
1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

1

Resource Provisioning and Allocation in
Function-as-a-Service Edge-Clouds

Onur Ascigil∗, Argyrios G. Tasiopoulos∗, Truong Khoa Phan∗, Vasilis Sourlas†, Ioannis Psaras∗, and

George Pavlou∗
∗Department of Electronic and Electrical Engineering, University College London, UK.
†Institute of Communication and Computer Systems (ICCS-NTUA), Athens, Greece.

Email: {o.ascigil, argyrios.tasiopoulos, t.phan, i.psaras, g.pavlou}@ucl.ac.uk, v.sourlas@iccs.gr

Abstract—Edge computing has emerged as a new paradigm
to bring cloud applications closer to users for increased perfor-
mance. Unlike back-end cloud systems which consolidate their
resources in a centralized data center location with virtually
unlimited capacity, edge-clouds comprise distributed resources at
various “computation spots”, each with very limited capacity. In
this paper, we consider Function-as-a-Service (FaaS) edge-clouds
where application providers deploy their latency-critical functions
that process user requests with strict response time deadlines. In
this setting, we investigate the problem of resource provisioning
and allocation. After formulating the optimal solution, we propose
resource allocation and provisioning algorithms across the spec-
trum of fully-centralized to fully-decentralized. We evaluate the
performance of these algorithms in terms of their ability to utilize
CPU resources and meet request deadlines under various system
parameters. Our results indicate that practical decentralized
strategies, which require no coordination among computation
spots, achieve performance that is close to the optimal fully-
centralized strategy with coordination overheads.

I. INTRODUCTION

Cloud computing, which is characterized by abundant re-
sources deployed at centralized infrastructures, is increasingly
being challenged by new and emerging “edge-applications”
that have stringent Quality-of-Service (QoS) requirements.
Examples of edge-applications include data analytics [1],
virtual/augmented reality [2], interactive gaming, connected
and automated driving and wearable cognitive assistance [3],
to name a few. For such applications, the “cloud-to-user” appli-
cation service delivery from distant, centralized infrastructures
fails to meet the QoS requirements [4], [5].

Consequently, edge computing proposes building distributed
edge-cloud infrastructures at the “edges” of the network,
i.e., close to end-users, for edge-application providers to
deploy their services [6] and meet their QoS requirements.
An edge-cloud comprises distributed computation spots (e.g.,
cloudlets [7]), each with very limited resource capacity com-
pared to core cloud infrastructures [8], [9].

In this paper, we aim to tackle two challenging aspects of
edge-cloud management, namely i) allocation of resources for
end-user requests (along with their routing and scheduling),
and ii) provisioning of edge-application services. We consider
a multi-tenant, Function-as-a-Service (FaaS) edge-cloud in-
frastructure where computation spots are hierarchically dis-
tributed along the paths to the back-end clouds as shown in
Fig. 1 [10], [11]. In this setting, edge-application providers
make their containerized services (i.e., functions) available
for provisioning in computation spots, while end-users submit
time-sensitive computation requests for functions with strict

Fig. 1: On-path computation spots in an edge-cloud system.

deadlines on response latencies; that is, the delay between the
end-user submitting a computation request to the network and
getting the outcome of the computation delivered back to the
end-user.

In traditional cloud resource management approaches, re-
source provisioning (i.e., reserving FaaS containers) is per-
formed by the tenants. However, the limited capacity and dis-
tributed nature of computation spots coupled with the volatile
nature of end-user demands at the network edges make such
an approach unpractical in an edge-cloud setting—that is, one
where the edge-application providers (as tenants) manage the
provisioning (i.e., reserving) of resources to deal with dynamic
end-user demands at individual computation spots and billed
for the resources reserved (not actually used). Instead, we
consider Serverless computing approach [12], where the edge-
cloud infrastructure takes care of resource provisioning and
allocation on behalf of edge-application providers and in turn
bill the edge-application providers for the actual resource
usage, and not for the resources reserved.

The resource management tasks in FaaS, Serverless edge-
clouds include carefully deciding the number of function
instances to provision for each edge-application and selection
of requests to schedule at each computation spot. The main
objectives in carrying out these tasks are: keeping the resources
of computation spots utilized and meeting the response dead-
lines (i.e., providing sufficient QoS) of end-user requests.

However, achieving the above-mentioned management ob-
jectives is more challenging in a Serverless edge-cloud than
in a Serverless centralised cloud computing scenario for the
following reasons: i) provisioning of functions and scheduling
of end-user requests must take into account both response
latency requirements of requested functions and proximity of
computation spots to end-users, because individual compu-
tation spots can provide different lower-bounds on response
latencies, ii) the overhead of “cold-starting” containers [13],
[12]—i.e., performing the necessary processing to bring a
container to a running state and loading a function—is an
overhead that can quickly become an obstacle to achieving low

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

2

latency performance in edge-clouds with under-provisioned
resources, and iii) a fully-centralized management of dis-
tributed computation spots is not practical due to the associated
communication and coordination overheads.

Our main technical contributions are as follows:

1) We study the general problem of resource provisioning
and allocation over a hierarchical FaaS edge computing
infrastructure for edge-application functions with strict
latency requirements and propose practical approaches with
acceptable coordination and communication overheads.

2) We formulate the optimal function provisioning and re-
source allocation problem given the existence of request
queuing and container provisioning (i.e., cold-start) over-
heads. Since fully-centralized, optimal models require ac-
curate prediction of upcoming requests, which is difficult
to achieve in practice, we propose heuristic algorithms
ranging from centralized to completely decentralized.

3) We evaluate the performance of the proposed approaches
against a hypothetical fully-centralized one which has the
global view of the entire edge-cloud system. Our results
demonstrate that practical strategies, while having little or
no coordination or communication overhead, can achieve
a comparable performance with the fully-centralized one.

The rest of this paper is organized as follows. In Section II,
we discuss related work. In Section III we introduce the
functional components of FaaS edge-clouds. Then, we intro-
duce centralized resource allocation strategies in Section IV
followed by a discussion of fully-decentralized resource al-
location strategies in Section V for hierarchical edge-clouds.
We present our performance evaluation in Section VI, and we
conclude the paper in Section VII.

II. RELATED WORK

Existing research has considered fully-centralized control
of resource provisioning and allocation [14], [10], [15], [16],
[17]. However, such solutions require significant commu-
nication and coordination overhead in a distributed edge-
computing environment. Instead, we consider more practical
approaches that require minimum coordination.

Our starting point is the efforts related to cache networks
that temporarily store content [18], [19], [20]. Cache networks
are characterized by storage resources at multiple points of
presence, each with very limited capacity. From the distributed
caching studies, we borrow the concept of opportunistic re-
quest routing: requests for computation are opportunistically
processed in a hierarchy of computation spots along the path
from users to a default back-end cloud where requests are
guaranteed to be processed [10]. Opportunistic routing mecha-
nism allows us to treat the request routing problem (i.e., where
to process a request) as an admission control problem, where
individual spots execute admission policies independently on
incoming requests to decide whether to process locally or send
(i.e., offload) upstream to the next spot in the hierarchy.

Several studies have similarly proposed the deployment of
hierarchical edge-cloud deployment to form a continuum of
resources from edges to the core of the Internet. Tong et
al. [10] has proposed a hierarchy of edge-clouds as a way
to handle peak user demand effectively. A similar hierarchical
design with admission control on incoming requests has been

proposed for radio access networks with only two levels of hi-
erarchy consisting of cloudlets attached to the base stations and
a back-end cloud [21], [22]. However, we consider a general
hierarchy of edge-clouds deployed at edges and middle-tier
networks, similar to a hierarchy of caches.

Existing work [23], [24] has considered caching of function
code (image) at individual edge-cloud nodes, each with lim-
ited storage resources. These studies then considered caching
strategies which determine when and which functions’ codes
to download from a centralized image repository (in the
back-end clouds) in case of cache misses, i.e., arrival of
results for functions whose codes are not currently stored
locally. The goal of these strategies is to efficiently use
the limited secondary memory resources to store the most
popular function codes and minimize the bandwidth resources
consumed to download functions and assume immediate, on-
demand provisioning of functions upon caching without any
provisioning overheads. Instead, we consider computing and
main memory resources as the limited resources as opposed
to (cheaper) secondary memory resources. To that end, we
focus on efficient (periodic) provisioning of containers in the
main memory with acceptable cold-start costs and allocation
of CPU resources to function containers to achieve highest
possible QoS for end-users.

In a preliminary version of this work [25], we considered
(fully-decentralised) caching approaches to determine which
of locally stored functions to provision at each cloudlet.
The cache replacement policies such as LFU and LRU are
executed periodically rather than per-request, in addition to
deadline-based policies such as strictest-deadline-first (SDF)
which prioritizes functions with smaller remaining deadlines to
execution. Here we extend this work with more sophisticated
strategies with varying degrees of centralization. In addition,
we introduce both in the model and simulations the queuing
time of requests and the cold-start processing overhead of
provisioned containers, during which a container is unavailable
for requests and CPU resources are used for to bring the
container to a running state.

Several studies [26], [17] have considered centralized ap-
proaches to solve the problem of optimal function provisioning
(placement), request routing and scheduling in edge-clouds.
These approaches require frequent coordination between a
central controlling entity and the edge-clouds to obtain up-to-
date information such as demand for each function, resource
usage at each computation spot, and so on. Such approaches
are mainly useful to derive theoretical bounds on performance,
although they can be practical in small-scale, regional sce-
narios [17]. Auctions are another example of a centralized
resource allocation approach which involves deriving prices
for resource usage at each computation spot to control the
flow of requests to individual edge-cloud nodes [27], [11]. That
said, we also formulate a fully-centralized solution for function
placement and request scheduling (Section IV-A); however, we
also consider a more practical centralized approach where only
periodic function provisioning is performed in a centralized
manner and request routing is carried out in an opportunistic
(i.e., decentralized) way (Section IV-B).

In this work, we approach the resource allocation and
provisioning problem for edge-clouds with a systems-oriented
mindset: we formulate the resource allocation as an admission

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

3

Fig. 2: Functions: stored, provisioned (warm), and running.

control design problem combined with both selection and
scheduling of a limited number of provisioned functions on
severely limited CPU resources. We explicitly incorporate
system-level mechanisms in our model and simulations such
as queuing of admitted requests which is important to cope
with small bursts in demand in the absence of auto-scaling
capabilities. Also, we explicitly take into account the varying
levels of QoS requirements by different application services in
the form of deadlines on response delays rather than simply
minimizing treating different application requests equally as
simply done by the existing work.

III. EDGE CLOUD SYSTEM COMPONENTS

We consider hierarchically organized on-path computation
spots (e.g., cloudlets), which process requests for containerized
functions originating from user applications. The latter indicate
in their requests a function to be executed, input data to the
function possibly containing computation state (e.g., obtained
as a result of a previous request), and a deadline for com-
pletion. The FaaS edge-cloud system then performs periodic
provisioning of container resources and allocates an active
pool of containers; each one is a pre-provisioned function
instance which is ready to process incoming requests.

In a FaaS edge-cloud system, the periodic provisioning
decision aims to adapt the amount of resources allocated
for each function at each computation spot (in terms of
number of warm containers in the active pool) according to
changes in the state of the edge-cloud system, e.g., changes
in the demand for functions, success of offloaded requests
in meeting their deadlines, and so on. This periodic process,
essentially re-distributes the available containers in the active
pool, whose size is limited by the main memory capacity
of each computation spot, to individual application functions.
From the active pool of functions, only a subset of them can
process requests simultaneously, subject to the number of CPU
cores in the spot, as demonstrated in Fig. 2.

In addition to the periodic provisioning which happens
at timescales of seconds to minutes, the computation spots
perform per-request, opportunistic resource allocation through
an admission control system which works together with a
scheduling component. Below, we elaborate on these system
components that are key to the resource provisioning and
allocation functionality at each spot.

A. Admission

An admission control system at each computation spot
selectively admits a subset of the incoming requests and places
those requests in the request queue where they wait for their
turn to be processed by a function instance. In this work, we
consider processing of user requests with strict deadlines. This
means that the utility of users from receiving the response to a
request drops sharply to zero once the response time exceeds

the deadline. Therefore, the computation spots do not waste
resources processing requests whose deadlines cannot be met,
and such requests are simply rejected. Rejected requests are
offloaded to the next computation spot along the path to the
back-end cloud, whose queues and CPU cores might be less
utilized and the request deadline can be met. On the other
hand, admitted requests are guaranteed to meet their deadlines.

User applications record in their requests a fixed timestamp
value as a remaining deadline. The remaining deadline is
initially set by user applications in their requests as an upper-
bound on the expected response time from the edge-cloud,
including network and processing delays. Each time a request
is outsourced to an upstream computation spot, its remaining
deadline is updated by deducting the estimated RTT to reach
the upstream computation spot from the existing remaining
deadline value. In order to have an accurate estimate of
the RTT, the client applications and the computation spots
periodically send probe packets to their (immediate) upstream
computation spots, which then respond with a probe response
packet. As a result, the remaining deadlines of requests ob-
served by computation spots indicate the residual amount of
time that the requests can afford spending for queuing and
processing. We assume that admission decision processing
has a negligible delay within a computation spot and is not
reflected in the remaining deadline updates. On the other hand,
once a request is admitted and queued, its remaining deadline
is updated with the passage of time.

A computation spot immediately rejects an incoming re-
quest for a function, if there are currently no (warm) instances
of that function in the active pool. This is because of our
design choice that enforces periodic provisioning decisions for
computation spots as opposed to on-demand provisioning of
warm function instances as explained in Section III-C. On
the other hand, a request R is considered for admission if
there are instances of functions that R is requesting. This
process involves checking if R’s remaining deadline can be
met. To that end, the admission control system computes a
new time-to-completion value for all the requests currently in
the queue, assuming R is enqueued and scheduled, taking into
account the request scheduling policy (Section III-B); time-
to-completion of a request is the sum of waiting time in the
queue and processing time by the function, and we assume
processing times of functions are fixed and known locally at
each computation spot. If the new time-to-completion of all
the requests do not exceed their remaining deadlines, then R
is accepted; otherwise, R is rejected. A special case is where
R’s remaining deadline is smaller than its projected processing
time, in which case R is immediately rejected. We discuss the
details of request scheduling which impacts the computation
of time-to-completion below.

B. Scheduling
A scheduling policy determines the order of processing

requests in the request queue. In this work, we consider
the Earliest Deadline First (EDF) scheduling which we have
shown to out-perform First-In-First-Out (FIFO) in our earlier
work [25]. EDF prioritizes requests with smallest remaining
(i.e., earliest) deadlines.

We assume non-preemptive scheduling where each CPU
core is dedicated to the execution of a function scheduled on

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

4

that core without interruptions (i.e., no context switches) until
completion of a request, and each function instance processes
exactly one request at a time. Given that (i) function processing
times are accurately estimated (e.g., though profiling [28],
[29]) with non-preemptive scheduling, (ii) only active pool
instances are scheduled for requests, and (iii) the remaining
deadline of requests are known, the only complicating factor
in the estimation of time-to-completion of arriving requests
under EDF policy is the availability of function instances.

A function instance is unavailable (i.e., busy) while pro-
cessing a request, and if there are no other available instances
of that function, the scheduler is unable to schedule and
run another request for the same function until an instance
becomes available. An example is shown in Fig. 3 where the
request for F1 at the head of the queue is skipped and another
request (for F2) is scheduled, because the only instance of F1

is currently busy. The request for F1 stays at the head of the
queue and will eventually get scheduled when the instance of
F1 running in core-1 completes its current request. This way,
EDF conserves work and keeps cores busy as long as there are
requests waiting in the queue that can be scheduled right away,
despite slightly violating the earliest-deadline-first ordering.

Given the work-conserving EDF scheduling policy, the
admission controller’s decision on an incoming request R in-
volves simply simulating the scheduling of all existing requests
with the inclusion of R to compute a time-to-completion.
For a request to meet its deadline, it must be scheduled
by the time its remaining deadline is equal to its estimated
processing time, which we refer to as the critical deadline
below. Given a scheduling policy and the current load on
a computation spot (waiting and currently running function
requests), an arriving request R for computing a function F
with a critical deadline D (where D ≥ current time) is rejected
(i.e., offloaded upstream) under one of the two conditions
below:

1) Insufficient or non-existing F instances, while CPU re-
sources are available: The computation spot either does
not currently have an instance of F , or it has insufficient
instance(s) of F in its active pool to handle R and all
other requests for F that have arrived very close in time.

2) Insufficient CPU resources: The computation spot has at
least one instance of F which will be available before
D, but the CPU will be allocated to other requests (with
earlier deadlines) until D.

The first scenario is a signal that function provisioning,
which we discuss next, should reevaluate the provisioned func-
tion instances to better utilize the CPU resources. Although,
the second scenario does not signal a problem, but requires
further analysis as to whether the instances of the “right”
functions are provisioned—e.g., ones whose requests can not
meet their deadlines, if offloaded upstream—by a provisioning
policy, as we discuss next.

C. Function Provisioning
The goal of provisioning is to keep CPU cores utilized

which directly translates to revenue for edge-cloud providers
under the Serverless model. With under-provisioned resources,
a computation spot aims to avoid rejecting requests with
feasible deadlines while cores are idle. In this case, the main

Fig. 3: A computation spot with one warm instance of func-
tions F1, F2, F3, and F4. F1’s instance is running on Core1
(shown with a red arrow), therefore the next queued request
to schedule on core2 is for F2, skipping the request for F1.

reason for rejecting requests is the unavailability (or lack) of
warm instances of a requested function in the active pool
(AP) ready to process requests. The launching of a new
warm instance (i.e., cold-start) is an overhead, which can be
significant when considering requests with possibly smaller
deadlines.

Therefore, we make the design choice of performing only
periodic provisioning decisions at fixed intervals called re-
placement intervals, rather than on-demand (e.g., per-request)
provisioning. A provisioning policy decides how many in-
stances to launch for each application function as part of
the active pool of functions. Provisioning decisions are based
on the ranking of all the existing stored function types (i.e.,
set Stored Functions in Fig. 2). Next, we introduce several
resource allocation and provisioning strategies for different de-
grees of centrality, i.e., varying levels of required coordination
among the computation spots of an edge-cloud.

IV. CENTRALIZED EDGE-CLOUDS

In the centralized edge-clouds, a centralized controller is
involved to some degree in the resource allocation and pro-
visioning tasks. We consider two centralized approaches that
are defined according to the extent in which the controller is
involved in those tasks: i) a fully-centralized approach where
the controller performs per-request admission and provisioning
decisions, and ii) a coordinated approach where the controller
is involved only in the periodic function provisioning at the
edge-cloud, while request admission decisions are opportunis-
tically performed individually by each computation spot. We
formulate below the fully-centralized provisioning problem
and then present the coordinated provisioning algorithm that
we evaluate in Section VI.

A. Fully-Centralized Model & Problem Formulation

We consider a system where time is slotted and indexed
by t ∈ T for T � {1, 2, ..., T}. We assume the existence
of F � {1, 2, ..., F} stored functions which are requested by
a set of G � {1, 2, ..., G} groups of users, where a group
is defined based on its users’ access point, i.e., all the users
with the same network attachment point (e.g., access router
or gateway) belong to the same group. We denote the number
of requests of group g ∈ G for function f ∈ F at time-slot t
as Df

g (t) and we associate each request for function f with
a deadline, Tf , expressed in time-slots. A user request for
function f is considered to be satisfied only if the request is

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

5

T Slotted time-slots set.
F Set of Functions.
G Set of user groups defined by their point of attachment to the network.

Df
g (t) Demand of group g for function f at time-slot t.

Tf Propagation deadline for function’s f request.
H Set of cloudlets.
Lgh RTT from user group g ∈ G to cloudlet h ∈ H.
Vh Set of containers at cloudlet h ∈ H.
Ch Number of cores at cloudlet h ∈ H.

t̃ Time-slot overhead of launching a function instance.

zt
fv Binary decision variable indicating the beginning

of instantiation of function f as container v at time-slot t.

C̃t
h Cloudlet h’s cores occupied loading an image at t.

Vf,t
h Set of function f instances at cloudlet h ∈ H

during time-slot t.

ut
v Binary variable indicating the association of container v to

a core at time-slot t.

Cf,t
h Number of warm instances of function f at cloudlet

h upon time-slot t.
K Set of queuing classes at each cloudlet.

Qk,f
h (t) Number of requests for function f at cloudlet h queued at

class k during time-slot t.

xk,f
h (t) Total requests of function f ∈ F arrived at queue

class k ∈ K of cloudlet h upon time-slot t.

yk,f
h (t) Total requests of function f ∈ F served from the queue

class k ∈ K of cloudlet h upon time-slot t.

x̃f
gh(t) Group g’s forwarding requests of f to cloudlet h at t.

x̃g(t) Group g’s function forwarding request matrix at time-slot t.
ΔTgh Latency forwarding overhead, in time-slots, from group g

to cloudlet h.

kf
gh Arrival queue class of function f ’s requests from group g

at cloudlet h.

x̃k,f
h (t) Requests of function f ∈ F traversing cloudlet h which

would arrive at queue class k ∈ K upon time-slot t.

ρf
v(m) Requests served on average by an instance of function f running

on container v when it is associated to a core every m time-slots.

TABLE I: Model Notation

served and the results arrive back at the user within Tf time-
slots. We assume for simplicity that the processing time of
requests for all the functions is fixed to a single time-slot.

We denote by H � {1, 2, ..., H} the set of computation
spots (i.e., cloudlets) equipped with hardware capable of
hosting instances of any function f ∈ F . Each cloudlet h ∈ H
can maintain in its active pool a set of Vh � {1, 2, ..., Vh}
containers each of which is a particular function’s instance.
However, in order for a function instance to serve a request,
it must be first scheduled at a CPU core whose size is
limited to Ch ≤ |Vh| at each cloudlet h. In other words,
Ch is the maximum number of requests that can be served
simultaneously at h within a single time-slot. Lastly, given
the position of a cloudlet h ∈ H, the users of a group g ∈ G
can access h at a Round Trip Time (RTT) of Lgh time-slots.
The notations used in this section are shown in Table I.

Cloudlet Management Model: Launching a function
instance can be considered as a task occupying a core for
a period of t̃ time-slots, which we consider, for simplicity,
identical for every function image f ∈ F .

We denote by ztfv the binary decision variable of triggering
the launch of an image of function f as a container v ∈ Vh

at time-slot t, i.e., ztfv = 1 when container v is to run f or

ztfv = 0 otherwise. Then the occupied cores upon time-slot t

in loading a function image at cloudlet h, C̃t
h, is:

C̃t
h =

∑
f∈F

∑
v∈Vh

t∑

i=t−t̃

zifv, ∀h ∈ H, ∀t ∈ T . (1)

At the same time, each container in the active pool can
launch at most one function at a time which is expressed as:

∑
f∈F

t∑

i=t−t̃

zifv ≤ 1, v ∈ Vh, h ∈ H, ∀t ∈ T . (2)

Therefore, the active pool instances of function f at cloudlet h
during time-slot t define the set Vf,t

h ⊆ Vh where Vf,t
h evolves

over time according to:

Vf,t
h = Vf,t−1

h

⋃
{v ∈ Vh : zt−t̃

fv = 1}
∖

{v ∈ Vf,t−1
h : ztf ′v = 1 : f ′ �= f ∈ F},

∀f ∈ F , ∀h ∈ H, ∀t ∈ T .

In other words, the set of instances of function f at cloudlet h
during time-slot t depends on how many new instances have
been launched for f as well as the number of containers that
have been reassigned to functions other than f .

A cloudlet processes a request for f by scheduling an
available active pool instance for f on an idle core, i.e.,
performing a container-to-core association, at which point the
container is in a running state. We denote by ut

v the binary
variable indicating the association of container v to a core at
time-slot t. Then, the number of running instances of function
f at cloudlet h at time-slot t is defined by:

∑

v∈Vf,t
h

ut
v = Cf,t

h , ∀h ∈ H, ∀f ∈ F , ∀t ∈ T . (3)

Clearly, the number of running instances is limited by the total
number of cores at h as well as the cores occupied in loading
an image, captured by the constrain:

C̃t
h +

∑
f∈F

Cf,t
h ≤ Ch, ∀h ∈ H, ∀t ∈ T . (4)

Queuing Model: We define a set of K � {1, 2, ...,K}
queuing classes at each cloudlet where the arriving requests
are placed according to their adequate time-slots; that is, the
number of remaining time-slots before critical deadline. For
instance, if a request’s adequate time-slot is one, then the
request enters the queue class k = 1. The cloudlets perform
EDF scheduling and serve requests from the lowest queue class
and proceed with the higher ones, i.e., k = 1, 2, 3, ..., until
reaching their processing capacity, i.e., all the cores are busy.

Given a cloudlet h at time-slot t, we denote by Qk,f
h (t) the

number of requests for function f ∈ F at queue class k ∈ K.
Then, the queue length evolves as follows:

Qk,f
h (t+ 1) = [Qk+1,f

h (t) + xk+1,f
h (t)− yk+1,f

h (t)]+,

∀f ∈ F , ∀h ∈ H, ∀k ∈ K, ∀t ∈ T (5)

where xk,f
h (t) and yk,fh (t) is the total number of requests for

function f arrived to and served from class k, respectively, of
cloudlet h during time-slot t.1 In other words:

yk,fh (t) ≤ Qk,f
h (t) + xk,f

h (t), ∀f ∈ F , ∀h ∈ H, ∀t ∈ T . (6)

Note that the requests, which belong to class k + 1 and not
served at time-slot t, are forwarded to queue class k at time-
slot t+ 1 since their adequate time-slots is reduced by one.

1[·]+ = max[·, 0].

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

6

Scheduling Model: Consider the case where a group g ∈ G
is interested in forwarding xf

gh(t) requests of function f ∈ F
to cloudlet h at time-slot t in order to satisfy its corresponding
request demand:

∑
h∈H

xf
gh(t) ≤ Df

g (t), ∀g ∈ G, ∀f ∈ F , ∀t ∈ T . (7)

We define the function forwarding request matrix at time-
slot t for group g and all services as xg(t) � (xf

gh(t) :
∀f ∈ F , ∀h ∈ H). Specifically, we denote the time-slot based
overhead for group g of forwarding a request to cloudlet h
as ΔTgh = �Lgh

2 	. That is, cloudlet h will receive a request
of function f sent at time-slot t from group g upon time-slot

t+ΔTgh at queue class kfgh = Tf −2ΔTgh−1 corresponding
to the request’s adequate time-slots. For example, if Tf = 5
time-slots and ΔTgh = 1, then each request when forwarded
at h can spend up to k = 2 time-slots in the queue.

Therefore, the requests for function f arrived at cloudlet h’s
queue class k upon time-slot t are estimated by:

xk,f
h (t) =

∑

g∈G:k=kf
gh

xf
gh(t−ΔTgh),

∀f ∈ F , ∀h ∈ H, ∀k ∈ K, ∀t ∈ T . (8)

Request Admission Model: In our setting, the admission
of a request by a cloudlet is associated with a guarantee of
getting served within its remaining deadline. In other words,
the number of requests served from queue class k = 1 has
to always satisfy the recently arrived requests as well as the
existing requests in the queue:

Q1,f
h (t) + x1,f

h (t) ≤ y1,fh (t) ∀f ∈ F , ∀h ∈ H, ∀t ∈ T . (9)

Moreover, the served requests of queue class k have to respect
the queue class priority as well as the number of active pool

instances of function f in h and time t, i.e., Cf,t
h :

yk,fh (t) ≤ Cf,t
h −

k−1∑
k′=1

yk
′,f

h (t), (10)

for ∀f ∈ F , ∀h ∈ H, ∀t ∈ T , ∀k ∈ K/{1}, while for the
class with the highest priority, k = 1, the served requests are

restricted by y1,fh (t) ≤ Cf,t
h , ∀f ∈ F , ∀h ∈ H, ∀t ∈ T .

Problem Formulation: Our objective is the minimization
of unserved requests by deriving the service forwarding re-
quest matrix xg(t) for each group g ∈ G over time as captured
by the following problem formulation:

max.
∑
g∈G

∑
f∈F

∑
t∈T

∑
h∈H

xf
gh(t), (11)

s.t.: (1)− (10), (12)

yk,fh (t) ≥ 0, xk,f
h (t) ≥ 0, ∀f ∈ F , ∀h ∈ H, (13)

∀k ∈ K, ∀t ∈ T , (14)

xf
gh(t) ≥ 0, ∀g ∈ G, ∀h ∈ H, ∀s ∈ S, ∀t ∈ T , (15)

ztfv ∈ {0, 1}, ∀f ∈ F , ∀h ∈ H, ∀v ∈ Vh, ∀t ∈ T , (16)

ut
v ∈ {0, 1}, ∀h ∈ H, ∀v ∈ Vh, ∀t ∈ T . (17)

However, the optimal solution is infeasible because the for-
mulated problem falls into the Mixed Integer Programming

category where the matrix associated with its constraints is
not totally unimodular, and therefore the problem is NP-
complete [30]. Furthermore, the constraints include non-linear
convex restrictions (5). Lastly, the problem suffers from the
practical challenges of a) the limited information about the
future demand, and b) the enormous number of constraints
and variables involved, known as curse of dimensionality in
dynamic programming [31].

In the experiments in Section VI, we consider a hypothetical
fully-centralized system where a controller has up-to-date view
of all the cloudlets, e.g., their input queue size, status of
active pool instances, etc., and schedules each user request
to be processed at the farthest on-path cloudlet (i.e., closest
to the back-end cloud) which can satisfy its deadline. This
approach either leaves cloudlets closer to users for the most
deadline-sensitive functions or only uses them when the rest of
the cloudlets are over-loaded. The fully-centralized approach
uses the same provisioning approach used in the coordinated
provisioning which is discussed next.

B. Coordinated Provisioning

Because the combined problem of deriving optimal request
scheduling and the selection of optimal active pool function
instances (i.e., provisioning) for the cloudlets is overly com-
plex, we focus on the provisioning problem assuming oppor-
tunistic, on-path processing of requests similar to decentralized
strategies. Furthermore, we assume that the average demand
Df

g = Df
g (t) for each t ∈ T changes slowly over the time-

scales considered. As a result, the dimension of the problem
is greatly reduced.

Single Cloudlet: Consider the problem from the perspective
of a single cloudlet h which has full information of functions’
demand Df

g ∀g ∈ G and ∀f ∈ F . The cloudlet’s goal
is to maximize the utilization of its CPU resources since
idle cores, i.e., cores that are not serving any requests, are
indicative of insufficient number of instances when there are
missed/unserved requests. That is, a cloudlet h has to decide
the type of functions to instantiate in each active pool container
v ∈ Vh. Crucial to this decision is the impact of container’s
expected usage frequency, i.e., the frequency m at which the
container is scheduled at a core.

Let group g direct its total demand of function f , Df
g ,

to cloudlet h’s queue class kfgh which is equipped with a
single instance of the corresponding function. Then if the
instance is always scheduled at a core, the maximum average
number of requests served by the container at each time-slot is
min{Df

g , 1}, since a single container cannot serve more than
a single request per time-slot while the number of requests
arriving is Df

g .

On the other hand, if the instance is scheduled every m
time-slots then the maximum number of requests served on
average per time-slot is bounded by 1/m. Furthermore, the
demand served is aggregated for over m time-slots and it can
be up to m×Df

g as long as m×Df
g < 1/m. However, requests

of f coming from group g cannot be queued for more than kfgh
time-slots. Therefore, the rate of requests served on average
by the unique instance of f at h is:

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

7

ρfv (m) = min
{ 1

m
,
∑
g∈G

min{m, kfgh}Df
g

}
, ∀v ∈ Vh, ∀f ∈ F .

(18)
Clearly, the summation of requests have to respect the total

number of cores at the cloudlet, imposing the restriction of:
∑
v∈Vh

ρfvv (mv) ≤ Ch, ∀h ∈ H, (19)

where fv is the function instantiated at container v and mv

is the frequency at which v is expected to be scheduled at a
core. Moreover, m takes discrete values in [1, 2, ...]; however,
it is clear that as soon as ρfv (m) = 1/m for a specific m there
is no point in assigning higher values to m since ρfv (m) after
that point is a decreasing function, i.e., ρfv (m+1) = 1/m+1
even if

∑
g∈G min{m+ 1, kfgh}Df

g >
∑

g∈G min{m, kfgh}Df
g

as we see in equation (18).
Based on service rates, cloudlet h takes function instantia-

tion decision by following the 6 steps described next that com-
pose SINGLECLOUDLETPROV mechanism. For simplicity, we
assume that functions are sorted according to their increasing
order of execution deadlines, i.e., T1 ≤ T2 ≤ ... ≤ Tf .

Step 0: Set the function under investigation f = 1 and the
container under investigation v = 1. Set the instantiation
threshold ρ = 0 and previous container function f = ∅.

Step 1: Find the m∗ that maximizes ρfv (m) without exceed-

ing Ch −∑
v′∈Vh\{v} ρ

fv′
v′ (mv′) according to (18).

Step 2: If ρfv (m
∗) > ρ, instantiate f at v with parameter

m∗, i.e., V f
h = V f

h ∪ {v}, and update the demand of
instantiated function f according to:

∑
g∈G

Df
g =

∑
g∈G

Df
g − ρfv (m

∗) (20)

and the demand of the previous function f according to:

∑
g∈G

D
f
g =

∑
g∈G

D
f
g + ρ. (21)

Step 3: If Ch −∑
v′∈Vh

ρ
fv′
v′ (mv′) < ε then STOP. Also if

ρfv (m
∗) ≤ ρ and f = F , is the last function we consider,

then STOP again. Otherwise, if simply ρfv (m
∗) ≤ ρ set

f = f + 1 and go to Step 1.
Step 4: If ρfv (m

∗) < 1/m∗ and f = F , i.e., the last function
in F , then STOP. Else if ρfv (m

∗) < 1/m∗ in the next
iteration consider the deployment of the next function in
the sequence, f = f + 1. Otherwise if ρfv (m

∗) = 1/m∗,
consider the same function f = f .

Step 5: Find the container, vmin, that contributes the least
according to:

v = arg min
v′∈Vh

ρ
fv′
v′ (mv′).

Set ρ = ρ
fv
v (mv), v = v, and f = fv before going to

Step 1.

Note that ε is considered a very small quantity that is
crucial for identifying in practice the desirable resource utiliza-
tion. Step 0 of SINGLECLOUDLETPROV is a straightforward
initialization of the mechanism. On the other hand, Step 1
is simply trying to get the most out, in terms of served

requests, from container v when supporting function f with
respect to cloudlet’s cores. Step 2 checks if there is actual
improvement from instantiating function f at v and reduces the
corresponding amount of aggregated requests while recovering
the demand of the previously supported function f from
container v. Step 3, applies a termination utilization condition.
On the other hand, if there is no improvement and function f
is the last to be investigated, then the mechanism terminates
again.

Step 4 defines the function to be considered for deployment
at the next iteration. Specifically, if the number of requests
served are not restricted by m but by the number of aggregated
expected requests, then there is no point for an additional in-
stance of f ; in that case, we should consider the next function
in the sequence. Finally, Step 5 identifies the container to be
replaced in the next iteration. Note that if a set of containers
is not supporting any function, then one of them becomes
the v since ρ∅v(m) = 0. The algorithm terminates by either
managing to utilize on average the available number of cores
(Step 3), or by supporting the set of instances that achieves
the highest possible core utilization.

Hierarchy of Cloudlets: Given the demands from user
groups and remaining deadlines of functions observed at a
single cloudlet, the provisioning is done using a deadline-based
prioritization of functions in SINGLECLOUDLETPROV. Next,
we consider provisioning resources of a hierarchy of cloudlets.
In this case, updating the aggregate demand upon instantiat-
ing/replacing containers (step 2 of SINGLECLOUDLETPROV),
implies updating the global demand from user groups. Also,
different user groups traffic is reachable by different cloudlets
as the traffic flows upward in the hierarchy visiting only on-
path cloudlets after originating near a leaf cloudlet.

The coordinated strategy attempts to process requests as
farther away from the users as possible (i.e., as close to
the back-end cloud as possible) while ensuring high resource
utilization at each cloudlet. Below, we introduce COORDI-
NATEDPROV where the algorithm considers each function
separately (in increasing order of execution deadlines) and
executes SINGLECLOUDLETPROV on the cloudlets one-by-
one, starting with the root cloudlet of the hierarchy and
proceeding with the cloudlets at increasingly lower levels as
described below.

Step 0: Set f = 1 and initialize the set of functions by
F = {f}.

Step 1: Set ρ = 1− ε.
Step 2: Execute the SINGLECLOUDLETPROV for ρ for each

cloudlet starting from the ones located at the core and
moving towards the edge.

Step 3: If ρ = 0 and f = F , i.e., last function, then STOP.
Else if ρ = 0 and f �= F then set f = f + 1 and update
the set of functions F = F ∪ {f} before going to Step
1. Else go to Step 4.

Step 4: If:

∑
g∈G

(∑
f∈F

Df
g −

∑
h∈H

∑

v∈Vf
h

ρfv (mv)
)
> ε

then set ρ = ρ−ε and go to Step 1. Else if f = F STOP.
Otherwise, set f = f +1 and update the set of functions
F = F ∪ {f} before going to Step 1.

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

8

The COORDINATEDPROV is simply trying to satisfy the
demand for a function by serving the highest possible number
of request at a single location. In order to achieve that, in
the beginning it considers only the function with the strictest
deadline, i.e., f = 1, while introducing a high minimum
number of requests served per container threshold ρ (at Steps
0 and 1). That is the underlying SINGLECLOUDLETPROV is
modified to skip its 5th Step and go back to Step 1 until all
of its containers are utilized first, since by default Step 5 will
continue instantiating functions until reaching its capacity of
active pool.

Then, the algorithm continues decreasing the threshold until
either all the demand of the subset of functions considered is
served, as we see in Step 4, or until setting a threshold of 0,
at Step 3. After that the set of functions is incremented by
including the next stricter function in terms of deadline. In
the case that all functions have been introduced, the algorithm
terminates. Finally, Step 2 of COORDINATEDPROV assumes
a loose cloudlet hierarchy. Specifically, by starting applying
the SINGLECLOUDLETPROV from the core (farthest to users)
of the network to the edge (closest to users) it attempts to
identify the optimal distance from the edge that is sufficient
for aggregating the requests of the functions with the strictest
deadline first. This leads to execution of requests with loose
deadlines at cloudlets further away from its origin, leaving
headroom on the resources of cloudlets closer to users for
requests with stricter deadlines.

By executing requests at the computation spots with optimal
distance from their users, the above method maximizes the
number of function executions that meet their deadlines,
provided that the execution times of all the functions are
roughly equal (by our assumption) and the average demand
is constant.

V. DECENTRALISED EDGE-CLOUDS

In this section, we take one step ahead and consider fully-
decentralized strategies where individual computation spots
make independent decisions for admission, scheduling, and
provisioning. Our starting point is the following observation:
determining which function’s instance(s) to launch at which
spot highly resembles the content caching problem where
simple decentralized replacement policies, e.g., Least Fre-
quently Used (LFU), can be very effective. Such policies
simply maintain a ranking of cached content and are also
applicable for managing hierarchical caches. In case of func-
tion provisioning, the policy determines the quantity of the
instances for each function to include in the active pool (AP)
of each computation spot. This means that at each spot more
than one instance of a function can be provisioned based on
its popularity and deadline demands, whereas in the content
caching schemes all requests can be satisfied by the same
cached content.

Another difference from content caching policies that are
typically executed upon the arrival of each request or content,
we consider function provisioning policies which are executed
only periodically because very frequent launching events lead
to high overhead. More specifically, each computation spot
runs a provisioning process periodically after each “replace-
ment interval” of fixed duration (e.g., 30 seconds) to determine
the instances in its AP in the next interval.

Similar to the caching policies, we adopt a ranking approach
that is applied to both the current function instances in AP
and to functions that have currently no instances in AP .
In order to perform the ranking, a measurement module at
each computation spot collects statistics based on the demand
(i.e., request workload) observed in the previous interval. The
measurement module collects and maintains the following for
each function f :

1) The utilization of accepted requests: is the total execution
time of the admitted requests for f at the computation spot.

2) The missed utilization of the offloaded requests: is the
sum of the estimated execution times of the requests for f
that were rejected due solely to insufficient or non-existing
available instances as explained in Section III-B.

3) The success rate of offloaded requests: is the ratio of the
offloaded requests for f (due to insufficient or non-existing
available instances) that eventually meet their deadlines.

4) The average adequate time: is the total adequate time
averaged over the requests of F .

In addition to bookkeeping of utilization due to admitted
requests and the missed utilization due to rejected requests
(i.e., metrics one and two above), each computation spot
can also track the success of offloaded requests in meeting
their deadlines. This can be done by simply observing the
remaining deadlines in the requests and then comparing them
with the elapsed time between the arrival of the requests and
the arrival of corresponding responses. This requires symmetry
of request/response traffic which is the case in the setting of
hierarchical edge-cloud network, where each individual edge-
cloud node forwards traffic along the overlay of edge-cloud
nodes towards the back-end cloud.

Each individual edge-cloud node also computes an average
adequate time which determines the strictness of the requests’
remaining deadline at the time of arrival. Only if the adequate
time is positive, a request’s deadline is satisfiable. If, on the
other hand, the adequate time is negative, then the deadline is
missed. The execution of a request can be performed upstream
in case the adequate time is larger than the RTT to reach the
next upstream node on the path to the back-end cloud.

Each provisioning policy maintains a ranking of two indi-
vidual lists: i) Instantiated Functions (IF) and ii) Candidate
Functions (CF). The instantiated functions are the ones that
have at least one instance in the AP . The list of candidate
functions are the ones that are considered for replacing an ex-
isting instance. We examine the following set of decentralized
provisioning policies, each of which uses one or more of the
above list of metrics:

• Strictest Deadline First (SDF): This policy quantifies the
value of functions in IF using the reciprocal of average
adequate time as the metric. SDF ranks higher those func-
tions with smallest positive adequate times. The set of
functions in CF comprises functions with both non-zero
missed utilization and positive adequate times. The ranking
of CF is also done using the reciprocal of average adequate
time as the valuation metric. Essentially, this policy uses
the strictness of deadlines as the main consideration when
provisioning functions. During the replacement phase, the
policy iterates through the sorted IF list in increasing order
of values, and replaces an existing instance of a function

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

9

fIF in IF with a fCF in CF (fIF �= fCF) with the largest
value, only if the value of fIF is strictly less than fCF .
Upon replacing, the policy removes fCF from the CF list
and continues with the next fIF in IF . The replacement
phase terminates when an fIF ’s value is strictly greater than
the fCF with the largest value.

• Least Frequently Used (LFU): This policy uses the uti-
lization of accepted requests, i.e., utilization, to quantify
the value of the functions in IF . The set CF comprises
functions with both positive adequate times and positive
amount of missed utilization of offloaded requests that
eventually violate their deadlines. The latter metric, which
can be obtained by combining the metrics two and three
above, is used for the valuation of the functions in CF . This
policy considers only the functions that are admittable, i.e.,
have positive adequate time, and have non-zero offloaded
requests that missed their deadlines. The replacement phase
proceeds just like in SDF, where instances of functions in
IF is replaced with the instances of the functions in CF
with larger values.

• Hybrid: This policy uses the single cloudlet provisioning al-
gorithm SINGLECLOUDLETPROV (Section IV-B). The CF
comprises functions with non-zero missed utilization and
are sorted in increasing order of adequate times (i.e., most
deadline sensitive to least). The algorithm iterates through
each function fCF in the sorted CF list and replaces the
function in IF that has the least utilization with an instance
of fCF , if fCF has sufficiently high demand (i.e., missed
utilization) as described in step 2 of SINGLECLOUDLET-
PROV. The Hybrid policy is named as such, because it
combines deadline strictness (SDF) and utilization (LFU)
as the replacement criteria. Finally, this policy imposes a
hard limit on the number of instance replacements in a
single replacement phase (i.e., for reasons of stability) to
at most 1/15 of the instances in the active pool, while
SINGLECLOUDLETPROV does not impose a limit on the
number of replacements.
The above function provisioning policies do not require any

coordination. Each edge-cloud node passively monitors the
incoming request/response traffic and use the monitoring in-
formation from the previous replacement interval to determine
the set of function instances to replace for the next replacement
interval. The provisioning of a function instance involves
adding a special task in the input queue which executes the
start-up procedure and possibly tearing down of the instance
that is replaced by the new one.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of both cen-
tralized and decentralized strategies, presented in Sections IV
and V, using a wide range of parameters. The objective is to
evaluate the performance of the strategies in terms of success
in meeting request deadlines and achieving high resource
utilization. Next, we describe the setup of our evaluations
before presenting the experiments in the remaining sections.

A. Evaluation Setup and Metrics
For the evaluation of the proposed replacement strategies,

we use a packet-level, discrete time event simulator based on

Fig. 4: The tree topology used in the experiments.

Icarus [32]. Icarus is originally a simulator for evaluating the
performance of cache networks. The simulator code with our
modifications and the scripts to generate the results are made
publicly available2. We simulate the strategies using a binary
tree topology with a height of five (i.e., root and four sub-
levels) as shown in Fig. 4. The root of the tree is the back-end
cloud for all the functions containing unlimited resources, and
the leaf nodes act as the gateway nodes without computing
power where users are attached to. The internal nodes of the
tree form the network of computation spots (e.g., cloudlets),
each deployed at various Points of Presences (PoP) such as
exchange points. We assume computational resource capacity
of cloudlets to be comparable to what is available in a Content
Distribution Network PoP, which is typically 4-16 servers.
Therefore, in terms of number of CPU cores, we assume a
total of C = 50 cores per each cloudlet.

We consider a scenario, where the function population P
of interest is a set of 103 functions. This set consists of the
functions whose providers have a business relationship with
the edge-cloud and are not meant to represent all possible
functions in the Internet. Each function is associated with a
processing time and a deadline.

In order to generate a deadline for a function (say f), we
first generate a random time value (in ms) between the follow-
ing lower- and upper-bounds: RTT from gateway node to its
adjacent computation spot at the lowest level of the tree (lower-
bound), RTT to reach the back-end cloud from the gateway
node (upper-bound). This randomly generated value is added
to the processing time of f to generate its deadline. Thus,
we consider only latency-critical functions, whose requests
can only be satisfied (i.e., response delay within the deadline)
through edge-cloud nodes (i.e., computation spots) and not the
back-end cloud.

That said, we choose a small, fixed processing time for
each function selected from a range of 1–5 ms and assume
homogeneous nodes, where requests of the same application
require the same processing time everywhere. The fixed pro-
cessing times for functions executed at a given location is, to
a large extent, a property of Serverless tasks that are inher-
ently stateless. For example, the processing times of image
processing tasks (e.g., detection of objects) are very stable per
video frame or image [28]. Different image processing tasks
(e.g., ones that detect different objects) which require different
processing times are considered as different functions in our
model.

2https://github.com/oascigil/IcarusEdgeSim

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

10

TABLE II: Default evaluation parameters.

Parameter Value

Number of edge-cloud nodes (computation spots) in the tree 14

Size of function population P = 103

Number of CPU cores C = 50

Active pool capacity F = 3 × C

Average request rate per second 105

Function starting time (cold-start) 0.1–1 seconds

Zipf exponent (for synthetic workloads) α = 0.75

Processing times of functions 1–5 ms

Scheduling policy EDF

We assign inter-connection latencies as follows: each path
connecting consecutive computation spots has a propagation
delay of 10 ms, the paths connecting nodes (at the top-level
of the tree) to the back-end cloud have a latency of 60
ms to represent the wide area network latencies [33]. The
gateway (leaf) nodes connect to the edge-cloud nodes (at the
lowest-level of the tree) with a latency of 2-3 ms and to
users with negligible latency. In order to simplify the function
size provisioning in the experiments, we assume that each
function has the same memory footprint for its instance. The
total memory capacity for the entire edge-cloud network is a
parameter in our experiments, and we uniformly distribute the
total capacity, which determines the capacity F of the active
pool of each cloudlet. As mentioned before, we assume that
each edge-cloud node prefetches and stores the function codes
in advance.

Our evaluation is based on the following performance
metrics:

• Satisfaction Rate (in percentage of issued requests): The
ratio of requests that are processed and returned back to
their originating user within the service deadlines.

• Percent Idle Time: The ratio of the time that the CPU cores
are staying idle, i.e., not executing any function. This metric
indicates the utilization of resources at the edge-clouds.

• Overhead: The average number of new function instances
launched per computation spot over the replacement periods.

During the experiments, we compute the above metrics
periodically at the end of each replacement period using the
requests that arrived during that period. We set the default
length of the replacement period to 30 seconds in the ex-
periments. Initially, each cloudlet contains a single instance
from a randomly selected subset of the population P . In our
experiments, we set the default size of the active pool to
F = 100 instances, which is twice the size of the number
of cores (C) at each cloudlet. At the end of each replacement
period, cloudlets may replace their instances with new ones,
maintaining the number of containers in their active pool fixed
with F instances. The launching of a new instance results with
a “start-instance” request to be added in the input queue, and
such requests are scheduled together with the other (e.g., user)
requests in the queue for processing. A start-instance request
involves all the processing necessary for launching a new
function instance, during which a CPU core is allocated. The
required processing time for launching an instance is function
specific, and we set the starting-up processing time of each
function to a randomly chosen duration within the range of
0.1− 1 second.

We use synthetic workloads in all the experiments where
users send traffic with an aggregate mean rate of 105 requests
per second. Each request is assigned to a randomly chosen
gateway node where it originates from. The association of
request to a function type in synthetic workload is gener-
ated using a Zipf distribution, which determines the function
popularity. We use a default Zipf exponent of 0.75 for the
synthetic workload, and in Section VI-E, we consider different
Zipf exponents. The rest of the default parameters are listed
in Table II. In the rest of this section, we investigate the
impact of various system parameters listed in Table II on
the performance of both the centralized and decentralized
provisioning policies.

B. Comparison of Strategies

In Fig. 5, we depict the performance of the provisioning
policies over a time period of 600s using the synthetic
workload. Each data point in all the plots corresponds to
the average performance over a replacement period of 30s.
Initially (i.e., t=0) all the strategies start with an identical set
of randomly chosen function instances in the active pool at
each cloudlet. Consequently, SDF, LFU, hybrid and coordi-
nated strategies, which all use opportunistic, on-path function
execution, perform exactly the same (leftmost and middle
plots in Fig. 5) during the first replacement interval (i.e., t=0-
30s). On the other hand, because the fully-centralized strategy
(labeled as “F. Central.” in the figures) differs from the others
in how it selects an on-path cloudlet to process each request
(i.e., centralized selection as opposed to opportunistic), and
therefore its initial performance for 0-30s differs from the rest
of the strategies despite having the same initial set of active
pool functions at each cloudlet.

In the leftmost plot of Fig. 5, we present the satisfaction
rates for all the policies. We observe that all the strategies
except SDF gradually improve their satisfaction rates during
the subsequent replacement periods (i.e., every 30s). Eventu-
ally, all the strategies stabilize and maintain a roughly constant
satisfaction rate using a synthetic workload with a stationary
distribution of function popularities. Both the centralized and
the coordinated strategies stabilize much faster than the decen-
tralized strategies, as a result of using the knowledge of the
global demand as an input to the provisioning process. Unlike
the coordinated strategies, in SDF, hybrid and LFU strategies,
each edge-cloud node makes an individual decision based on
the locally observed demand without the knowledge of the
global demand. While the leaf cloudlet nodes can observe
all the demand from a user group, the upper-level nodes can
only observe the offloaded requests that are not processed and
therefore filtered at the lower-levels.

Unlike the rest of the strategies, SDF fails to retain the
peak satisfaction rate of around 18% at 60s and gradually
performs worse. This is mainly because SDF does not take
utilization of functions into consideration in provisioning
decisions. Instead, SDF focuses entirely on the adequate
time, and as a result, under-utilized functions with smaller
adequate times are increasingly provisioned. According to our
earlier results, SDF performs comparably well with the other
strategies only when the functions with strict deadlines are also
the most demanded [25]. The synthetic workload we generate

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

11

Fig. 5: Performance of strategies over a time period of 600 seconds.

for the experiments have randomly assigned deadlines and
such a correlation between popularity (i.e., high demand) and
deadline strictness do not exist.

We observe from the middle graph of Fig. 5 that the
average idle times of the edge-cloud nodes over time with
hybrid strategy is lower than the other decentralized strategies
which is reflected to the achieved satisfaction rates. The hybrid
strategy converges to around 27%, while the LFU strategy
retains around 34% idle time. This results with hybrid strategy
having a higher satisfaction rate than the LFU. The SDF
strategy fails to utilize the CPU resources of the edge-cloud
nodes; the resources remain idle for more than 80% of the time
for t>150s. As can be observed, the portion of the idle time
that reaches the lowest point initially at around t=60s coincides
with the point where SDF retains its highest satisfaction rate
of around 18%.

The rightmost plot of Fig. 5 presents the average number
of new instances launched (i.e., replacements) per edge-cloud
node during provisioning decisions at the end of each re-
placement period by each strategy. At the end of the first
replacement period (t=30), all the strategies launch a large
number of instances replacing the randomly chosen instances
at t=0. We observe that coordinated provisioning used by
the centralized strategies perform slightly more replacements
than others. This is because the coordinated provisioning
approach is highly-reactive to changes in the demand and
does not impose a limit on the number of replacements in
a single period (unlike the hybrid strategy), which results
in high number of new instances to be launched, replacing
other existing instances. Note that, even though the average
global demand for each function is roughly constant, there is
fluctuation in the demands of individual functions particularly
at the cloudlets in the lower levels of the hierarchy, because the
simulator picks the origin of each request uniformly at random
in order to account for the volatile nature of user demand in
the edge networks.

We observe that the decentralized LFU strategy launches
the highest number of instances at the end of replacement
intervals slightly lower than the centralized strategies. The
hybrid strategy uses both utilization of resources and deadline
sensitivity of functions, and as a result it achieves a lower
overhead of new instance launches. The overhead of launching
instances is the processing of a cold-start process, which takes
CPU resources.

The two centralized strategies achieve substantially different
satisfaction rates from each other. While the fully-centralized
strategy has the highest satisfaction rate during all the re-
placement periods among all the strategies, the coordinated

strategy performs significantly worse than the decentralized
strategies LFU and hybrid. Both centralized strategies use the
same coordinated provisioning approach to periodically (every
30s) determine the active pool functions at each edge-cloud
node. This can be seen in the rightmost graph of Fig. 5 with
identical number of function instances that are launched for
the coordinated and fully-centralized strategies.

The coordinated provisioning approach deploys active in-
stances at the highest (i.e., closer to the back-end cloud)
possible level of the edge-cloud hierarchy where the requests
can be processed. This approach therefore aims to utilize CPU
resources of higher (lower) level edge cloud nodes with the
instances of functions that are less (more) strict in terms of
their deadlines. If after this process, there is still unused active
pool capacity at the lower-level nodes, then additional (i.e.,
back-up) instances for popular functions are launched.

As expected, the coordinated provisioning approach works
better with a fully-centralized request scheduling approach
that processes requests at the farthest on-path cloudlets. In
practice, this approach requires a per-request communication
and coordination overhead as each on-path cloudlet must be
informed on whether it should admit and process a request.
The coordinated provisioning approach similarly attempts to
place instances in a top-down approach with farthest locations
preferred for provisioning functions with loose deadlines.
However, when a function with a loose deadline is also
popular, then the coordinated approach typically places extra
instances at cloudlet locations close to users in order to deal
with the demand. When the demand is not controlled carefully
and placed opportunistically, the resulting performance suffers
as computing resources of nearby cloudlets are taken over by
requests that could be processed further away.

We also observe that the decentralized strategies can expe-
rience fluctuations in satisfaction rates as experienced by the
LFU strategy for ten replacement periods (i.e., t=30-300). Such
fluctuations occur due to overestimation of demand for popular
functions with loose deadlines (i.e., admittable by multiple
on-path cloudlets along the hierarchy), for which individual
on-path edge-cloud nodes at different levels of the hierarchy
simultaneously instantiate functions. We do not observe insta-
bility in hybrid strategy as the instantiation decisions consider
not only popularity but also strictness of remaining deadlines.

C. Active Pool Capacity
The performance of the strategies with varying active pool

size per cloudlet is depicted in Fig. 6. Each data point in
the plots is an average performance that is observed over 600
seconds. As expected, we observe the satisfaction rates of all

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

12

Fig. 6: Performance of strategies with different active pool capacity per Computation Spot.

strategies improve as the number of containers in the active
pool per cloudlet increases (leftmost plot of Fig. 6. This is a
result of the decreasing idle times of the strategies as the active
pool size increases which increases the number of processed
requests (middle plot of Fig. 6). Similar to the previous results,
the hybrid strategy achieves the best performance among the
decentralized strategies with a satisfaction rate only 10% less
than the fully-centralized strategy. We also observe that the
number of new instances launched increases roughly linearly
with increasing containers in the active pool as shown in the
rightmost plot in Fig. 6.

D. Compute Resources

The performance of the strategies with varying CPU cores
is depicted in Fig. 7. We observe that the gap between the
satisfaction rates of the fully-centralized strategy and the
decentralized strategies (i.e., LFU and hybrid) narrows down
as the number of cores increases. This is because decreasing
contention of requests for CPU resources among requests at
each cloudlet which makes the processing location of requests
less important. On the other hand, with higher contention
among requests, it is important to manage which requests are
processed where in order to open room for requests with strict
deadlines at the edge-clouds.

A similar trend can be seen in the middle plot in Fig. 7
where the difference in idle time difference of fully-centralized
and the other strategies (except SDF) reduces with increasing
number of CPU cores. We observe that the gap between LFU
and hybrid slightly increases for number of cores greater than
30. This is because of the increasing number of new instances
launched by the LFU strategy (rightmost plot in Fig. 7) for
t>30, which leads to increasing usage of CPU resources for
cold-starts. Again the reason for LFU to launch a higher
number of new instances is because of its reactive nature
similar to fully-centralized strategy where small changes in
the demand leads to immediate action by the edge-clouds in
replacing function instances.

E. Service Popularity Distribution

In the above scenarios, we used a default Zipf exponent
value of 0.75 when determining the functions’ popularity.
We present the performance of strategies for varying function
popularity distribution, i.e., Zipf exponent values, in Fig. 8.
As expected the higher values of Zipf exponent leads to
higher satisfaction rates for all strategies except SDF. SDF
is unable to take advantage of locality of reference in the
requests as a result of increasing Zipf exponent value because

SDF considers adequate time (remaining deadline) as the only
criteria when provisioning functions. The rest of the strategies
consider utilization and can take advantage of requests for a
less diverse set of functions.

The idle times (middle plot in Fig. 8) also show a decreasing
trend for all strategies but SDF. All strategies except SDF also
reduce their overhead of launching new instances as there
are more requests for a shrinking set of popular functions
(rightmost plot in Fig. 8).

Summary of results: In general, we observe that hybrid
strategy achieves a performance that is comparable with the
hypothetical, fully-centralized one, which requires a central
controller to coordinate the edge-clouds and make per-request
decisions. LFU strategy also performs close to hybrid, but
suffers from a higher overhead due to being more reactive
in responding to changes in request patterns. The coordinated
strategy performs worse than both LFU and hybrid because
its top-down provisioning approach does not agree with op-
portunistic admission. SDF achieves the worst performance
due to its lack of concern for utilization of CPU resources.

We observed that the decentralized strategies are effective
for a wide range of system parameters. The only down-
side of decentralized strategies is their slower convergence
than centralized strategies and the possibility of experiencing
fluctuations in performance due to lack of coordination in
provisioning decisions. However, in our earlier work [25],
we have demonstrated with real-world traces that decentralized
strategies can in fact adapt to fluctuations in the demand, given
appropriate setting of provisioning periods. On the other hand,
coordinated provisioning strategies converge more rapidly to
their maximum performance upon changes in demand.

VII. CONCLUSIONS

Following the success of Serverless computing paradigm
for the management of FaaS clouds, we investigated a similar
approach for FaaS edge-clouds. In this approach, edge-clouds
take care of the resource provisioning and allocation tasks
for the application providers who simply make their function
image (i.e., code) available to the edge-clouds. We consid-
ered various resource provisioning and allocation strategies
for edge-clouds—consisting of distributed computation spots
hierarchically arranged on the paths to back-end clouds of
application-providers—for the deployment of latency-critical
services with hard deadlines on computations.

Resource provisioning attempts to fully utilize the CPU
resources of the computation spots by maintaining a set of
warm (active pool) containers, each capable of instantiating
a single instance of a function. To that end, provisioning

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

13

Fig. 7: Performance of strategies with different CPU resources.

Fig. 8: Performance of strategies with varying popularity of functions.

periodically adapts the function associations for a fixed-size
warm containers by launching new function instances to
replace existing instances of other functions according to
demand; while resource allocation selectively admits incoming
requests, if and only if their deadlines can be met. In a
fully-decentralized approach, computation spots independently
make provisioning and allocation decisions, resembling the
existing cache management strategies such as opportunistic
caching with LFU replacement policy. In the other extreme
approach, a fully-centralized approach makes use of a con-
troller to orchestrate provisioning and allocation of resources
at each computation spot.

We formulated an optimal resource provisioning and allo-
cation for the fully-centralized strategy, which takes queuing
and scheduling of requests into account. This strategy assigns
requests to optimal computation spots for maximizing the
deadline satisfaction rate and also periodically provisions the
optimal set of function instances to maximize CPU utilization.
Because of the coordination overheads of such an approach,
we proposed a practical centralized approach which only
requires periodic coordination among computation spots for
provisioning and leaves admission decisions to computation
spots. Finally, we investigated the performance of all the
centralized and decentralized strategies under various system
parameters in a packet-level discrete event simulator. Our
main finding is that a fully-decentralized strategy—a hybrid
of LFU and a deadline-centric SDF—can achieve comparable
performance to a hypothetical fully-centralized one, whose
performance merely demonstrates a theoretical upper-bound.

REFERENCES

[1] M. Satyanarayanan et al., “Edge analytics in the internet of things,”
IEEE Pervasive Computing, 2015.

[2] J. Cho et al., “Acacia: Context-aware edge computing for continuous
interactive applications over mobile networks,” in ACM CoNEXT, 2016.

[3] K. Ha et al., “Towards wearable cognitive assistance,” in International
conference on Mobile systems, applications, and services. ACM, 2014.

[4] I. Psaras, “Decentralised edge-computing and iot through distributed
trust,” in Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, 2018, pp. 505–507.

[5] B. Zhang et al., “The cloud is not enough: Saving iot from the cloud.”
in HotStorage, 2015.

[6] F. Bonomi et al., “Fog computing and its role in the internet of things,”
in Proceedings of the first edition of the MCC workshop on Mobile cloud
computing. ACM, 2012, pp. 13–16.

[7] M. Satyanarayanan et al., “The case for vm-based cloudlets in mobile
computing,” IEEE Pervasive Computing, 2009.

[8] M. Patel et al., “Mobile-edge computing introductory technical white
paper,” Mobile-edge Computing (MEC) industry initiative, 2014.

[9] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM CCR, 2014.

[10] L. Tong et al., “A hierarchical edge cloud architecture for mobile
computing,” in IEEE INFOCOM, 2016.

[11] A. Tasiopoulos et al., “Fogspot: Spot pricing for application provisioning
in edge/fog computing,” IEEE Transactions on Services Computing,
2019.

[12] E. Jonas et al., “Cloud programming simplified: A berkeley view on
serverless computing,” arXiv preprint arXiv:1902.03383, 2019.

[13] A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, 2019, pp. 225–236.

[14] B. Yang et al., “Cost-efficient nfv-enabled mobile edge-cloud for low
latency mobile applications,” IEEE Transactions on Network and Service
Management, vol. 15, no. 1, pp. 475–488, 2018.

[15] T. K. Phan et al., “Utility-maximizing server selection,” in IEEE IFIP
Networking, 2016.

[16] ——, “Utility-centric networking: Balancing transit costs with quality
of experience,” IEEE/ACM Transactions on Networking (TON), 2018.

[17] L. Baresi et al., “Paps: A framework for decentralized self-management
at the edge,” in International Conference on Service-Oriented Comput-
ing. Springer, 2019, pp. 508–522.

[18] I. Psaras et al., “Probabilistic in-network caching for information-centric
networks,” in Proceedings of the second edition of the ICN workshop
on Information-centric networking. ACM, 2012, pp. 55–60.

[19] V. Sourlas et al., “Distributed cache management in information-centric
networks,” IEEE Transactions on Network and Service Management,
vol. 10, no. 3, pp. 286–299, 2013.

[20] J. Li et al., “DR-Cache: Distributed resilient caching with latency
guarantees,” in IEEE INFOCOM, 2018.

[21] S. Li et al., “Joint admission control and resource allocation in edge
computing for internet of things,” vol. 32, no. 1, 2018, pp. 72–79.

[22] A. G. Tasiopoulos et al., “Edge-map: Auction markets for edge resource
provisioning,” in 2018 IEEE 19th International Symposium on” A World
of Wireless, Mobile and Multimedia Networks”(WoWMoM). IEEE,
2018, pp. 14–22.

[23] T. Zhao et al., “ReD/LeD: An asymptotically optimal and scalable online
algorithm for service caching at the edge,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 8, pp. 1857–1870, 2018.

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3052139, IEEE
Transactions on Services Computing

14

[24] D. Zeng et al., “Joint optimization of task scheduling and image place-
ment in fog computing supported software-defined embedded system,”
IEEE Transactions on Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

[25] O. Ascigil et al., “On uncoordinated service placement in edge-clouds,”
in 2017 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). IEEE, 2017, pp. 41–48.

[26] H. Tan et al., “Online job dispatching and scheduling in edge-clouds,”
in Proceedings of IEEE International Conference on Computer Com-
munications (INFOCOM), 2017, pp. 1–9.

[27] J. Xu et al., “Zenith: Utility-aware resource allocation for edge comput-
ing,” in 2017 IEEE international conference on edge computing (EDGE),
2017, pp. 47–54.

[28] S. Yi et al., “Lavea: Latency-aware video analytics on edge computing
platform,” in Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, 2017, pp. 1–13.

[29] C. Shi et al., “Cosmos: computation offloading as a service for mobile
devices,” in Proceedings of the 15th ACM international symposium on
Mobile ad hoc networking and computing, 2014, pp. 287–296.

[30] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[31] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.

[32] L. Saino et al., “Icarus: a caching simulator for information centric
networking (icn),” in Proceedings of the 7th International Conference
on Simulation Tools and Techniques (ICST), 2014, pp. 66–75.

[33] Q. Duan, Delay Characteristics of Packet Switched Networks. Boston,
MA: Springer US, 2010, pp. 203–223.

Onur Ascigil received his PhD. degree from the
Computer Science Department, University of Ken-
tucky, Lexington, USA in 2014. From 2008 to 2014
he worked as a research assistant and from Jan. 2015
to Aug. 2015 as a Post-doctorate Research Associate
at the Laboratory for Advanced Networking, Univer-
sity of Kentucky. In September 2015 he joined the
Electronic and Electrical Engineering Department,
UCL, London as a Research Associate.

Argyrios G. Tasiopoulos received the B.Sc. in
Informatics and the M.Sc. in Computer Science
both from the AUEB. He obtained his Ph.D. degree
in Electronic and Electrical Engineering from the
University College London, in 2018. He is currently
a Research Associate at the EE department of UCL.
His research efforts lies at the intersection of opera-
tions research, telecommunications, and economics.

Truong Khoa Phan received his PhD degree from
INRIA/I3S, Sophia, France. He is currently a Senior
Research Associate at the Department of Electronic
and Electrical Engineering, University College Lon-
don. His research interests include network optimi-
sation, cloud computing, multicast and Peer-to-Peer
Networks.

Vasilis Sourlas received his Diploma degree from
the Computer Engineering and Informatics Depart-
ment, University of Patras, Greece, in 2004 and the
M.Sc. degree in Computer Science from the same
department in 2006. In 2013 he received his PhD
from the Department of Electrical and Computer
Engineering, University of Thessaly (Volos), Greece.
In Jan. 2015 he joined the Electronic and Electrical
Engineering Department, UCL, London to pursue
his two years Marie Curie IEF fellowship.

Ioannis Psaras is an EPSRC Fellow at the Electrical
and Electronic Engineering Department of UCL.
He is interested in resource management techniques
for current and future networking architectures with
particular focus on routing, caching and congestion
control. Before joining UCL in 2010, he held po-
sitions at the University of Surrey, and Democritus
University of Thrace, Greece, where he also obtained
his PhD in 2008. He has held research intern posi-
tions at DoCoMo Eurolabs and Ericsson Eurolabs.

George Pavlou is Professor of Communication Net-
works in the Department of Electronic and Electrical
Engineering, University College London, UK. He
received a Diploma in Engineering from the National
Technical University of Athens, Greece and M.S.
and Ph.D. degrees in Computer Science from Uni-
versity College London, UK. His research interests
focus on networking and network management. In
2011 he received the Daniel Stokesbury award for
“distinguished technical contribution to the growth
of the network management field”.

Authorized licensed use limited to: University College London. Downloaded on February 02,2021 at 18:07:10 UTC from IEEE Xplore. Restrictions apply.

