendering of

these semantics).

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415396

Fig. 1. The service life-cycle.



UML was chosen as the main modelling notation for the

proposed methodology because:

² It provides service designers and service developers a

ready-to-use, expressive, visual modelling language so

that they can develop and exchange meaningful service

models.

² It provides extensibility and specialisation mechanisms

to extend the core concepts and thus it can be tailored to

the speci®c needs of telematic services.

² It is independent of particular programming languages

and development processes.

² It provides a formal basis for understanding the model-

ling language.

² It encourages the growth of the object-oriented software

tools market and thus the availability of appropriate tool

support for the entire service creation life-cycle is

guaranteed.

² It supports useful higher-level development concepts,

such as collaborations, frameworks, (design) patterns,

and components.

² It integrates best practices from popular ®rst-generation

object-oriented analysis and design methods.

The overall telematic service model that is created when

applying the proposed methodology to the development of a

speci®c telematic service can be seen in Fig. 2 and is

composed of the:

² Service Analysis ModelÐit is related to an investigation

of the domain of the telematic service (service domain),

which constitutes the problem space under examination.

² Service Design ModelÐit is related to a (logical)

speci®cation of the constituent parts of the telematic

service.

In the proposed methodology, independent of how

artifacts are organised into service models, there are

in¯uential dependencies between them. It is useful to under-

stand these dependencies so that consistency checks and

traceability can be achieved, and so that dependent artifacts

are used effectively as input to creating later artifacts. If an

artifact is created, which has no dependants and is not used

as input to anything else, then the value of that artifact and

the time spent in its creation should be questioned seriously

[21].

Finally, it has to be stressed that the overall modelling

approach followed by the proposed methodology is in¯u-

enced strongly by the TINA-C service architecture and by

the modelling guidelines and rules that it encompasses

[22,27]. Services are considered as software-based applica-

tions that operate on a distributed computing platform (a

DPE). This platform hides from services the underlying

technologies and distribution concerns, and supports in

this way the portability and interoperability of the service

code. Therefore, a telematic service is realised by a set of

interacting service components (i.e. computational objects

interacting via their computational interfaces), which are

distributed across different network elements.

4. The proposed service development methodology

Telecommunications operators need to master the

complexity of service software, because of the highly diver-

si®ed market demands, and consequently, because of the

necessity to develop quickly and economically and intro-

duce a broad range of new services [10]. To achieve such an

ambitious, yet strategic to the telecommunications operators

goal, a service creation methodology based on the rich

conceptual model of TINA-C is proposed.

A methodology is considered to be a coherent and inte-

grated set of methods/procedures from, which a coherent

subset can be selected by developers for particular cases.

A method/procedure is a systematic way to achieve a speci-

®c goal. It is implemented by techniques, and some techni-

ques are supported, or automated, by tools [2,9]. In full

agreement, the proposed methodology contains a concep-

tual model of constructs and a series of guidelines, essential

to the development of telematic services, together with a set

of (partially) ordered activities (realised by a number of

speci®c steps) suggesting the direction to proceed.

A high-level or macro-level view of the proposed service

creation methodology can be seen in Fig. 3. The proposed

service development process is based on an iterative and

incremental, use case driven approach. An iterative service

creation life-cycle is adopted, which is based on successive

enlargement and re®nement of a telematic service through

multiple service development cycles within each one the

telematic service grows as it is enriched with new functions.

More speci®cally, after the requirements capture and analy-

sis phase, service development proceeds in a service forma-

tion phase, through a series of service development cycles.

Each cycle tackles a relatively small set of service require-

ments, proceeding through service analysis, service design,

service implementation, and service validation and testing.

The telematic service grows incrementally as each cycle is

completed. The proposed use of the UML notation in almost

all the phases of the methodology, has the advantage of

making both the service description more coherent and the

process of proceeding from one phase to another more

natural and ef®cient [18,21]. For this reason, TINA-C

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 397

Fig. 2. The overall telematic service model.



could also consider UML in a future version of its comput-

ing and service architectures.

According to Fig. 3, the main phases of the proposed

methodology are the following:

² Requirements capture and analysis phaseÐit identi®es

the telematic service requirements (together with a

number of roles) and presents them in a structured way.

² Service analysis phaseÐit describes the semantics of the

problem domain that the telematic service is designed

for. Thus, it identi®es the objects that compose a service

(information service objects), their types, and their

relationships.

² Service design phaseÐit produces the design speci®ca-

tions of the telematic service under examination. Compu-

tational modelling is taking place in this phase and thus

the service is described in terms of (TINA-C) computa-

tional objects interacting with each other.

² Service implementation phaseÐin this phase the pieces

of the service software (computational objects) are

de®ned and implemented in an object-oriented program-

ming language (e.g. C11, Java), inside a TINA-C

compliant DPE.

² Service validation and testing phaseÐit subjects the

implemented telematic service in a variety of tests in

order to ensure its correct and reliable operation.

² Service optimisation phaseÐit examines thoroughly the

service code in order to improve its performance in the

target DPE and thus prepares the telematic service for a

successful deployment.

As can be seen from Fig. 3, the proposed methodology is

consistent conceptually with the viewpoint separation as

advocated by TINA-C in accordance with the Reference

Model for Open Distributed Processing (RM-ODP), uses

the service life-cycle of Fig. 1 as a roadmap, and does not

imply a waterfall model in which each activity is done once

for the entire set of service requirements. Furthermore,

graphical and textual notations are proposed for almost all

phases to improve the readability of the related results and

ensure a level of formalism suf®cient to prevent any ambi-

guity. In the following paragraphs, a number of important

issues regarding the proposed methodology as a whole are

considered and the most important phases of the methodol-

ogy are examined focusing on their essential characteristics

and artifacts. The service optimisation phase has been

omitted, because it depends highly on the selected program-

ming language and on the target DPE. Finally, an attempt to

apply all the phases of the methodology to the development

of a speci®c characteristic telematic service is presented and

critically analysed.

4.1. Important methodological considerations

The proposed methodology speci®es a service develop-

ment process from the identi®cation of service requirements

through to the actual implementation of a telematic service.

This service development process, except from the fact that

it organises all the activities related to the creation of tele-

matic services, it also provides a foundation for creating a

manageable, repeatable, and successful service develop-

ment project.

The most important phases of the proposed methodology

are the requirements capture and analysis phase, and the

phases of service analysis and service design, which are

performed inside the repeated service development cycles.

A useful approach is to bind each of these cycles within a

rigidly ®xed time-frame (a time-box). All work related to a

speci®c cycle must be accomplished in that time-frame.

Depending on the telematic service under examination, a

time-frame ranging between two weeks and two months is

usually appropriate. Any less, and it is dif®cult to complete

tasks; any more and the complexity becomes overwhelming

and feedback is delayed [8,21].

To succeed with a time-box schedule, it is necessary to

choose the service requirements carefully, as iterative

service development cycles are organised according to the

identi®ed use case requirements. More speci®cally, a

service development cycle is assigned to implement one

or more (semantically related) use cases, or simpli®ed

versions of use cases (which is quite common when the

complete use case is too complex to tackle in one cycle).

Use cases should be ranked and high ranking use cases

should be tackled in the early service development cycles.

Furthermore, use cases that (is expected to) signi®cantly

in¯uence the core service architecture, or which are critical

and/or high-risk, should be considered ®rst.

To create a telematic service successfully, a clear

description of the problem and of the service requirements

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415398

Fig. 3. Iterative service development cycles in the proposed methodology.



is necessary (i.e. what the problem is about and what the

telematic service must do). It is also necessary to have high-

level and detailed descriptions of a logical solution, which

ful®ls the identi®ed service requirements and satis®es any

potential constraints. Service analysis emphasises an inves-

tigation of the problem rather than how a solution is de®ned,

while service design emphasises the construction of a logi-

cal solution according to the service requirements. Ulti-

mately, the service speci®cations produced by the service

design phase will be implemented in the software with the

appropriate use of computing and networking infrastructure.

Service development is complex and therefore decompo-

sition (ªdivide-and-conquerº) is the primary strategy

considered to deal with this complexity by breaking a tele-

matic service up into manageable units. The proposed meth-

odology applies object-oriented analysis and design, which

emphasises considering a problem domain and an asso-

ciated logical solution from the perspective of objects

(things, concepts, or entities) [3,6]. This is opposed to

decomposing a telematic service by applying structured

analysis and design, whose dimension of decomposition is

primarily by function or process, resulting in a hierarchical

breakdown of processes composed of subprocesses.

Because of the adoption of object orientation by the

proposed methodology, during the (object-oriented) service

analysis phase, there is an emphasis on ®nding and describ-

ing the service concepts (service information objects) in the

service domain, whose boundaries are determined, as accu-

rately as possible, by the telematic service under examina-

tion during the requirements capture and analysis phase.

Furthermore, during the (object-oriented) service design

phase, there is an emphasis on de®ning logical (software)

service objects (service computational objects or service

components) with attributes and methods that will ulti-

mately be implemented in an object-oriented programming

language, such as C11 or Java, inside a TINA-C compliant

DPE during the service implementation phase.

It has to be stressed that the division between service

analysis and service design is fuzzy. In telecommunications

service engineering (and sometimes in other disciplines

also), analysis and design work exists on a continuum,

and different practitioners of service analysis and service

design classify an activity at varying points on the conti-

nuum [10,25]. Therefore, it is not helpful being rigid about

what constitutes a service analysis versus a service design

step.

Nevertheless, some consistent distinction is useful in

practice between investigation (service analysis) and solu-

tion (service design), because it is advantageous to have a

well-de®ned step that emphasises an inquiry of what the

problem is before examining in detail how to create a solu-

tion. Finally, if a team of service developers is involved in

the service development process, a consistent distinction

between service analysis and service design sets an expecta-

tion of suitable behaviour among the team members. For

example, during service analysis, members expect to

emphasise understanding of the problem while deferring

issues related to the actual solution, performance, etc.

Irrespective of the exact scope of service analysis and

service design, the most important ability in both these

two phases is to assign responsibilities to service compo-

nents successfully [9,21,30]. This is the most critical skill,

because this activity must be performed (it is inescapable)

and it has the most profound effect on the robustness,

maintainability, and reusability of the resulting (imple-

mented in software) service components, which are the

main building blocks of telematic services. Assigning

responsibilities is inevitable even when a service developer

hasn't got the opportunity to perform any other service

analysis or service design activities (a ªrush to codeº service

development process). Next to assigning responsibilities,

another important activity is ®nding suitable service objects

or abstractions. Both activities are critical, but responsibility

assignment tends to be the more challenging skill to master,

as it is dif®cult to devise and apply guidelines for this

activity.

Finally, the timing of the creation of some artifacts during

the application of the proposed methodology needs to be

discussed and examined. More speci®cally, certain artifacts

created during the service analysis phase, such as a service

conceptual model and expanded use cases, also may be

created during the requirements capture and analysis phase.

A service conceptual model is a graphical representation

of service concepts in the service domain under examination

(see also Section 4.3). The amount of effort applied to the

creation of a draft service conceptual model during the

requirements capture and analysis phase needs to be

tempered. The goal is to obtain a basic understanding of

the vocabulary and concepts used in the service require-

ments. Therefore, a ®ne-grained investigation is not

required, as it also increases the possibility of front-loading

the investigation too much (complexity overload).

The recommended strategy is to create quickly a rough

service conceptual model where the emphasis is on ®nding

obvious service concepts expressed in the service require-

ments while deferring a thorough investigation. Later,

within each service development cycle, the service concep-

tual model will be re®ned incrementally and extended for

the service requirements under consideration within that

cycle. Another possible strategy is to defer creation of the

service conceptual model completely until the start of the

service development cycles. This has the advantage of

deferring complexity, but the disadvantage of less up-front

information, which may have been useful for achieving

better comprehension.

Another artifact that the timing of its creation needs to be

examined in use cases (see also Section 4.2). During the

requirements capture and analysis phase, it is proposed to

create all the high-level use cases, but to only rewrite the

most critical and important use cases in an expanded (long)

format, deferring the rest until the service development

cycle in which they are examined. As with the service

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 399



conceptual model, there are trade-offs in terms of the bene®t

of the early acquisition of information versus facing too

much complexity. The advantage of investigating and writ-

ing all the detailed expanded use cases during the require-

ments capture and analysis phase is more information,

which can improve comprehension. However, the disadvan-

tage is early complexity overload, as this investigation will

generate many more detailed issues. Furthermore, the

expanded use cases may not be very reliable because of

incomplete or incorrect information, and because the

service requirements may be under continual change. There-

fore, the recommended strategy is to expend effort investi-

gating only the most important use cases in detail during the

requirements capture and analysis phase.

4.2. Requirements capture and analysis

During this phase the service developer assembles, docu-

ments, and structures the requirements on the service

(service needs) from the different stakeholders involved.

The focus is on modelling the concepts that are visible at

the service boundary and thus the service logic is viewed as

a black box. The requirements capture and analysis phase is

a critical phase because the correct and thorough speci®ca-

tion of the service requirements is essential for a successful

telematic service. The primary goal of this phase is to iden-

tify what functionality is really needed to include in the

telematic service and document it in a form that is easily

understandable and unambiguous.

The activities that take place in this phase can be seen in

Fig. 4. Although this ®gure suggests a linear order of artifact

creation, that is not strictly the case. Some artifacts may be

created in parallel. This is especially true for the draft

conceptual model, the glossary, the use cases, and the use

case diagram(s). The dependencies between the artifacts

produced during the requirements capture and analysis

phase can be seen in Fig. 5.

The service developer, after gathering enough material

regarding the telematic service under examination with

various means (e.g. interviews, group meetings, study of

related documents, etc.) and in various forms/formats (e.g.

notes, sketches/graphs, audio recordings, etc.), attempts to

process this material and structure it appropriately in order

to elicit from it a set of service requirements.

In full agreement, one of the most important tasks that the

service developer has to perform is the identi®cation of the

independent entities/actors, which are involved (by their

collaboration) in the operation of the service within and

across business administrative domain boundaries. These

entities correspond to roles modelling a well de®ned group-

ing of functionality under control of a speci®c stakeholder

[23]. This initial task is important because the gathered

requirements are structured around the identi®ed roles by

determining relationships between the roles. Each of the

relationships de®ne a set of speci®cations for the interac-

tions between two roles. They also support generic interac-

tions (e.g. instance establishment, release and management

of a secure association, negotiation of the initial usage inter-

actions, etc.) that need to be performed before any other

interaction de®ned in the relationship can occur. A role

can be either generic or speci®c. The main generic (busi-

ness) roles and the (business) relationships between them

are speci®ed by the TINA-C Business Model [28], which

can be seen in Fig. 6. Each generic role (consumer, retailer,

broker, third party service provider, connectivity provider)

corresponds to one or more speci®c roles [22].

TINA-C reference points are de®ned in relation to the

(business) relationships they support and, according to

their functionality, can be divided into the following

segments, which cover the core parts of the functionality

of a TINA-C service [5,27]:

² Access segmentÐit is concerned with authentication and

authorisation of users, the selection of service features,

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415400

Fig. 4. Requirements capture and analysis phase activities.

Fig. 5. Requirements capture and analysis phase artifact dependencies.



and the setting up of the context for the use and manage-

ment of the service.

² Usage segment:

± primaryÐit covers the functionality that is the main

objective of the service;

± ancillaryÐit addresses administrative and manage-

ment functionality.

In order to improve the understanding of the service

requirements, use cases are created. Use cases are textual

narrative descriptions of service domain processes. They

describe the sequence of events generated by an actor

using a telematic service to complete a speci®c service

process. They are stories or cases of using a telematic

service. Use cases are not exactly requirements or functional

speci®cations by themselves, but they illustrate and imply

service requirements in the stories they present [8,15]. Use

cases may be expressed with varying degrees of detail and

commitment to design decisions. Therefore, the same use

case may be written in different formats, with different

levels of detail. There are two basic formats that a use

case can take, leading, respectively, to high-level use

cases and to expanded use cases.

A high-level use case describes a service process very

brie¯y, usually in two or three sentences. It is useful to

create this type of use case during the requirements capture

and analysis phase in order to understand quickly the degree

of complexity and functionality in a telematic service. High-

level use cases are very terse and vague on design decisions.

On the other hand, an expanded use case describes a service

process in more detail than a high-level one. The primary

difference from a high-level use case is that it has a section,

which describes the step-by-step events. During the require-

ments capture and analysis phase, it is useful to write the

most important and in¯uential use cases in the expanded

format, and defer the less important ones until the service

development cycle in which they are being tackled (see also

Section 4.1).

Furthermore, use cases can be either essential or real.

More speci®cally, essential use cases are expanded use

cases that are expressed in a form that remains relatively

free of technology and implementation details, as design

decisions (especially those related to the user interface)

are deferred and abstracted. High-level use cases are always

essential in nature, due to their brevity and abstraction. It is

desirable to create essential use cases during the require-

ments capture and analysis phase in order to more fully

understand the scope of the problem and the service func-

tions required. They are advantageous because they reveal

the essence and the fundamental motivation of the service

process that they describe without being overwhelmed with

design details. They also tend to be correct for a long period

of time, since they exclude design decisions [8].

In contrast, a real use case concretely describes a service

process in terms of its real current design and committed to

speci®c technologies. Ideally, real use cases are created

during the service design phase of a service development

cycle, since they are a design artifact. If early design deci-

sions regarding the user interface are expected, then real use

cases must be created during the requirements capture and

analysis phase. Otherwise, it is undesirable to create real use

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 401

Fig. 6. The TINA-C Business Model (roles and relationships).

Fig. 7. The service analysis model.



cases so early, because of the premature commitment to a

speci®c service design and overwhelming complexity

involved.

After the identi®cation of use cases and concurrently with

their speci®cation, a use case diagram is created. It illus-

trates a set of use cases for a telematic service, the actors

involved, and the relation between the actors and the use

cases. The purpose of this diagram is to present a kind of

context diagram by which one can understand quickly the

external actors of a telematic service and the key ways in

which they use it. High-level and essential use cases and use

case diagrams are members of the service analysis use case

model (see Fig. 7).

4.3. Service analysis

The aim of this phase is to determine the functionality

needed for satisfying the service requirements that were

identi®ed in the previous phase and to de®ne the software

architecture of the service implementation. For this reason,

the focal point shifts from the service boundary to the inter-

nal service structure [2].

The activities that take place in this phase can be seen in

Fig. 8. As with the requirements capture and analysis phase

artifacts, the linear order that may be inferred from this

®gure is not strictly the case, as some artifacts may be

created in parallel (e.g. the service conceptual model and

the glossary). The dependencies between the artifacts

produced during the service analysis phase can be seen in

Fig. 9.

The service analysis phase is the ®rst phase of the service

creation process where the service is decomposed into

constituent parts (service information objects or service

concepts), with the appropriate relationships among them,

in an attempt to gain an overall understanding of the service.

The resulting (main) service conceptual model, which is the

most important artifact that is created during the service

analysis phase, represents a restatement, in a graphical nota-

tion, of the problem statement, as it was expressed in the

previous phase. It involves identifying a rich set of service

concepts regarding the telematic service under examination

by investigating the service domain. Therefore, it describes

what the service is in terms of interesting and meaningful (to

the service developer) entities/concepts that constitute it and

the couplings/associations between them. These couplings

de®ne relationships between two service Information Object

(IO) classes. Each service IO participating in a relationship

has a role in that relationship. Each role possesses a certain

multiplicity that quanti®es the number of instances of a

service IO class having a role that may participate in a

relationship with each instance of the service IO class

having the other role [16]. In UML, a service conceptual

model can be illustrated with a set of static structure

diagrams in which no operations are de®ned.

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415402

Fig. 8. Service analysis phase activities.

Fig. 9. Service analysis phase artifact dependencies.



It has to be stressed that a service conceptual model is a

representation of real-world concepts or actual things, and

not a representation of software components (software

entities). A good service conceptual model captures the

essential abstractions and information required to under-

stand the service domain in the context of the current service

requirements, and aids service developers in understanding

the service domain (its concepts, terminology, and

relationships). However, there is no such thing as a single

correct service conceptual model. All service conceptual

models are approximations of the service domain under

examination [6,21].

A central task when creating a service conceptual model

is the identi®cation of the service concepts (mainly by

examining expanded use cases). It has to be noted as a

guideline that it is better to overspecify a service conceptual

model with many ®ne-grained concepts than to underspe-

cify it. It is also necessary to identify those associations of

service concepts that are needed to satisfy the information

requirements of the current use case(s) under development

and that aid the comprehension of the service conceptual

model. The associations that should be considered, in order

to be included in a service conceptual model, are those

associations for which the service requirements suggest or

imply that knowledge of the relationship needs to be

preserved for some duration (ªneed-to-knowº associations)

or are otherwise suggested strongly in the service develo-

per's perception of the problem domain. Finally, in a similar

manner, a service conceptual model should include all the

attributes of service concepts for which the service require-

ments suggest or imply a need to remember information.

The main service conceptual model is accompanied by a

set of ancillary service conceptual models. These models are

derived by (and correspond to) a number of generic infor-

mation models deduced from the TINA-C service architec-

ture and complement semantically the main service

conceptual model with useful session related concepts and

structures. More speci®cally, the ancillary models refer to

the modelling of session roles, (TINA-C) sessions, access

sessions and service sessions, and to the classi®cation of

access and service sessions. The most important of them

is the Service Session Graph (SSG), which offers a generic

framework to describe information in service sessions and is

used to model and control the state of a service session [27].

An instance, at a certain point of time, of the SSG models a

ªsnapshotº of the resources, the parties, the peers, and the

relationships established into the service session. The

capabilities modelled in the SSG, which can be seen in

Fig. 10, are party invitation and addition, stream binding

and stream composition, and explicit control of the use of

resources (e.g. various devices participating in continuous

media communication).

The SSG supports the de®nition of control relationships

through the ControlSR type. More speci®cally, the

OwnershipSR class expresses ownership relations,

which determine the owners of a service IO that need to

be involved in the negotiation of session management

operations. Furthermore, the PermissionSR class

expresses the desired access control policy. Session-
Member and SessionRelationship IOs can be

aggregated into groups (SessionMemberGroup and

SessionRelationshipGroup, respectively) in order

to ease the establishment of repeated relationships. The

invitation and addition of users to a service session is

modelled by the Party IO type. Stream bindings among

parties are modelled by the association of StreamInter-
face IOs to StreamBindingSR IOs via the appropriate

SessionMember IOs. The StreamFlowEndPoint

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 403

Fig. 10. The Service session graph.



IOs have associated Quality of Service (QoS) attributes and

can be aggregated into stream interfaces at a party's end

system or at a Resource IO.

Before proceeding to a logical design of how a telematic

service will work in terms of software components, its beha-

viour is necessary to be examined and de®ned as a black

box. In this way, service behaviour is considered as a

description of what the telematic service does, without

explaining how it does it. One part of that description are

service sequence diagrams.

Use cases suggest how actors interact with the telematic

service under examination. During this interaction, an actor

generates events to the telematic service, requesting some

operation in response. It is desirable to isolate and illustrate

the operations that an actor requests of a telematic service

(service operations), because they are an important part of

understanding service behaviour. A service sequence

diagram, which is a UML sequence diagram, shows, for a

particular scenario of a use case, the events that external

actors generate and their order. All telematic services are

treated as a black box. The emphasis of the diagram is on

events that cross the service boundary from actors to tele-

matic services. A service sequence diagram should be done

for the typical course of events of each use case and some-

times for the most important alternative courses.

The behaviour of a telematic service is further de®ned by

service operation contracts (or service contracts), as they

describe the effect of service operations upon the telematic

service. A service sequence diagram depicts the external

events that an actor generates, but it does not elaborate on

the details of the functionality associated with the service

operations invoked. All the details that are necessary to

understand the service response (and thus the actual service

behaviour) are missing. These details are included in service

operation contracts, which describe changes in the state of

the overall telematic service when a service operation is

invoked. UML contains support for de®ning service

contracts by allowing the de®nition of pre- and post-condi-

tions of service operations [15].

During the service analysis phase it is dif®cult (and

maybe it is not even necessary) to generate a complete

and accurate set of post-conditions for a service operation.

However, it is better to create post-conditions early (even if

they are incomplete), rather than defer their creation until

the service design phase, when service developers should be

concerned with the design of a solution, rather than inves-

tigating what should be done. Post-conditions will take their

®nal form during the service design phase. Therefore, they

will enhance the service analysis work of the following

service development cycle.

Service sequence diagrams and service operation

contracts are part of the service behaviour model of the

service analysis model (see Fig. 7), which speci®es what

service events a telematic service responds to, and what

responsibilities and post-conditions the corresponding

service operations have. The service behaviour model

describes the external interface and the behaviour of the

overall service. It has to be noted that in order to be

complete (and really object-oriented) the information speci-

®cation of the service should also take into account the

(dynamic) behaviour of individual service IOs. This beha-

viour is de®ned usually by allocating operations to the

service IOs. However, the issue whether operations should

be ascribed to individual service IOs is quite controversial

as it actually represents a functional decomposition of the

overall service functionality [16]. This clearly implies

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415404

Fig. 11. Service design phase activities.



design decisions that should be better taken at the service

design phase.

4.4. Service design

During this phase the service developer de®nes the beha-

viour of the service IOs that were identi®ed in the service

analysis phase and structures the telematic service in terms

of interacting service computational objects (service

components), which are distributable, multiple interface

service objects. They are the units of encapsulation and

programming. While service IOs mainly explain how a

service is de®ned, service Computational Objects (COs)

reveal what actions have to be performed in order to execute

the service. Therefore, the output of this phase is the

dynamic view of the internal structure of the telematic

service.

The activities of the service design phase are depicted in

Fig. 11. As with the previous phases, the linear order that

may be inferred from this ®gure is not strictly the case, as

some artifacts may be made in parallel (e.g. the service

interaction diagrams and the service design class diagram).

The dependencies between the artifacts produced during the

service design phase can be seen in Fig. 12. This ®gure also

shows the way that the service design phase artifacts depend

on some of the service analysis phase artifacts.

As a ®rst step in this phase, the service IOs are considered

as potential candidates for service COs. In many cases,

service IOs are mapped to one corresponding service CO

encapsulating the information de®ned by the service IO and

providing an operational interface to access that informa-

tion. However, the mapping between service IOs and

service COs is not necessarily one to one. Furthermore,

the existence of a relationship between service IOs, either

provides a good rationale for encapsulating them together in

the same service CO or indicates the need for a binding

between interfaces of their corresponding service COs

[10,11]. This mapping process is simpli®ed signi®cantly

by adopting the use of the generic (access session, service

session, and communication session related) COs proposed

by the TINA-C service architecture (in terms of their iden-

ti®ed functionality and not in terms of speci®c interfaces-

feature sets) and by considering the computational views of

a number of scenarios (regarding business administrative

domains in user-provider roles and peer-to-peer access

roles, and in compound service sessions) deduced by the

computational modelling guidelines of TINA-C, which are

useful (for improving structure and general comprehension)

throughout the service design phase.

After identifying the service COs, a (separate) service

interaction diagram is created for each service operation

under development in the current service development

cycle. Service interaction diagrams illustrate how service

objects communicate in order to ful®l the service require-

ments. More speci®cally, the expanded use cases suggested

the service events initially, which were explicitly shown in

service sequence diagrams, then an initial best guess at the

effect of these service events was described in service opera-

tion contracts, and ®nally the identi®ed service events repre-

sent messages that initiate service interaction diagrams,

which illustrate how service objects interact via messages

to ful®l the required tasks. The service designer may collect/

extract information about what tasks the service interaction

diagrams should ful®l by essential or real uses cases, and by

the post-conditions of the service operation contracts.

However, it is essential to recognise that the previously

(in the service analysis phase) de®ned post-conditions are

merely an initial best guess or estimate of what must be

achieved and they may not be accurate.

UML de®nes two kinds of interaction diagrams, either of

which can be used to express similar or even identical

message interactions; namely collaboration diagrams,

which illustrate object interactions in a graph or network

format, and sequence diagrams, which illustrate interactions

in a kind of fence format [6,15]. The use of collaboration

diagrams for the expression of service interaction diagrams

is preferred over the use of sequence diagrams, because

collaboration diagrams are characterised by expressiveness,

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 405

Fig. 12. Service design phase artifact dependencies.



an ability to convey more contextual information, and a

relative spatial economy. Nevertheless, either notation can

express similar constructs. What is really important is that

service interaction diagrams is one of the most signi®cant

artifacts created during both service analysis and service

design, because the skilful assignment of responsibilities

to service objects and the design of collaborations between

them are two of the most critical (for the satisfaction of the

service requirements and thus for the successful realisation

of a service) and unavoidable tasks (which also require the

application of design skill) that have to be performed during

service creation [21].

Another important artifact created during service design

is the service design class diagram, which illustrates the

speci®cations for the software classes of a telematic service

using a strict and very informative notation. More speci®-

cally, from the service interaction diagrams the service

designer identi®es the software classes (service classes)

that participate in the software realisation of the telematic

service under examination, together with their methods, and

from the service conceptual model the service designer adds

detail to the service class de®nitions. A service design class

diagram typically includes/illustrates service classes, their

attributes and methods, attribute type information, navig-

ability, and associations and dependencies between service

classes. It has to be noted that in practice, service design

class diagrams and service interaction diagrams are created

usually in parallel. Furthermore, in contrast with a service

conceptual model, a service design class diagram shows

de®nitions of software entities (service components), rather

than real-world concepts.

Service interaction diagrams and service design class

diagrams belong to the service design model, which can

be seen in Fig. 13. The service class model in this ®gure

can be (optionally) further enhanced by the speci®cation of

service COs using the TINA-C Object De®nition Language

(ODL) [29], which is an enhancement (or a superset) of the

Interface De®nition Language (IDL) that has been intro-

duced by the Object Management Group (OMG), and

permits the de®nition of objects that have multiple inter-

faces and the de®nition of stream interfaces.

4.5. Service implementation

During this phase, an implementation of the telematic

service (service code) is generated from the service speci®-

cations and the deployability of the overall implementation

on a TINA-C compliant DPE is examined (DPE targeting).

It is assumed that at the beginning of this phase, a speci®c

(object-oriented) programming language and a speci®c

distributed object platform are chosen.

The activities of the service implementation phase can be

seen in Fig. 14. The dependencies between the artifacts

produced during this phase can be seen in Fig. 15. This

®gure also shows the way that the service implementation

phase artifacts depend on some of the service design phase

artifacts.

The engineering representation of a service CO (using an

object-oriented programming language like C11 or Java)

is called an engineering Computational Object (eCO). The

mapping between service COs and their eCOs is one to one;

no eCO represents a composition of service COs nor is a

service CO represented by more than one eCOs. The inter-

faces of an eCO represent the interfaces of its corresponding

service CO [19]. However, these interfaces may be modi®ed

by type conversions for operation parameters or by adding

operations necessary for the eCO's interaction with other

engineering objects (e.g. those that provide required distri-

bution transparencies). Furthermore, a management inter-

face may be added, which includes operations to be

performed by the object instance after its creation (construc-

tor), just before its destruction (destructor), after activation

or before deactivation. These modi®cations and additions

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415406

Fig. 13. The service design model.



depend signi®cantly on the exact characteristics of the

selected DPE.

With the completion of the service design phase, there

is suf®cient detail to generate code for the service objects

and construct the appropriate eCOs. For this purpose, the

service design phase artifacts (and especially the service

interaction diagrams and the service design class

diagram) provide a signi®cant degree of the necessary

information and the translation process is relatively

straightforward, especially if service classes are imple-

mented (and tested) from the least coupled to the most

coupled. More speci®cally, as a service interaction diagram

shows the messages that are sent in response to a method

invocation, the sequence of these messages translates to a

series of statements in the method de®nition. Furthermore,

from the service design class diagram, a mapping to the

basic attribute de®nitions and method signatures is almost

evident.

Despite these facts, the service implementation phase is

not a trivial code generation process. The results generated

during the service design phase have an approximate nature.

During programming and testing, many changes will be

made and detailed problems will be uncovered and resolved.

However, because of the nature and structure of the

proposed methodology, the service design phase artifacts

will provide a resilient core that scales up with elegance

and robustness to meet the new problems encountered

during programming. Consequently, change and deviation

from the service design phase artifacts during the service

implementation phase should be expected and planned for

(see also Section 4.6). After all, the spirit of iterative devel-

opment is to capture a ªreasonableº degree of information

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 407

Fig. 15. Service implementation phase artifact dependencies.

Fig. 14. Service implementation phase activities.



during the service analysis phase, ®lling in details during the

service design phase. Similarly, it is in the spirit of this

process to capture a ªreasonableº degree of design results

during the service design phase, ®lling in further details

during the service implementation phase. The de®nition of

ªreasonableº is, as it was expected, a matter of judgement

[17,21].

Finally, the service implementation phase is a phase in

which reusability matters should be considered seriously

(i.e. more seriously than in the other phases). According

to the TINA-C service architecture new services can be

realised by enhancing already existing components (e.g.

with the use of inheritance) or by de®ning new ones [27].

Therefore, the service independent components that are

speci®ed by TINA-C and other suitably created (and care-

fully selected) service components can be considered as

reusable units in the creation of new services. They may

be used in a service implementation as they are, or as the

basis for the construction of a service speci®c component.

More speci®cally, service dependent components may,

either inherit or aggregate the characteristics of service

independent components, or have a relation with them [4].

This activity can be facilitated greatly and enhanced by the

construction of service independent component libraries,

where components can be expressed in UML (various nota-

tions), ODL, C11/Java, etc. [11,30].

The exploitation of the available service independent

components in the service implementation phase, and in

previous phases (depending on the nature of the available

component libraries), begins with the selection and reuse of

the appropriate service independent functionality. Then, the

service dependent segment is developed, by exploiting as

much as possible the service independent segment. Finally,

the two segments are integrated [1,13,25]. This process can

be expressed with the following series of steps (®ne tuning

implies a feedback loop):

² Con®gure the access session related segment:

± select the access session related functionality;

± customise (if necessary) the selected access session

related functionality.

² Con®gure the service session related segment:

± select the service generic functionality;

± customise (if necessary) the selected service generic

functionality;

± determine the service speci®c functionality;

± develop the service speci®c functionality;

± ®ne tune the relations between the service generic and

the service speci®c part.

² Fine tune the relations between the access session and the

service session segment.

² Con®gure the communication session related segment:

± select the communication session related functionality;

± customise (if necessary) the selected communication

session related functionality.

² Fine tune the relations between the service session and the

communication session segment.

² Integrate all three segments (access, service, and commu-

nication session).

² Prepare the end user system.

4.6. Service validation and testing

Validation takes place in this phase by comparing the

developed service software against the service speci®ca-

tions produced at the service design phase [2,16]. This activ-

ity can be subdivided into the following two subactivities.

² Conformance testingÐit involves checking the imple-

mentation for conformance to architectural rules and

standards used in the service design.

² System testingÐit comprises the testing of service soft-

ware in a (possible) operational environment.

With this phase a service development cycle ends and

another one (depending on the exact nature of the speci®c

service requirements) is ready to start. A signi®cant strength

of the iterative and incremental service development

process adopted by the proposed methodology is that the

results of a prior service development cycle can feed into the

beginning of the next service development cycle. Thus,

subsequent service analysis and service design results are

being re®ned continually and informed from prior service

implementation work (see Fig. 16). For example, when the

code in cycle N deviates from the service design of cycle N

(which it inevitably will), the ®nal service design based on

the implementation can be input into the service analysis

and service design models of cycle N 1 1. For this reason,

as can be seen from Fig. 2, an early activity within a service

development cycle is to synchronise the created artifacts.

More speci®cally, the artifacts of cycle N will not

match the ®nal service code of cycle N, and they need to

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415408

Fig. 16. The in¯uence of service implementation work in the proposed

iterative and incremental service development process.



be synchronised before extended with new service analysis

and service design results.

5. Application of the methodology

In order to validate the proposed service development

methodology and examine its usefulness, correctness,

consistency, ¯exibility, and ef®ciency, several simple

scenarios, regarding a variety of service creation activities

for different simple telecommunications services, were

considered. These scenarios con®rmed that the methodol-

ogy has all the above anticipated positive characteristics.

To verify and reinforce these ®ndings under (more)

realistic conditions, and to determine also the true practical

value and applicability of the proposed methodology, all the

phases of the methodology were used for the development

of a real telematic service (a MultiMedia Conferencing

Service for Education and Training, MMCS-ET) that is

expected to have great demand in the near future [24].

This validation attempt, which provided valuable feedback

and resulted in the further improvement of the methodology,

is described brie¯y in this section, focusing mainly on the

most important artifacts that were created during the appli-

cation of the methodology. The intention is to provide char-

acteristic examples on the use of the methodology to those

interested in employing it for the development of new tele-

communications services (e.g. service developers, service

designers, etc.) and increase in that way their understanding

of the methodology and their con®dence on its effective-

ness.

During the ®rst phase of the methodology, it was found

that the main requirement was to develop a telematic service

(MMCS-ET) that will enable a teacher/trainer to teach ef®-

ciently and effectively a speci®c course to a number of

geographically dispersed/distributed students/trainees. The

service should establish an educational/training session

between the teacher and the remote students that is equiva-

lent to the educational/training session that would have been

established between the same people (teacher and students)

in a traditional classroom.

Further investigation revealed that every educational

session has at least one teacher and that a teacher can parti-

cipate in only one educational session at a given time, while

a student can't participate in more than one educational

sessions simultaneously. The establishment of an educa-

tional session involves the creation of the session by the

teacher and the invitation of students to participate in the

session. A student cannot create an educational session and

cannot invite a new participant (teacher or student) to a

session. A student participating in a session can only invite

to direct communication with him/her another student, who

is also (already) a participant in the same session.

The educational session established in a virtual classroom

by the MMCS-ET should be equivalent to the educational

session established in a traditional classroom and should

have as many characteristics as possible in common with

it. More speci®cally, in a traditional classroom the teacher

has the ability to manage the educational session. Besides

establishing the session he/she can also modify the session

(e.g. by removing a student from the classroom and thus

from the session), suspend and resume the session (e.g. by

allowing the students to have a break for a few minutes

without leaving the classroom), and ®nally ®nish the session

(.e.g. by ringing a bell or by telling it to the students who

leave the classroom and end the session). The same

capabilities should also characterise the teacher in a virtual

classroom.

Furthermore, in a traditional classroom the teacher and

the students can interact (and possibly collaborate) during

an educational session in the following ways:

² By seeing and talking to/hearing each other. This is the

most common way of interaction.

² By writing at their notepads. In that way, a teacher can

interact with only one student at a time, and e.g. see/

correct his/her answer to an exam question.

² By writing at the blackboard of their classroom. In this

case, everyone in the classroom sees what is written at the

blackboard and everyone can write something at the

blackboard.

² By exchanging course material (e.g. documents, graphs,

etc.). This material can be used during or after the educa-

tional session, according (usually) to the instructions of

the teacher.

Therefore, in a virtual classroom there is a need for audio/

video (A/V) communication among all the session partici-

pants (to substitute face to face contact), text communica-

tion between only two session participants (as that achieved

with the use of notepads), text communication among all the

session participants (as that achieved with the use of a

blackboard), ®le communication between the session parti-

cipants (for the exchange of course material), and collabora-

tion among all the session participants in order to perform a

common task.

By analysing all the above mentioned (unstructured)

requirements, a set of initial service requirements (cate-

gorised into session management, interaction, and colla-

boration support service requirements), together with a set

of service functions were identi®ed. From them the follow-

ing use cases were deduced:

² Contact the MMCS-ET provider (start up the MMCS-ET

service).

² Log in to the MMCS-ET provider domain.

² Start a new MMCS-ET session.

² Invite a student to join a MMCS-ET session.

² Join a MMCS-ET session after being invite.

² Invite a student (active user) to direct communication.

² Accept direct communication with a student (active

user).

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 409



² Engage in text communication with an active user.

² Engage in ®le communication with an active user.

² Engage in A/V communication with a student (active

user).

² Stop A/V communication with a student (active user).

² Start A/V communication with a student (active user).

² Terminate A/V communication with a student (active

user).

² Engage in a chat with all active users.

² Engage in ®le communication with all students (active

users).

² Start a voting process between all active users.

² Vote in a voting process between all active users.

² Present the outcome of a voting process to all the

involved active users.

² Terminate direct communication between two students

(active users).

² Remove a student from a MMCS-ET session.

² Terminate a MMCS-ET session.

² Terminate the MMCS-ET service.

These uses cases were considered in several iterative

service development cycles. However, in this section, for

reasons of clarity and simplicity, only one characteristic use

case is examined (target use case) in the same way as if it

was only one service development cycle. This use case is

expressed in an expanded format in the following way:

Use case: invite a student to join an MMCS-ET session.

Actors: teacher (initiator), student.

Purpose: describes the way that a teacher invites a

student to join an educational session.

Overview: a teacher (logged in user) invites a student

(logged in user) to participate in an educational session.

On completion, the student is left to decide whether to

accept this invitation by the teacher or not.

Type: primary and essential.

Cross references: service Functions: SF.1.9., SF.1.10.,

SF.1.11., SF.1.13., SF.1.16.

Use casesÐthe users involved in the current use case

must have completed the use case ªLog in to the

MMCS-ET Provider domainº.

Typical course of events:

Actor action

(1) This use case begins when a teacher (logged in

user) decides to invite a student (logged in user) to

an educational session (a MMCS-ET session).

(2) The teacher speci®es the user name of the student

that he/she wants to invite to a MMCS-ET session

and the name of the service (MMCS-ET) that the

MMCS-ET session is part of.

Service Response

(3) Examines whether the teacher has started already

a new MMCS-ET session or not, by querying the

MMCS-ET provider pro®le.

If the teacher has not started already a new

MMCS-ET session see/invite use case ªStart a

New MMCS-ET Sessionº.

If the teacher has started already a new MMCS-

ET session, continues.

(4) Locates a list containing information about all

the users that participate in the MMCS-ET session

(active users) with the help of the MMCS-ET

session.

(5) Examines whether the user that initiated the invi-

tation is active or not and whether he/she is a teacher

or not, using the active user information list. Finds

that the user that initiated the invitation is an active

teacher.

(6) Locates the MMCS-ET service pro®le by query-

ing the MMCS-ET session.

(7) Locates the user pro®le of the student that the

teacher wants to invite (e.g. student A) by querying

the MMCS-ET service pro®le.

(8) Informs the user pro®le of student A about the

teacher invitation to join the MMCS-ET session.

(9) Examines whether the user that the teacher wants

to invite is a student or not, by querying the appro-

priate user pro®le.

Finds that the user that the teacher wants to invite

is a student.

(10) Examines the status of student A by querying

the user pro®le of student A. The student can be,

either a logged in user or an active user (participat-

ing already in a session of the MMCS-ET service or

of another service).

Finds that student A is a logged in user.

(11) Locates a catalogue containing subscription

information about all the users that are subscribers

of the MMCS-ET service with the help of the user

pro®le of student A.

(12) Examines whether student A is a subscriber of

the MMCS-ET service or not, using the user

subscription catalogue.

Finds that student A is a subscriber of the MMCS-

ET service.

(13) Informs the MMCS-ET provider pro®le that

student A has been invited by the teacher to join

the MMCS-ET session.

(14) Prompts student A to accept or reject the invita-

tion of the teacher to join the MMCS-ET session.

Alternative Courses:

± Event 5: The user that initiated the invitation is not

active and/or he/she is not a teacher. However, only a

teacher can invite a student to join a MMCS-ET

session and a teacher after starting a new MMCS-ET

session is always active. Indicate the error to the user.

± Event 9: The user that the teacher wants to invite is not

a student (i.e. he/she is a teacher). However, only one

teacher can participate in a MMCS-ET session at a

given time. Indicate the error to the teacher.

± Event 10: Student A is an active user (i.e. he/she

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415410



participates already in a session of the MMCS-ET

service or of another service). However, a student

can participate in only one session of the MMCS-ET

service or of another service at a given time. Indicate

the error to the teacher.

± Event 12: Student A is not a subscriber of the MMCS-

ET service. Indicate the error to the teacher.

The middle section of the expanded use cases (the ªTypi-

cal Course of Eventsº) is the most important as it describes

in detail the required interaction between the actors and the

telematic service. A critical aspect of this section is that it

describes the most common sequence of activities needed

for the successful completion of a service process. Alterna-

tive situations or exceptions that may arise with respect to

the typical course were included in the ®nal section of the

expanded use cases (the ªAlternative Course of Eventsº).

Based on the expanded use cases, in the service analysis

phase, the service conceptual model of Fig. 17 was created

for the MMCS-ET. More speci®cally, the noun phrases

(shown in italics) in the text of the expanded use cases

were considered as candidate service concepts and attri-

butes. Furthermore, as an attribute is a logical data value

of a service object, the service conceptual model included

all the attributes for which the service requirements

suggested or implied a need to remember information.

Service concepts are related by associations, which indicate

some meaningful and interesting connection. Therefore, the

service conceptual model of the MMCS-ET included all the

associations for which knowledge of the corresponding rela-

tionship needs to be preserved for some duration (ªneed-to-

knowº associations). It has to be noted that it is generally

undesirable to overwhelm the service conceptual model

with associations that are not strongly required and that do

not increase understanding.

In an attempt to gain an understanding of the service

behaviour, a service sequence diagram (see Fig. 18) was

created for the typical course of events of each one of the

identi®ed use cases in the following way:

² a vertical line was drawn representing the MMCS-ET as

a black box;

² each actor that directly operated on the MMCS-ET was

identi®ed and a vertical line was drawn for him/her;

² from the use case typical course of events text, the (exter-

nal) service events that each actor generates were identi-

®ed and illustrated in the correct order on the diagram.

The effect of the service operations that were revealed

from the service sequence diagrams was described in

service operation contracts. For each service operation, a

service operation contract was constructed. Its ªResponsi-

bilitiesº section describes informally the purpose of the

service operation, while its ªPost-conditionsº section

describes declaratively the state changes that occur to

service objects in the service conceptual model of Fig. 17,

using a number of suitably selected statements (instance

creation, instance deletion, attribute modi®cation, associa-

tion formed, association broken, and user interface activa-

tion). In full agreement, the service operation contract of the

service operation suggested by the target use case, is the

following:

Name: InviteStudent(StudentName:String).

Responsibilities: Invite a student (logged in user) to parti-

cipate in an educational session (a MMCS-ET session).

Type: MMCS-ET.

Cross references: Service functions: SF.1.9., SF.1.10.,

SF.1.11., SF.1.13., SF.1.16.

Use case: ªInvite a student to join a MMCS-ET

sessionº.

Notes:

± use a list containing information about all the users

that participate in a MMCS-ET session (active users);

± use a catalogue containing subscription information

about all the users that are subscribers of the

MMCS-ET service.

Exceptions:

if the user that initiates the invitation is not active and/

or he/she is not a teacher, indicate that it was an error;

if the user that the teacher wants to invite is not a

student and/or he/she is already active, indicate that

it was an error;

if student A is not a subscriber of the MMCS-ET

service, indicate that it was an error.

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 411

Fig. 17. The service conceptual model of the MMCS-ET.

Fig. 18. Example of a service sequence diagram for the MMCS-ET.



Output:

Pre-conditions:

± a teacher logged into the MMCS-ET provider domain.

± a student (e.g. student A) logged in to the MMCS-ET

provider domain;

± the teacher decided to invite student A to a MMCS-ET

session;

± the teacher speci®ed the user name of student A.

Post-conditions:

± TheUser (corresponding to the teacher) was associated

with the MMCS-ETProviderPro®le (association

formed).

± This User was associated with the MMCS-ETSession,

based on the con®rmation that User SessionCreation

was set to true (association formed).

± The MMCS-ETSession was associated with ActiveU-

serInformation, based on the satisfaction of the

following conditions (association formed).

± The user that initiated the invitation was active.

± The user that initiated the invitation was a teacher.

± The MMCS-ETSession was associated with the

MMCS-ETServicePro®le (association formed).

± The MMCS-ETServicePro®le was associated with

LoggedinUserInformation regarding student A (asso-

ciation formed).

± The MMCS-ETServicePro®le was associated with the

UserPro®le (corresponding to student A) (association

formed).

± This UserPro®le was associated with the UserSub-

scriptionCatalog, based on the satisfaction of the

following conditions (association formed):

± UserPro®le.Role was set already to student.

± UserPro®le.Status was set already to logged in.

± The UserSubscriptionCatalog was associated with

UserSubscriptionInformation, based on the con®rma-

tion that student A was (at that time) a subscriber of

the MMCS-ET service (association formed).

± The UserPro®le(corresponding to student A) was

associated with the MMCS-ETProvider Pro®le (asso-

ciation formed).

± The MMCS-ETProviderPro®le was associated with

the User (corresponding to student A) (association

formed).

± Interaction with student A was prepared (user inter-

face activation).

Taking into account all the artifacts produced so far, in

the service design phase, a service interaction diagram in the

form of a UML collaboration diagram was created for each

one of the identi®ed service operations. The objective was to

ful®l the post-conditions of the corresponding service opera-

tion contracts, recognising however, that the previously

de®ned post-conditions are merely an initial best guess or

estimate of what must be achieved, and therefore their accu-

racy should be questioned.

From these service interaction diagrams (an example of

which is depicted in Fig. 19 for target use case) the way that

the MMCS-ET service COs communicate via messages in

order to ful®l the service requirements is evident. The parti-

cipating MMCS-ET service objects were drawn from the

service conceptual model of Fig. 17, after taking into

account the service components proposed by the TINA-C

service architecture. Therefore, the links between the

MMCS-ET service objects are actually instances of the

associations present in the service conceptual model of

Fig. 17, after taking into account the service components

proposed by the TINA-C service architecture. Therefore,

the links between the MMCS-ET service objects are

actually instances of the associations present in the service

conceptual model of Fig. 17, represent connection paths

between service object instances, and indicate that some

form of navigation and visibility between the instances is

possible (attribute, parameter, locally declared or global

visibility). Finally, it has to be noted that in order to

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415412

Fig. 19. Service interaction diagram for inviting a student to join a MMCS-ET session.



illustrate the creation (or deletion) of service object

instances (from service classes), a language-independent

creation (or deletion) message (create or delete) is shown

being sent to the instance being created (or deleted).

By analysing the service interaction diagrams, all the

service classes (together with their attributes and methods)

participating in the software realisation of the MMCS-ET

were identi®ed and illustrated (with simpli®cations) in the

service design class diagram of Fig. 20. The associations

present in this diagram satisfy the ongoing ªmemory needsº

revealed by the service interaction diagrams and the navig-

ability arrows on them indicate the direction of attribute

visibility (non-attribute visibility is indicated by depen-

dency relationships). Creation (deletion) -related methods

were omitted from the service design class diagram, because

they can have multiple (implementation speci®c) interpreta-

tions, and because they represent a very common activity.

For similar reasons, accessing methods (those which

retrieve or set attributes) were also excluded from depiction

in the service design class diagram, in order to keep it

concise and focused.

Considering all the artifacts produced in the service

design phase, the MMCS-ET was implemented using

Microsoft's Visual C11 (ver. 6.0) together with Micro-

soft's Distributed Component Object Model (DCOM) [7]

(appropriately extended with a high-level API in order to

support continuous media interactions) on MS Windows NT

4.0, and was executed on a number of workstations

connected via a 10 Mbit/s Ethernet LAN [4,24]. All the

interconnected workstations belong to the same (MS

Windows NT) domain and one of them functions as a

primary domain controller.

6. Exploitation of design patterns and frameworks

A typical telematic service is a large scale system as it

consists of thousands of software objects that are running on

hundreds of hardware objects, utilising a great variety of

network resources, and interacting in a complex and almost

unpredictable way [3]. For this reason, the successful appli-

cation of the proposed service creation methodology can be

a dif®cult task, where the effective and ef®cient communi-

cation of architectural knowledge between the service

designers and developers is of great importance. To facil-

itate this communication the exploitation of design patterns

and frameworks in the service engineering area is

suggested.

A framework can be de®ned as a set of prefabricated

services together with some architectural concepts that

de®ne the constraints to put these services together. The

architecture includes the rules that can be used to integrate

the single services and to de®ne possible ¯ows of control

between them [15]. Design patterns represent abstract solu-

tions for speci®c problem classes. They capture the static

and dynamic structure, and collaboration of a group of

objects. They can be de®ned in an abstract, language inde-

pendent way [17]. While design patterns can be considered

as a horizontal structure over a set of COs, frameworks can

be considered as vertical, domain speci®c (e.g. telecommu-

nications speci®c) con®gurations of components.

In the case of TINA-C, design patterns can be de®ned by

identifying groups of interworking service objects, where

every group is characterised by a micro-architecture that

determines the way the objects interact to provide a solution

for the speci®c aspects of a subproblem that arises during

the development of a telematic service. Furthermore, a

framework can be de®ned as the overall architecture,

which speci®es how the identi®ed con®gurations of service

objects can collaborate to implement a solution for the

whole problem. Thus, a framework is a kind of construction

kit for complete or semi-complete telematic services. It has

to be complemented and customised using inheritance tech-

niques [13]. As an example, the TINA-C service architec-

ture can be de®ned as a framework. On the contrary, the

access to the usage of a service is an example of a design

pattern (access pattern). It speci®es the object group of the

access session.

The introduction of design patterns and frameworks in the

proposed methodology implies the establishment of a

common vocabulary and the de®nition of common design

structures for all persons involved. They assist to reduce the

scope of the problem solving process in the case of service

creation, because they support the identi®cation of similar

problems and similar solutions. However, design patterns

and frameworks are abstract concepts. There is no guarantee

that their usage will lead to design reusability, design port-

ability, and abstract customisability. Furthermore, good

design patterns and frameworks, like good inheritance hier-

archies, can not be invented in an easy way. They have to be

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 413

Fig. 20. The service design class diagram of the MMCS-ET (simpli®ed).



chosen and designed very carefully [20]. Otherwise, the

introduction of insuf®cient and wrong chosen patterns and

frameworks in the service creation process may hinder or

even prevent the design and implementation of successful

telematic services.

For the de®nition and enhancement of service engineer-

ing design patterns and frameworks a step by step ªcase

studyº approach is proposed. Initially, the main design

patterns and the related core classes are identi®ed, and

form conceptually a framework. Then, a ®rst prototype of

the framework is created. After testing and evaluating this

prototype, the framework can be extended with respect to

the results of the evaluation process and additional case

studies. During these extensions further aspects, which are

candidates for the de®nition of new design patterns and

abstract classes can be identi®ed and integrated into the

framework [13,17].

7. Conclusions

A revolution in information technology and telecommu-

nications is already in progress, and is expected to escalate

rapidly in the near future. The two worlds have already

begun to converge and the convergence path is marked by

the continuously expanding penetration and scope of tele-

communications services [5]. Considering this evolution,

emerging telecommunications systems promise to offer a

wide variety of highly sophisticated, personalised, afford-

able, high quality, and ubiquitous services over the widest

possible coverage area. Several providers are involved in

such an ambitious (yet realistic) service provision scenario

in which competition will mostly focus at the service level,

with multiple providers offering new services to the market

in a short time over a variety of networks and end systems

[12,23]. In the light of these challenges and because of the

highly increasing complexity of new telecommunications

services and the inherent distributed nature of them, a meth-

odology covering the whole service development process,

like the one proposed and examined in this paper, is abso-

lutely necessary.

This methodology enforces the service developer to take

into account all the necessary features for the successful

design and realisation of a service by exploiting the

session-oriented, multi-party, multi-domain nature of the

TINA-C service architecture. It provides a step by step

approach from problem de®nition to the realisation of new

telecommunications services. For this purpose, the service

is studied and described (in a number of service develop-

ment cycles) at hierarchically related abstraction levels, in

the sense that at each level the results achieved at previous

levels of abstraction are preserved and re®ned. Additionally,

the use of the object-oriented paradigm is advocated all

along the development process. Consequently, this metho-

dology combines the bene®ts of object-oriented modelling,

particularly in terms of scalability and reusability, with

those provided by a top±down approach [11,16]. Moreover,

as service requirements are emphasized, such an approach

ensures a high-level of con®dence that the users' expecta-

tions on the service will be met.

The application of the proposed service creation metho-

dology to the development of the MMCS-ET has enligh-

tened many aspects regarding its structure and its use, and

offered con®dence that it can enable the fast and ef®cient

creation of telematic services. It must be kept in mind,

however, that to obtain the maximum possible productivity

gains and to exploit the full potential of the methodology it

is not suf®cient to apply it in a mechanical manner. On the

contrary, an adaptation of the methodology to the service

developer's attitude and to the wider organisational mental-

ity and approach regarding telecommunications and infor-

mation technology in general, is required. In that way, the

proposed methodology will be able to support service crea-

tion activities even more effectively, without restricting the

creativity of service developers, and by utilising fully their

prior service development experience.

References

[1] ACTS Project AC227 (SCREEN), Basic Object-Oriented Technology

for Service Creation, CEC Deliverable D21, 1996.

[2] D.X. Adamopoulos, G. Haramis, C.A. Papandreou, Rapid prototyping

of new telecommunications services: a procedural approach, Compu-

ter Communications 21 (1998) 211±219.

[3] D.X. Adamopoulos, C.A. Papandreou, An integrated object-oriented

approach to telecommunications service engineering, Proceedings of

IFAC/IFOR/IMACS/IFIP LSS '98, Rio, Greece, 1998, pp. 834±839.

[4] D.X. Adamopoulos, G. Pavlou, C. Papandreou, Supporting advanced

multimedia telecommunications services using the distributed

component object model, Proceedings of IS and N 2000, Lecture

Notes in Computer Science, vol. 1774, Springer, Berlin, 2000, pp.

89±104.

[5] H. Berndt, T. Hamada, P. Graubmann, TINA: its achievements and its

future directions, IEEE Communications Surveys & Tutorials, vol. 3,

no. 1, First Quarter, 2000.

[6] G. Booch, J. Rumbaugh, I. Jacobson, Uni®ed Modelling Language

User Guide, ACM Press, New York, 1998.

[7] N. Brown, C. Kindel, Distributed Component Object Model Protocol-

DCOM, Microsoft Corporation, January 1998.

[8] B. Dano, H. Briand, F. Barbier, A use case driven requirements engi-

neering process, Requirements Engineering 2 (1997) 79±91.

[9] L.A. De la Fuente, L. Ferrari, J. Gallego, P. Llamas, The Eurescom

P610 project: providing framework, architecture and methodology for

multimedia services management, Proceedings of IFIP/IEEE DSOM

'97, Sydney, Australia, 1997, pp. 145±154.

[10] M. Declan, Adopting object oriented analysis for telecommunications

systems development, Proceedings of IS and N '97, Lecture Notes in

Computer Science, Springer, Berlin, vol. 1238, 1997, pp. 117±125.

[11] P.P. Demestichas, N.P. Polydorou, A.K. Kaltabani, N.I. Liossis, S.

Kotrotsos, E.C. Tzifa, M.E. Anagnostou, Issues in service creation for

open distributed processing environments, Proceedings of ICC'99,

June 1999.

[12] T.M. Didriksen, L.S. Sorumgard, T.O. Molnes, Inexpensive open

distributed service platform, Proceedings of IFIP SmartNet'99, Thai-

land, November 1999.

[13] K.P. Eckert, P. Schoo, Engineering frameworks: a prerequisite for the

design and implementation of distributed enterprise objects, Proceed-

ings of EDOC'97, October 1997, pp. 170±181.

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415414



[14] S. Efremidis, D. Prevedourou, L. Demounem, K. Milsted, H. Zuid-

weg, TINA-oriented service engineering support to service composi-

tion and federation, Proceedings of IS and N `98, Lecture Notes in

Computer Science, Springer, Berlin, vol. 1430, 1998, pp. 409±422.

[15] P. Evits, A UML pattern language, Macmillan Technology Series,

February 2000.

[16] J.P. Gaspoz, Methodology for the development of distributed tele-

communications services, Journal of Systems and Software (1996)

1±22.

[17] T. Hansen, Development of successful object-oriented frameworks,

Proceedings of ACM SIGPLAN OOPSLA `97, Atlanta, USA, 1997,

pp. 115±119.

[18] M.M. KandeÂ, S. Mazaher, O. Prnjat, L. Sacks, M. Wittig, Applying

UML to design an inter-domain service management application,

Proceedings of UML `98, 1998, pp 1±9.

[19] E. Kelly, N. Mercouroff, P. Graubmann, TINA-C DPE architecture

and tools, Proceedings of TINA'95, February 1995, pp. 39±54.

[20] E. Koerner, Patterns for constructing CSCW applications in TINA,

Proceedings of IDMS'97, Lecture Notes in Computer Science,

Springer, Berlin, vol. 1309, 1997, pp.322±329.

[21] C. Larman, Applying UML and patterns: an introduction to object-

oriented analysis and design, Prentice-Hall, Englewood Cliffs, NJ,

1998.

[22] D. Lewis, T. Tiropanis, Integrating TINA into an internet-based

services market, Proceedings of IS and N'98, Lecture Notes in

Computer Science, Springer, Berlin, vol. 1430, 1998, pp. 183±191.

[23] T. Mota, P. Hellemans, T. Tiropanis, TINA as a virtual market place

for telecommunication and information services: the VITAL experi-

ment, Proceedings of TINA '99, April 1999.

[24] C.A. Papandreou, D.X. Adamopoulos, Design of an Interactive Tele-

training System, BT Engineering 17 (1998) 175±181.

[25] N.D. Polydorou, N.I. Liossis, E.C. Tzifa, P.P. Demestichas, M.E.

Anagnostou, Ef®cient creation and development of telecommunica-

tion services in heterogeneous distributed processing environments,

Proceedings of IEEE/IEE ICT '98, IV, 1998, pp. 336±340.

[26] S. Rana, E. Sellin, Implementation of a pan-European TINA-compli-

ant service management platform, Computing and Control Engineer-

ing Journal 10 (1999) 73±78.

[27] TINA-C, De®nition of Service Architecture, Version 5.0, 1997.

[28] TINA-C, TINA Business Model and Reference Points 4.0, 1997.

[29] TINA-C, TINA Object De®nition Language, TR_NM_.002_2.2_9.6,

1996.

[30] K. Verschaeve, B. Wydaeghe, F. Westerhuis, J. De Moerloose, Multi-

level component oriented methodology for service creation, Proceed-

ings of IS and N 2000, Lecture Notes in Computer Science, Springer,

Berlin, vol. 1774, 2000, pp. 169±179.

D.X. Adamopoulos et al. / Computer Communications 24 (2001) 394±415 415


