
Computer Communications 36 (2013) 758–770
Contents lists available at SciVerse ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom
Cache ‘‘less for more’’ in information-centric networks
(extended version) q,qq
0140-3664/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comcom.2013.01.007

q An earlier abbreviated version of this paper was presented at the IFIP
Networking 2012, Prague, Czech Republic, 23 May 2012 [12]. It was awarded the
Best Paper Award.
qq The research leading to these results has received funding from the EU FP7
COMET project – Content Mediator Architecture for Content-Aware Networks,
under Grant Agreement 248784.
⇑ Corresponding author. Tel.: +44 (0)20 7679 5722.

E-mail address: w.chai@ucl.ac.uk (W.K. Chai).

1 In our study, the basic unit of a content can be a packet, a chunk or t
bject itself.
Wei Koong Chai ⇑, Diliang He, Ioannis Psaras, George Pavlou
Department of Electronic and Electrical Engineering, University College London, WC1E 6BT, Gower Street, London, UK
a r t i c l e i n f o

Article history:
Available online 29 January 2013

Keywords:
Information-centric networking
Caching
Betweenness centrality
a b s t r a c t

Ubiquitous in-network caching is one of the key aspects of information-centric networking (ICN) which
has received widespread research interest in recent years. In one of the key relevant proposals known as
Content-Centric Networking (CCN), the premise is that leveraging in-network caching to store content in
every node along the delivery path can enhance content delivery. We question such an indiscriminate
universal caching strategy and investigate whether caching less can actually achieve more. More specif-
ically, we study the problem of en route caching and investigate if caching in only a subset of nodes along
the delivery path can achieve better performance in terms of cache and server hit rates. We first study the
behavior of CCN’s ubiquitous caching and observe that even naïve random caching at a single intermedi-
ate node along the delivery path can achieve similar and, under certain conditions, even better caching
gain. Motivated by this, we propose a centrality-based caching algorithm by exploiting the concept of
(ego network) betweenness centrality to improve the caching gain and eliminate the uncertainty in
the performance of the simplistic random caching strategy. Our results suggest that our solution can con-
sistently achieve better gain across both synthetic and real network topologies that have different struc-
tural properties. We further find that the effectiveness of our solution is correlated to the precise
structure of the network topology whereby the scheme is effective in topologies that exhibit power
law betweenness distribution (as in Internet AS and WWW networks).

� 2013 Elsevier B.V. All rights reserved.
1. Introduction In ICN, content names are decoupled from host addresses, effec-
Information-centric networking (ICN) has recently attracted
significant attention, with various research initiatives (e.g., DONA
[1], CCN/NDN [2], PSIRP/PURSUIT [3,4] and COMET [5–7]) target-
ting this emerging research area. The main reasoning for advocat-
ing the departure from the current host-to-host communications
paradigm to an information/content-centric one is that the Inter-
net is currently mostly being used for content access and delivery,
with a high volume of digital content (e.g., movies, short videos,
photos etc.) delivered to users who are only interested in the actual
content itself rather than the hosting server location. While the
Internet was designed for and still focuses on host-to-host commu-
nication, ICN shifts the emphasis to content objects that can be ca-
ched and accessed from anywhere within the network rather than
from the end hosts only.
tively separating the role of identifier and locator in distinct con-
trast to current IP addresses which are serving both purposes.
Naming content directly enables the exploitation of in-network
caching in order to improve delivery of popular content. Each con-
tent object can now be uniquely identified and authenticated with-
out being associated to a specific host. This enables application-
independent caching of content pieces that can be re-used by other
end users requesting the same content. In fact, one of the salient
ICN features is in-network caching, with potentially every network
element (i.e., router) caching all content fragments1 that traverse it;
in this context, if a matching request is received while a fragment is
still in its cache store, it will be forwarded to the requester from that
network element, avoiding going all the way to the hosting server.
Out of the current ICN approaches, content-centric networking
(CCN) [2] advocates such indiscriminate content caching.

We argue that such an indiscriminate universal caching strategy
is unnecessarily costly and sub-optimal and attempt to study alter-
native in-network caching strategies for enhancing the overall con-
tent delivery performance so that network bandwidth consumption
is further reduced, server load is further alleviated and delays
he entire

o

http://dx.doi.org/10.1016/j.comcom.2013.01.007
mailto:w.chai@ucl.ac.uk
http://dx.doi.org/10.1016/j.comcom.2013.01.007
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

2 For readability, we omit ‘‘LRU’’ when labeling the caching schemes discussed.

W.K. Chai et al. / Computer Communications 36 (2013) 758–770 759
experienced by end users are further reduced. We address the cen-
tral question of whether caching only at a specific sub-set of nodes
en route the delivery path can achieve better gain. If yes, which are
these nodes that maximize caching gain and how can we identify
them?

In essence, if not adopting a universal caching strategy, ICN in-
network caching is an en route caching problem which we address
in this work. Content can only be cached along the routing paths
from content servers to requesting users without redirection, i.e.,
content is not rerouted to any nodes not directly involved in the
content delivery path. Besides the option of ubiquitous indiscrim-
inate caching as advocated by CCN, there are two main schools of
thought. The first advocates caching content at network edges (e.g.,
in the form of proxy caches) [8] while the second, in contrast, pre-
sents evidence that placing caches in the core backbone can obtain
better caching gain [9]. While it was shown in [10] that, in its gen-
eral formulation, this class of cache location problem is intractable,
we have shown in our previous work in [11] that the critical point
is to cache content closer to the users regardless of their relative
locations in the topology. Thus, we need to solve the problem of
finding caching locations along the content delivery paths that ex-
hibit the highest probability of getting cache hits while at the same
time diffusing content quickly enough to locations where the con-
tent will be popular in order to avoid flash crowd situations.

Our contributions in this study, which is a significant extension
of our initial work in [12], is fourfold. First, we contribute to the
understanding of ubiquitous caching in networked systems by pro-
viding insights into its behavior for specific topology types. Second,
we demonstrate that selective instead of ubiquitous caching can
achieve higher gain even when using simplistic random selection
schemes. Third, we propose a centrality-driven caching scheme
by exploiting the concept of (ego network) betweenness derived
from the area of complex/social network analysis, where only se-
lected nodes in the content delivery path cache the content. The
rationale behind such a selective caching strategy is that some
nodes have higher probability of getting a cache hit in comparison
to others and by strategically caching the content at ‘‘better’’
nodes, we can decrease the cache eviction rate and, therefore, in-
crease the overall cache hit rate. Fourth, we characterize our cen-
trality-driven scheme and find the graph invariant that
determines the effectiveness of the scheme. We found that the
scheme is sensitive to the betweenness distribution of the vertices
but not directly to the degree distribution.

In the next sections, we first review previous work on in-net-
work caching, starting from pre-ICN work until the most recent re-
search efforts. We then define the system of interest and lay-out
our arguments and rationale with a motivating example illustrat-
ing that caching less can achieve more. We then explain the design
and features of our centrality-based caching scheme that can con-
sistently outperform ubiquitous caching. We carry out a systematic
simulation study that explores the parameter space of the caching
systems, diverging from existing work in networked caches which
mostly considers topologies with highly regular structure (e.g.,
string and tree topologies [11,13,14]); in the latter, the content
source(s) are usually located at the root of the topology forcing a
sense of direction on content flows for tractable modeling and
approximation. We present results for both regular and non-
regular topologies, including k-ary trees and scale-free topologies
whose properties imitate closely the real Internet topology. Besides
synthetic topologies, we further verify the consistency of our find-
ings for a large-scale real Internet AS topology. In Section 6, we
delve deeper into the characteristics of our proposed scheme and
relate its effectiveness to the specific topology structure. We found
that the caching gain is correlated with the topology structure and
a power law betweenness distribution ensures a better perfor-
mance of our solution compared against ubiquitous caching. We fi-
nally discuss some simple variants of our approach and its practical
implications in the real world.
2. Related work

In the networking area, caching has been studied in different
forms. Initial studies focused on the performance of different cache
replacement policies in standalone caches [15,16]. This isolates the
effect of connected caching nodes (i.e., a network of caches). Cach-
ing has also been studied in the context of content distribution net-
works (CDNs) and in the World-Wide Web (web caching), in both
cases in a network overlay fashion with some forms of collabora-
tive (e.g., cooperative / selfish caching through game theory
[17,18]) or structured (e.g., hierarchical caching [19,20]) ap-
proaches being considered.

In ICN, caching takes place within the network (i.e., routers are
equipped with cache stores), requiring line-speed operation. In
fact, the idea of identifying suitable caches within the network
has been investigated prior to the emergence of ICN [21–23]. But
in ICN, complex algorithms involving multiple collaborating enti-
ties that require extensive information exchanges are simply not
feasible at line-speed.

One of the key ICN proposals, content-centric networking (CCN)
[2], defines its in-network caching strategy as follows:

� A router caches every content chunk that traverses it with
the assumption that routers are equipped with (large) cache
stores.

� A least recently used (LRU) cache eviction policy is used.

This ubiquitous caching strategy ensures a quick diffusion of con-
tent copies throughout the network. Hereafter, we refer to this
scheme as CCN and treat it as the benchmark for performance com-
parison. In addition to that, LRU is used as the cache eviction policy
in all the different caching schemes described in this paper.2

There are several recent studies on this CCN caching strategy. In
our previous work [11], we model it with a continuous time Mar-
kov-chain and assess the proportion of time a given piece of con-
tent is cached. [13] derives a closed form expression for average
content delivery time under the same caching scheme. This work
focuses on content popularity and investigates cache partitioning
in order to maximize the gain from in-network caching. On the
other hand, [24] proposes an algorithm to approximate the behav-
ior of a more general multi-cache setup under arbitrary topologies.

In [25], the authors perform a comprehensive simulation study
of CCN under various topologies, content popularity distributions,
catalog sizes and replacement policies. They conclude that content
popularity is by far the most important factor that affects the cache
hit performance. Authors in [26] investigate the impact of traffic
mix on the caching performance of a two-level cache hierarchy.
Web, file sharing, user generated content and video on demand
(VoD) have been identified as the four main types of content. They
conclude that caching performance increases if VoD content is ca-
ched towards the edge of the network (i.e., at the leaf cache of the
two-level cache hierarchy) in order to leave core with large caches
for other types of content.

Contradictory findings also appear in the literature. In [27], the
authors use topological information to size router caches propor-
tional to different centrality metrics and find that the gain achiev-
able with heterogeneous cache sizes is limited. Note that while we
also exploit the concept of centrality in this paper, it is for entirely
different purpose, i.e., we base the actual caching decision on the
node centrality while [27] uses it to determine the size of the

0 50 100 150 200
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

Time, t (s)

In
st

an
ta

ne
ou

s
H

op
 R

ed
uc

tio
n

R
at

io

CCN
Rdm

0 50 100 150 200
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Time, t(s)

In
st

an
ta

ne
ou

s
Se

rv
er

 H
it

R
ed

uc
tio

n
R

at
io

CCN
Rdm

Fig. 1. Simple random caching outperforming ubiquitous caching in the number of
hops to hit the content (top) and reduced server hits (bottom).

760 W.K. Chai et al. / Computer Communications 36 (2013) 758–770
cache. In contrast, [28] found that caches of up to 10,000 packets
have significant benefits with respect to both cache hit and path
length under a trace-driven simulation analysis based on BitTor-
rent traces emulating request patterns in real-world settings.

Besides studies on CCN, others have already started investigat-
ing algorithms that make more efficient use of caching resources.
In [29], the authors proposed to cache chunks of the most popular
content only. Popularity here is based on request count. As the re-
quest count increases, the algorithm increases (exponentially) the
number of chunks to cache from this content. Unlike our proposed
approach here, this algorithm ignores completely the topological
features of the network.

In our most recent work [30], we design a distributed caching
algorithm, which tracks the number of hops that a content travels
from source to destination. Based on this, we approximate the
caching capability of the path and decide probabilistically whether
to cache or not incoming content; therefore, decisions are based on
the router’s distance from the content’s destination. The algorithm
multiplexes flows in the available caching space based on their
path lengths to maximize caching gain.

Finally, [31] argues on the necessity of advertising cached con-
tent in the control plane. In particular, they argue that making dis-
tributed caching decisions in an uncooperative fashion will fail to
exploit the potential advantages in-network caching can bring.
However, the scalability and performance of their approach oper-
ating at line-speed is a serious question while the extra benefit
of the cooperation is yet to be assessed.

3. Model description

As a foundation, we first assume that the network has an ICN pub-
lish/subscribe framework in place (e.g., [1–7]). Specifically, we as-
sume that a content request and resolution mechanism is already
in place. As pointed out in [32], all the different ICN proposals in
the literature have invariably such common functions (although
typically using different primitives). Let G ¼ ðV ; EÞ be an undirected
network with V ¼ v1; . . . ;vN nodes and E ¼ e1; . . . ; eM links. We de-
note F ¼ f1; . . . ; fR the content population in the system and
S ¼ s1; . . . ; sP the set of content servers, each associated to a v 2 V .
The content population is randomly hosted in S and we assume that
each content object is hosted permanently in only one server.

Content requests are assumed to arrive in the network exoge-
nously and the content request arrival process for content unit
r;1 6 r 6 R, follows the Poisson process with mean rate,
k ¼

PR
r¼1kr , whereby kr is the rate of exogenous content request

for fr . A cache hit is recorded for a request finding a matching con-
tent along the content delivery path. Otherwise, a cache miss is re-
corded. In the event of a cache miss, the content request traverses
the full content delivery path to the content server. Following the
convention in the literature, we assume that content units are of
the same size and each cache slot in a cache store can accommo-
date one content unit at any given time. When a cache store is full,
the least recently used content will be discarded in the event of an
arrival of a new uncached content.

The objectives of this study are: (1) to examine the caching per-
formance of such a system under different caching schemes, (2) to
gain insights into the behavior of ubiquitous caching and (3) to de-
velop and understand more sophisticated caching algorithms for
achieving better gain.

4. Centrality-based in-network caching scheme

4.1. Design rationale

The ubiquitous indiscriminate caching scheme has already
raised doubts (e.g., [32]). In the general cache-related literature,
some authors have already questioned this aggressive cache-every-
thing-everywhere strategy [19,20,33]. The basic reasoning is that
since the caching capacity is usually much smaller than the overall
population of the items to be cached, it has the property of high
cache replacement error. We illustrate this property of ubiquitous
caching with a motivating example. We define a naïve random
caching strategy, Rdm, which simply caches randomly at only
one intermediate node along the delivery path per request, using
LRU cache eviction policy. We compare the two caching schemes
in a 7-node string topology where P ¼ 1; s1, is located at v1 (root)
while content requests originate exogenously from other nodes.
The detail simulation setup is described in Section 5.1. We observe,
in Fig. 1, that even random caching at just a single node along the
content delivery path can reduce both the number of hops required
to hit the content and the server hits in comparison to ubiquitous
caching (CCN). The reduction ratios are defined in Section 5.1.

Based on the above observations, we realize that caching indis-
criminately does not necessarily guarantee the highest cache hit
rate. Intuitively, this may be caused by the high cache replacement
rate on non-selective caching schemes such as CCN. By caching
indiscriminately, a content in a cache is more likely to be replaced
before it gets a hit. On the other hand, this result cannot be used as
conclusive evidence that caching less is better since the string
topology constrains to quite a large extent the diversity of the con-
tent delivery paths (i.e., all delivery paths are fully or partially over-
lapping), a fact that indirectly increases the probability of a cache

W.K. Chai et al. / Computer Communications 36 (2013) 758–770 761
hit. In Section 5, we study and discuss such phenomenon in detail
with the support of empirical results.

Following this line of argument, we design a novel caching
scheme with the following features in mind. First, the caching
scheme is able to cache at locations with high probability of getting
cache hits. For example, core nodes within a network may have
higher chances of getting a cache hit since they are connected to
many others while edge nodes are more sparsely connected. Sec-
ond, the caching scheme is able to spread content towards users
rapidly by exploiting topological features of the network. In [11],
we already showed that caching content closer to network edges
may yield higher gains. Since content exhibits localized popularity
[34], it is important for the caching scheme to be able to spread
content to the network region where it will be highly popular.
Third, the solution should be lightweight since in-network caching
operates at line-speed. Caching decisions requiring complex com-
putations or interactions with other entities would render the
scheme too slow.

4.2. Betweenness centrality caching scheme

Our solution is based on the concept of betweenness centrality
[35] which measures the number of times a specific node lies on
the content delivery paths between all pairs of nodes in a network
topology. There are various definitions of centrality in the litera-
ture (e.g., degree, closeness, eigenvector centrality etc.). However,
the betweenness centrality seems to find more natural use in com-
munication networks. In [36,37], which investigate load distribu-
tion in weighted complex networks, a quantity called load is
defined to measure the burden of vertices in the shortest path-
based transport processes. It is found that while the load is a dy-
namic quantity, it is closely related to the static quantity of
betweenness centrality and thus, betweenness centrality appears
to be a good measure of node importance [39].

In the context of in-network caching, the basic intuition is that
if a node lies along a high number of content delivery paths (i.e.,
having high betweenness centrality), then it is more likely to get
a cache hit. By caching only at those more ‘‘important’’ nodes along
the delivery paths, we reduce the cache replacement rate while
still caching content where a cache hit is most likely to happen.

Let’s consider the topology in Fig. 2. At time t ¼ 0, all cache
stores are empty and client A requests a content from s1. The con-
tent is being routed via v1 ! v2 ! v3 ! v4 from s1 to client A.
With CCN, all four nodes will retain a copy of the content while un-
der Rdm, only one of them will cache the content. Let’s assume now
that client B requests the same content. For CCN, the request is sat-
isfied by v3 but the cached copies at v1;v2 and v4 are redundant.
On the other hand, under Rdm, there is 1

4 chance to get a cache miss
(i.e., content cached at v4) and 1

2 chance that the hop count reduc-
tion is worse than CCN (i.e., the copy is cached at either v1 or v2).
However, with a bird’s eye view, it is clear that caching the content
only at v3 is sufficient to achieve the best gain without caching
redundancy at other nodes. This can be verified by using the
betweenness centrality, whereby v3 has the highest centrality va-
lue with most content delivery paths passes through it (i.e., 9
paths).
Fig. 2. A topology with optimal caching location at v3.
We now present our algorithm which we will call Betw hereaf-
ter. We assume that the betweenness centrality of each node is
pre-computed offline (e.g., by the central network management
system) as follows.

betweenness centrality; CBðvÞ ¼
X

i–v–j2V

ri;jðvÞ
ri;j

ð1Þ

where ri;j is the number of content delivery paths from i to j and
ri;jðvÞ is the number of content delivery paths from i to j that pass
through node v. Without loss of generality, we use the shortest path
as the content delivery path in this paper. More sophisticated con-
tent delivery path computation (e.g., [38]) can also be used.

Betw operates at per request level whereby the selected caching
node may differ from one delivery path to another. Hence, there is
no fixed pre-configured caching node in the network (e.g., solutions
to k-median problems). Specifically, when a content client initiates
a content delivery, the request message (e.g., Find in [1], Interest
in [2], Consume in [7]) records the highest centrality value among
all the intermediate nodes it traverses. This value is copied onto
the content messages during the data transmission at the server.
The same applies to the router where the request message found
the content before reaching the server (i.e., a cache hit). On the
way to the requesting user, each router matches its own CB against
the attached one and the content is cached only if the two values
match. If more nodes have the same highest centrality value, all
of them will cache the content. Note that our solution is highly
lightweight as each node makes its caching decision indepen-
dently, solely based on its own CB, neither requiring information
exchange with other nodes nor inference of server location or of
traffic patterns, as it is the case with collaborative or cooperative
caching schemes. In this case, the CB value is pre-computed offline
and configured to every router by the network management
system. The pseudo-code for forwarding both the request and the
actual content is shown on Table 1.

A desired property of this scheme is that a content will be pulled
to the region where it is popular (i.e., frequently requested).
Although for a fixed network topology, the betweenness value of
each node remains static, the caching of content does not necessar-
ily concentrate at several nodes that have very high centrality val-
ues (e.g., in core routers). This is because our scheme ensures the
spreading of content towards the origin of content requests. For
example, a content delivery path routes content along
v1 ! v2 ! v3 ! v4 with CBðv1Þ > CBðv2Þ > CBðv3Þ > CBðv4Þ. The
first request from v4 will have its content cached at v1 since v1

has the highest CB along the path. Assuming that the content is
not evicted from v1, the second request from v4 will have the con-
tent cached at v2 as it will hit the requested content at v1 and the
highest CB recorded in the request message will be CBðv2Þ (i.e., the
highest CB from the remaining section of the delivery path). Fol-
lowing a similar procedure, the third request will be cached at v3

and thus, if the content is repetitiously requested from one edge,
then a copy of this content will be cached closer to the clients.
Thus, content copies always move towards the last content con-
sumer and if a content is popular at a specific topology region, it
will eventually be cached in that region.

4.3. Distributed centrality computation via approximation

We now sketch a distributed implementation for Betw where
the full network topology may not be readily available because
of an infrastructure-less network with relatively dynamic topology
(e.g., self-organizing, ad hoc and mobile networks). Since in this
case it is not practical for dynamic nodes to efficiently obtain the
knowledge of delivery paths between all pairs of nodes in the net-
work, we envision that the nodes themselves can compute an

Table 1
Pseudo-code for both content request and data.

Content request

1.Initialize (CB=0)

2.foreach (vn from i to j)
3. if data in cache

4. then send (data)

5. else
6. Get CBðvnÞ
7. if CBðvnÞ > CB

8. then CB ¼ CBðvnÞ
9. forward request to the next hop towards j

Content data

1.Record CB from corresponding content request

2.foreach (vn from j to i)
3. Get CBðvnÞ
4. if CBðvnÞ ¼¼ CB

5. then cache (data)

6.forward data packet to the next hop towards i

762 W.K. Chai et al. / Computer Communications 36 (2013) 758–770
approximation of their CB. This approximation is based on the ego
network betweenness concept [40]. The ego network consists of a
node together with all of its immediate neighbors and all the links
among those nodes. The idea is for each node, v to compute its
CBðvÞ based on its ego network rather than the entire network
topology. From [40], if A is the N � N symmetric adjacency matrix
of G, with Ai;j ¼ 1 if there exists a link between i and j and 0 other-
wise, then A2½1� A�i;j, where 1 is a matrix of 1’s, gives the number
of 2-hop paths joining i and j. The ego betweenness is then the sum
of the reciprocal of the entries.

From an implementation point of view, the construction of the
ego network for each node can be done by simply requiring each
node to broadcast the list of its one-hop neighbors with message
Time-To-Live = 1 when it first joins the network and whenever
there are changes to its one-hop neighbor set. The overhead is thus
limited as the message propagation is limited to one hop only. If di

is the number of neighbors node i has, then the extra messages to
construct the ego network for all the nodes in a topology is equiv-
alent to

PN
i¼1di. In the case of a dynamic topology (e.g., ad hoc net-

works), each change will incur an additional overhead, amounting
to two times the ‘‘moving’’ node’s new degree (since each neighbor
has to respond to this newly arrived node).

The ego network can then be built by adding links that connect
to itself or its own neighbors based on the received neighbor lists
and ignoring the entries to nodes not directly connected to itself.
The ego network betweenness is simply the

P
ri;jðvÞ=ri;j of v’s

ego network. The rest of the caching operations remain unchanged,
i.e., as described in the previous section.

Although the ego network betweenness only reflects the
importance of a node within its ego network, it has been found
that it is highly correlated with its betweenness centrality coun-
terpart in real-world Internet service provider (ISP) topologies
[41]. Coupled with its low computation complexity (reduced from
OðNMÞ3 to Oðd2

maxÞ where d2
max is the highest node degree in the net-

work), it presents itself as a good alternative for large / dynamic net-
works. This caching algorithm using ego network betweenness
centrality along with the LRU cache eviction policy is referred to
as EgoBetw hereafter. Referring back to Fig. 2, the outcome of Betw
and EgoBetw is the same since v3 remains the node having the high-
est centrality value.
3 Based on the best known betweenness computation algorithm in U. Brandes, ‘‘A
faster algorithm for betweenness centrality’’, Journal of Mathematical Sociology
25(2):163–177.
5. Performance evaluation

5.1. Performance metrics and evaluation methodology

We use a custom-built simulator for the study of the dynamics
of content caching in order to evaluate our proposal. All nodes in
the simulator are cache-enabled and we perform the experiments
based on the specifications described above for the different cach-
ing schemes.

Caching in networks aims to: (1) lower the content delivery la-
tency whereby a cached content near the client can be fetched fas-
ter than from the server, (2) reduce traffic and congestion since
content traverses fewer links when there is a cache hit and (3) alle-
viate server load as every cache hit means serving one less request.
We use the hop reduction ratio, b as the metric to assess the effect of
the different caching schemes on (1) and (2) above while we use
the server hit reduction ratio, c on (3).

Hop Reduction Ratio; bðtÞ ¼
PR

r¼1hrðtÞPR
r¼1HrðtÞ

ð2Þ

where HrðtÞ is the path length (in hop count) from client(s) to ser-
ver(s) requesting fr from time t � 1 to t and hrðtÞ is the hop count
from the content client to the first node where a cache hit occurs
for fr from t � 1 to t. If no matching cache is found along the path
to the server, then hr ¼ Hr . In other words, the hop reduction ratio
counts the percentage of the path length to the server used to hit
the content given caching in intermediate nodes. In a non-caching
system, b ¼ 1:0.

Server Hit Reduction Ratio; cðtÞ ¼
PR

r¼1wrðtÞPR
r¼1WrðtÞ

ð3Þ

where WrðtÞ is the number of requests for fr from t � 1 to t and wrðtÞ
is the number of server hits for fr from time t � 1 to t. Note that high
hop reduction does not directly translate to high server hit
reduction.

We seek to draw insights from the inspection of network topol-
ogies with very different structural properties – (1) k-ary trees
which have almost strict regular structure (i.e., all nodes besides
the root and leaves have the same kþ 1 degree) and (2) scale-free
topologies following the Barabasi–Albert (B-A) power law model
[42] which accounts for the preferential attachment property of
the Internet topology and results in graphs with highly skewed de-
gree distribution. It is interesting to note that the betweenness dis-
tribution of B-A graphs also follows the power law model [39].

Content requests for different content are generated based on
Zipf-distribution with

PR
r¼1ð C

raÞ ¼ 1 where the probability for a re-
quest for the rth popular content is C=ra with a being the popular-
ity factor. We use a ¼ 1:0 and requests originate randomly from all
nodes.4 Each simulation run begins with all cache stores being
empty (i.e., cold start). The content population is randomly distrib-
uted in the network with each content object being hosted persis-
tently in one server. Unless otherwise specified, the simulations are
run with the following parameters: total simulation time = 200 s, k
= 5000 request/s, R = 1000 and uniform cache store size = 100
content.

5.2. k-ary tree topologies

5.2.1. Instantaneous behavior
A k-ary tree is defined via two parameters, namely k, the spread

factor, denoting the number of children each node has and D is the
4 From our results, we note that the order of performance amongst the caching
hemes remains unchanged for 0:6 6 a 6 1:5. So, the results presented here are valid
r these values of a.
sc
fo

W.K. Chai et al. / Computer Communications 36 (2013) 758–770 763
depth of the tree from root. We show in Fig. 3 the instantaneous
behavior of the different caching schemes for both b and c in a
5-level binary tree (k ¼ 2;D ¼ 4). All caching schemes reach a sta-
tionary performance after a few seconds. We point out that since
all simulations go through a warm-up phase, CCN always reaches
the stable performance level first. This is due to its ‘‘always cache’’
policy.

We observe that both Betw and Rdm perform better than CCN
for both metrics. Tracking the evolution of the cache stores over
time revealed that this is due to the high cache replacement rate
in CCN. Replacing cached content rapidly causes content often
being evicted before the next matching request is received. The ef-
fect is magnified considering that the whole chain of caches on
the delivery path is affected. This is the fundamental basis on
why the counter-intuitive ‘‘less for more’’ caching scheme pro-
posed here can be true. We further observe that the argument
that caching selectively may increase cache miss is untrue in k-
ary trees. We do find that there are more cache misses if the cach-
ing node is randomly selected rather than caching at nodes with
high betweenness. Finally, an interesting observation is that in-
stead of approximating the performance of the Betw scheme as
it was meant to be, EgoBetw actually performs at the same level
as CCN. This is due to the regularity of the topology whereby
nodes between the root and the leaves have the same ego net-
work and thus, have the same CB. Since the algorithm specifies
that all nodes with equal highest CB along the delivery path
0 50 100 150 200
0.38

0.4

0.42

0.44

0.46

0.48

0.5

Time, t(s)

In
st

an
ta

ne
ou

s
H

op
 R

ed
uc

tio
n

R
at

io
,

β(
t)

CCN Betw EgoBetw Rdm

0 50 100 150 200
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Time, t(s)

In
st

an
ta

ne
ou

s
S

er
ve

r
H

it
R

ed
uc

tio
n

R
at

io
,

γ(
t)

CCN Betw EgoBetw Rdm

Fig. 3. Instantaneous behavior of the caching schemes for a binary tree; (top) b,
(bottom) c.
should cache, in this case EgoBetw is simply reduced to a similar
behavior with CCN.

5.2.2. Effect of topology features on performance
In k-ary trees, D affects the expected path lengths and k impacts

the path diversity. We now study the validity of the previous
observations in different configurations of k-ary trees by obtaining
the b at 95% confidence interval for a range of depths and spread
factors. Our results in Fig. 4 suggest that the caching schemes ex-
hibit consistent behavior for different k-ary trees.

We find that while the performance distance between CCN and
Betw remains approximately constant, Rdm does not exhibit such
consistency. In general, Rdm always has the highest variance due
to the randomness implicit to the algorithm. Rdm performs
increasingly better in terms of hops saved when D is increased
and k is decreased. This is due to the fact that each node has equal
probability to cache content and in effect, distributes cache
replacement operation uniformly across different nodes. In turn,
this results in content being cached longer when compared to
CCN. It increases the cache hit probability especially in topologies
with very low number of content delivery paths. This, however,
is counter-balanced by the increased number of branches in the
topology, whereby a greater number of cache misses will occur.
Our Betw scheme does not suffer from such a drawback since the
caching node always has the highest probability of getting a cache
hit and thus maintains stable cache hit (reducing server hits) and
network resource gain (reducing the content delivery hop count).
4 5 6
0.35

0.4

0.45

0.5

0.55

Binary tree depth, D

H
op

 R
ed

uc
tio

n
R

at
io

,
β

CCN
Betw
EgoBetw
Rdm

2 3 4 5
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Spread factor, k

H
op

 R
ed

uc
tio

n
R

at
io

, β

CCN
Betw
EgoBetw
Rdm

Fig. 4. Betw consistently outperforms the rest over different D (top) and k (bottom).

764 W.K. Chai et al. / Computer Communications 36 (2013) 758–770
5.3. Scale-free topologies

5.3.1. Instantaneous behavior
Although regular graphs lend themselves to tractability in mod-

eling, real-world Internet topologies are not regular but follow a
power law degree distribution [42]. As such, we consider scale-free
topologies following the construction method described in [42]
(referred to as B-A graphs hereafter). We show in Fig. 5 the perfor-
mance of the different caching schemes in a B-A graph with
N = 100 over time. First and foremost, we see that the performance
of both our centrality-based caching schemes (Betw and EgoBetw)
perform better than CCN for both metrics and EgoBetw now
approximates closely Betw. This is because, without the regular
structure, the ego networks of the nodes within the B-A graphs re-
flect correctly their actual betweenness. This result, thus, suggests
that the more scalable and distributed EgoBetw algorithm can be
used for irregular graphs.

Second, we observe that Rdm no longer outperforms CCN. In
fact, it performs at the same level as CCN with respect to hop
reduction and due to the highly skewed degree distribution in
the topology, it fails to alleviate load from the server (i.e., it has
the highest number of cache misses).
0.54

0.56

5.3.2. Effect of topology features on performance

Unlike k-ary trees which are fully described via the tuple ðk;DÞ,
each generation of a B-A graph with the same parameters results in
0 50 100 150 200
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Time, t(s)

In
st

an
ta

ne
ou

s
H

op
 R

ed
uc

tio
n

R
at

io
,

β(
t)

CCN
Betw
EgoBetw
Rdm

0 50 100 150 200
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Time, t(s)

In
st

an
ta

ne
ou

s
Se

rv
er

 H
it

R
ed

uc
tio

n
R

at
io

,
γ(

t)

CCN
Betw
EgoBetw
Rdm

Fig. 5. Instantaneous behavior of the caching schemes for a B-A graph; (top) b,
(bottom) c.
a different topology since the links are created based on a probabil-
ity proportional to the attractiveness of existing nodes (i.e., prefer-
ential attachment). We evaluate the caching schemes over 50 B-A
graphs with N = 100 and mean degree = 2. From Fig. 6, both cen-
trality-based caching schemes always perform better than the rest.
The mean b achieved for CCN, Betw, EgoBetw and Rdm are 0.47581,
0.44583, 0.44845 and 0.47891 respectively. The variances obtained
are 2:86357� 10�4 (CCN), 4:91978� 10�4 (Betw), 4:83752� 10�4

(EgoBetw) and 8:83494� 10�4 (Rdm). As expected, Rdm has the
highest variance. Rdm is worse than CCN in many cases, even with
the topology having the same properties. This is due to the skewed
node degree distribution of the graph that increases the probability
of the scheme caching at nodes having low cache hit probability.
Fig. 7 shows how ego network betweenness approximates
betweenness in a B-A graph.

From Fig. 8 (top), we observe again that centrality-based cach-
ing schemes provide the best hop reduction ratio while Rdm exhib-
its inconsistent gain across B-A graphs with different sizes. We
observe that as the size of the topology increases, Rdm gradually
performs worse than CCN. The power-law distribution of between-
ness in B-A graphs plays a vital role in this phenomenon as it re-
sults in high number of nodes having low probability of getting a
cache hit. Since Rdm does not differentiate the centrality of the
0 10 20 30 40 50
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Graph ID

H
op

 R
ed

uc
tio

n
R

at
io

,
β

CCN
Betw
EgoBetw
Rdm

Fig. 6. Performance with different B-A graphs (N ¼ 100).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Be
tw

ee
nn

es
s

0 20 40 60 80 100
0

5

10

15

20

25

30

35
Eg

o
N

et
w

or
k

Be
tw

ee
nn

es
s

Node ID

Betw
EgoBetw

Fig. 7. A sample ego network betweenness and betweenness values of the nodes in
a B-A graph.

0 50 100 150 200 250 300 350 400 450
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

B−A topology size, n

H
op

 R
ed

uc
tio

n
R

at
io

,
β

CCN
Betw
EgoBetw
Rdm

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.38

0.4

0.42

0.44

0.46

0.48

Request arrival rate, λ (request/s)

H
op

 R
ed

uc
tio

n
R

at
io

,
β

CCN
Betw
EgoBetw
Rdm

Fig. 8. Hop reduction ratio for different B-A graph sizes (top) and request rates, k
(bottom).

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

Time, t (s)

In
st

an
ta

ne
ou

s
H

op
 R

ed
uc

tio
n

R
at

io
,

β(
t)

CCN
Betw
EgoBetw
Rdm

0 20 40 60 80 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time, t (s)

In
st

an
ta

ne
ou

s
Se

rv
er

 H
it

R
ed

uc
tio

n
R

at
io

, γ
(t)

CCN
Betw
EgoBetw
Rdm

Fig. 9. Instantaneous behavior of the caching schemes in a large-scale real Internet
topology; (top) b, (bottom) c.

W.K. Chai et al. / Computer Communications 36 (2013) 758–770 765
nodes, there is higher probability of Rdm caching at these ‘‘unim-
portant’’ nodes. Note that this observation is untrue for k-ary trees
(the case when D is increased) due to the high number of overlap-
ping shortest paths (an obvious example being the string
topology).

From Fig. 8 (bottom), we see that different request intensities
do not affect the order of performance amongst the caching
schemes. This is due to the fact that all caching schemes converge
to a stable performance level (cf., Figs. 1, 3 and 5).

In Table 2, we provide representative results of the different
caching schemes across the different topologies in terms of num-
ber of hops and server hits saved. It is clear that Betw reliably
achieves better gains (both in terms of hop and server hit reduc-
tion) in comparison to CCN. For instance, it reduces server hits over
30% and hop count over 17% in comparison to CCN in the string
topology.
Table 2
Sample performance achieved after 200s in different types of topology.

Caching scheme String (D = 10, k = 1) k-ary
P

h
P

w
P

h

CCN 2,683,945 498,603 2,684
Betw 2,211,248 337,362 2,331
EgoBetw 2,680,614 497,146 2,698
Rdm 2,206,002 377,289 2,386
5.4. Real AS-level topologies

To further verify our findings, we proceed to assess the caching
performance of the different caching schemes in a real-world Inter-
net topology. We focus on a large domain-level topology, extract-
ing a sub-topology from the CAIDA dataset [43]. The topology is
rooted at a tier-1 ISP (AS7018) and contains 6,804 domains and
10,205 links. We do not aggregate stub domains while sibling do-
mains/ links are not considered. In a similar manner to the previ-
ous simulation setup, all content servers and clients are
randomly distributed across the topology. Fig. 9 shows both the
hop reduction and server hit reduction ratios achieved in this
setup.

The results show that the different caching schemes behave in a
similar fashion to the B-A graphs but not to k-ary trees, reinforcing
Tree (D = 4, k = 2) B-A (N = 100)
P

w
P

h
P

w

,325 299,657 2,137,015 211,852
,061 203,673 2,045,852 204,479
,153 301,797 2,074,089 207,628
,569 277,575 2,195,303 291,560

Table 3
The mean and variance of the performance achieved after the initial transient phase in different types of topology.

Metric Caching scheme k-ary Tree (D = 4, k = 2) B-A (N = 100) Real Internet (N = 6804)

Mean Variance Mean Variance Mean Variance

b CCN 0.46346 4:24717� 10�5 0.42315 3:01174� 10�5 0.56849 3:31567� 10�5

Betw 0.40216 2:78626� 10�5 0.39235 2:58357� 10�5 0.51832 3:55136� 10�5

EgoBetw 0.46580 4:64435� 10�5 0.39390 2:5936� 10�5 0.51605 2:81248� 10�5

Rdm 0.41187 2:044� 10�5 0.41981 2:59586� 10�5 0.55843 1:90826� 10�5

c CCN 0.29924 4:36482� 10�5 0.21869 3:2002� 10�5 0.35137 4:67507� 10�5

Betw 0.20298 2:89143� 10�5 0.19390 3:24316� 10�5 0.19005 1:20289� 10�4

EgoBetw 0.30121 4:64179� 10�5 0.19877 3:02138� 10�5 0.18697 1:14169� 10�4

Rdm 0.27729 3:00353� 10�5 0.26913 5:30707� 10�5 0.33394 1:28169� 10�4

0 50 100 150 200
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Time, t (s)

N
um

be
r o

f C
ac

hi
ng

 O
pe

ra
tio

ns

CCN Betw EgoBetw Rdm

0 50 100 150 200
2000

3000

4000

5000

6000

7000

8000

9000

Time, t (s)

N
um

be
r o

f C
ac

hi
ng

 O
pe

ra
tio

ns

CCN
Betw
EgoBetw
Rdm

Fig. 10. Number of caching operations for the different caching schemes; (top) k-
ary tree, (bottom) B-A graph.

766 W.K. Chai et al. / Computer Communications 36 (2013) 758–770
the notion that B-A graphs reflect better real network topologies.
These results further confirm the validity of our centrality-based
caching scheme even in large-scale real network topologies. We
provide in Table 3 the mean and variance of b and c at stable oper-
ation phase (i.e., after the initial transient phase).

5.5. Caching operation overhead

From the above, we have shown the consistent gain of (Ego)
Betw in terms of cache hit and server hit. In this section, we provide
an illustration on how much less caching is done to achieve this
gain. We measure the number of caching operations (i.e., the actual
process of storing and evicting content in the nodes). Fig. 10 shows
the recorded number of caching operations for the different cach-
ing schemes in a k-ary tree with k ¼ 2 and D ¼ 5 and a B-A graph
with N ¼ 100.

CCN always has the highest number of caching operations com-
pared to the others since it caches non-selectively in every node
along the delivery path. Also, it is apparent that the caching oper-
ation of CCN is highly dependent on the length of the content deliv-
ery paths. We tracked the path length of each content request
between the content server and user and found that the average
path lengths are 5.78 hops and 2.87 hops for the binary tree and
B-A graph respectively. Note that the B-A graph has smaller aver-
age path length, albeit having a higher number of nodes. This is
due to the existent of highly connected hubs (i.e., small-world ef-
fect) in B-A graphs.

Betw, however, caches approximately 69% and 64% less than
what CCN needed in a k-ary tree and B-A graph respectively. Ego-
Betw exhibits similar behavior a in B-A graph but not in k-ary tree.
The reason for this is simply because all the nodes that are not root
or leaf nodes have the same CB values and thus, will all cache.
6. Characterization of Betw

In this section, we find the graph invariant that controls the
effectiveness of our Betw caching scheme. We have, so far, loosely
used the terms ‘‘regular’’ and ‘‘non-regular’’ for describing the
topologies used in our studies. However, none of the graphs we
considered is strictly regular. Thus, we require a more formal prop-
erty to characterize the use of betweenness in the caching scheme.
En route caching schemes are sensitive to the detail of the network
structure and thus, a specific index describing the topology as a
whole (e.g., graph diameter, spectral radius etc.) cannot predict
their effectiveness. Our investigation has revealed that instead of
the more commonly used degree distribution (e.g., used in the clas-
sification of network types [44,45]), our Betw caching scheme is
dependent on the betweenness distribution. In the remainder of
this section, we show that (1) our Betw scheme will better the per-
formance of CCN as long as the betweenness distribution follows a
power law, PB � k�c and (2) the degree distribution of the topology
does not directly affect the performance.

For the overlay network of the union of all shortest paths, [39]
has analytically found that the betweenness distribution follows
an inverse power law for k-ary trees and inverse square power
law for scale-free trees. Meanwhile, [37,46] have empirically veri-
fied that the betweenness distribution for scale-free graphs and
Internet AS networks follow power law. We show the pdf, cdf
and rank (i.e., log–log plot of sorted values) of betweenness and
ego network betweenness distributions for a sample 5-ary tree
and 100-node B-A graph used in our study in Figs. 11 and 12

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
pdf

0 1

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
cdf

0 5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
rank

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
pdf

0 5 10 15

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
cdf

0 5 10
2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8
rank

Fig. 11. 5-ary tree; (top) Betweenness, (bottom) Ego network betweenness.

0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

pdf

0 0.5 1
0.7

0.75

0.8

0.85

0.9

0.95

1
cdf

0 5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
rank

0 100 200

0.1

0.2

0.3

0.4

0.5

0.6

pdf

0 100 200
0.7

0.75

0.8

0.85

0.9

0.95

1
cdf

0 5
0

1

2

3

4

5

6
rank

Fig. 12. B-A graph; (top) Betweenness, (bottom) Ego network betweenness.

W.K. Chai et al. / Computer Communications 36 (2013) 758–770 767
respectively and observe agreement on the power law property of
the graphs with previous findings.

In addition to that, rank plots also graphically explain the rea-
son on the ineffectiveness of EgoBetw scheme in k-ary trees. While
there are D levels of betweenness values, the ego network
betweenness values are always only two (root and leaf nodes con-
stitute one level while the rest of the nodes form the other). As
such, regardless of D and k of the tree, the EgoBetw scheme will al-
ways approximate CCN in a k-ary topology.

We leverage the simplicity and tractability properties of the
Erd}os-Rényi (ER) graph model to test the effectiveness of our Betw
caching scheme relative to the baseline CCN approach under differ-
ent betweenness distributions. In the ER model, for a given number
of nodes, a link randomly connects a pair of nodes with probability
pr independent of all other links. In our experiment, we construct a
set of ER graphs with N = 100 nodes and pr = 0.05. The value of pr is
specifically chosen to be above the sharp threshold for connected-
ness (i.e., pr > pc

r ¼ lnðNÞ=N) to ensure fully connected graphs while
at the same time sufficiently small (link density = L

N
2ð Þ ¼ pr where L

is the number of links) to avoid a highly meshed topology; this is
because caching is of little significance in such cases because most
nodes can reach each other directly without intermediate nodes.
For instance, in the extreme case of a fully meshed topology, cach-
ing is redundant as it will provide no gain but instead will incur
cost (e.g., DRAM).

Next, we evaluate both Betw and CCN schemes for these ER
graphs with edge disorder (weighted network scenario) where
non-uniform link weights are applied to the links independent of
the degrees of the vertices involved. By using the same set of
graphs, we fix the degree distribution for each one while by vary-
ing the disorder regime (through altering the link weight distribu-
tion), we obtain different betweenness distributions for the same
graph.

Specifically, we consider non-negative independent and identi-
cally distributed (i.i.d) link weights in an additive setup to create
different betweenness distributions in the same graph by control-
ling the disorder of the graph. For this purpose, we follow [47]
(Chapter 16) to use the polynomial link weight distribution

FwðxÞ ¼ xa1x2½0;1� þ 1x2ð1;1Þ; a > 0 ð4Þ

where 1x equals one if x is true and zero otherwise. When a! 0, the
content delivery paths are mainly determined by the highest link
weight of the constituent links. This corresponds to a strong disor-
der limit. In this disorder regime, each path between two nodes is
characterized by the maximum link weight along that path and
the shortest path is simply the path with the minimal maximum
link weight between the two nodes. To create a weak disorder limit,
we simply revert to constant link weights (i.e., non-weighted net-
works). In a weakly disordered system, most, if not all, of the links
in a path contribute to the determination of the shortest path be-
tween two nodes.

Essentially, changing the link weight distribution results in a
different set of shortest paths for the graph and thus a different

0 50 100 150 200
0.5

0.52

0.54

0.56

0.58

0.6

0.62

Time, t (s)

H
op

 R
ed

uc
tio

n
R

at
io

, β

CCN
Betw

0 50 100 150 200

0.65

0.7

0.75

0.8

0.85

0.9

Time, t (s)

H
op

 R
ed

uc
tio

n
R

at
io

, β

CCN
Betw

Fig. 13. b for both weak disorder (top) and strong disorder (bottom) limits.

768 W.K. Chai et al. / Computer Communications 36 (2013) 758–770
disorder limit is achieved. The aim of creating the strong/weak dis-
order is to obtain different betweenness distributions for the same
graph so that we can test the effectiveness of Betw independently
of the degree distribution. Note that the betweenness of a node is
directly related to the paths involving that node. The relationship
between link weights and betweenness is outside the scope of this
paper. Readers can find related discussions in [39,46]. The hop
reduction ratio obtained for both disorder regimes are shown in
Fig. 13.

It has been known that ER networks exhibit exponentially
decaying betweenness distribution in the weak disorder limit
and power law betweenness distribution in the strong disorder
limit [37]. From the results, we found that Betw performs on a sim-
ilar level to CCN when the betweenness distribution does not fol-
low a power law (weak disorder limit) but performs better than
the CCN when the betweenness distribution follows a power law
(strong disorder limit). This result is consistent with the whole
set of ER graphs we generated. Coupled with the evidence provided
in Section 5, we conclude that the power law betweenness distri-
bution ensures the effectiveness of Betw.

Furthermore, because of the fact that the different perfor-
mances are obtained in the same ER graph, we also conclude that
the degree distribution does not directly determine the effective-
ness of our Betw scheme. This further implies that the caching per-
formance is influenced by the delivery paths rather than the degree
of the nodes involved in the delivery paths.
7. Discussions

7.1. Variants

In this section, we discuss two simple variants to our Betw
scheme which intuitively at first glance may be able to enhance
further the performance of Betw. However, as we have shown
throughout this paper, in terms of caching in ICN, the caching gain
does not increase with the number of times a content is cached
along the delivery path.

First, instead of only the node with the highest centrality, we
can consider to relax it so that more than one top ranked nodes
cache the content (e.g., the two nodes having the highest CB values
cache the content). The implication to the caching operation is that
both the request and the content packets have to record and carry
more CB values and thus incur higher overhead (more control
information).

A second variant to this is the use of a threshold. Any node hav-
ing its CB greater than the threshold caches the content it forwards.
In this case, if a delivery path involves many highly central nodes,
then the content will be cached more times. However, the tuning of
the threshold is not straightforward, especially when multiple do-
mains are involved. In fact, agreement will have to be reached be-
tween different domains.

In both variants, the resulting effect is simply an increment to
the number of nodes a content is cached per request. As we have
shown in our results, counter-intuitively, caching more does not
necessarily translate to better gain. In fact, if we extrapolate to
the extreme case where the number of times a content is cached
per delivery is equal to or higher than the diameter of the topology,
the performance of both variants will be simply reduced to the
same performance as CCN which is worse than Betw.
7.2. Business model implications

Realising ICN and its corresponding caching paradigm in the
real world will involve some fundamental changes to today’s busi-
ness model [48]. Currently, content storage in a domain is mainly
managed by CDN companies, leaving ISPs to passively transfer bits
from one point to the other. ISPs have no control or power over
what is stored/cached within their own domain. In-network cach-
ing inherently changes the current state of affairs, providing ISPs
with the advantage of managing what is to be cached in their
own network. This might call for a change in the business relation-
ships between content providers, CDN operators and ISPs.
Although this is the case with any in-network caching approach,
here we discuss associated aspects that will potentially affect busi-
ness relationships among Internet players when implementing the
proposed centrality-based approach to in-network caching.

The proposed centrality-based caching scheme can be imple-
mented to indiscriminately support all content that traverse a do-
main, or could be implemented for selected content only. In the
former case, we do not expect that business relationships between
Internet players will be altered. In the latter case, decisions could
be based on the ISP’s own view of which content are or expected
to become popular. In a similar fashion to the first case, where ISPs
cache indiscriminately all content, business relationships between
the ISP and respective content providers stay intact.

The rules, however, may have to change if the ISP’s decisions on
what to cache are based on agreements between the ISPs and con-
tent providers. That is, if content providers request (and pay for)
caching of specific content within a domain, then this content
would have to be explicitly tagged and given priority at the highest
centrality node. In turn, this could trigger a chain of changes with
respect to the contracts between the content provider and the CDN

W.K. Chai et al. / Computer Communications 36 (2013) 758–770 769
operator. For example, to maintain its revenue, the content pro-
vider would seek to reduce the amount of money it is paying to
the CDN operator. We expect that this will be the case for any pro-
posed in-network caching scheme; we also expect that the billing
schemes will be mainly based on the performance of the caching
scheme in question.

However, the exact benefits for each Internet market player, as
well as the detailed rules that would regulate this market are a
subject of a different study. We note that in-network caching and
ICN in general calls for a significant re-examination of the current
Internet business models.
7.3. Misbehaving nodes

Since both the proposed centrality-based caching schemes are
dependent on the CB values, concerns may be raised regarding
the consequences if these values are tinkered. First of all, we note
that such a situation should not happen for a network under the
administration of a single operator since all the routers are owned
and controlled by the same owner. A compromised node should be
easily detected. However, infrastructureless wireless networks
may be more susceptible to such misbehavior.

Two misbehavior possibilities are foreseen:

� Low CB – a node may artificially advertise a very low value of CB

(e.g., 0.0) to avoid caching any content. In this case, this misbe-
having node will simply be seen as a non-participating node in
the network. It will enjoy the benefit of in-network caching pro-
vided by others but not contribute to the enhancement of the
content delivery (parasitic behavior). However, such nodes do
not affect the overall performance of the centrality-based cach-
ing schemes. In fact, we expect some non-conforming nodes to
exist in the network (especially during the early deployment
phase of ICN).
� High CB – a node may artificially advertise a very high value of

CB. In this case, this misbehaving node will be selected to cache
all the content that traverses it. If this misbehaving node does
not cache the content, then it nullifies the caching gain of all
the content delivery paths that involve the said node. Paths that
do not include this node will not be affected. Also, the actual
content delivery will still operate as normal.

For Betw, a misbehaving node can easily be detected since the
CB values are centrally computed. For EgoBetw, a possible way to
detect such a node is to have the neighboring node(s) cross-check
with the target’s node’s neighbor(s) since each node has to broad-
cast its list of immediate neighbors during the CB computation
phase. If no response / acknowledgment is received from the
neighbors, then it is clear that the node is attempting to inflate
its CB by advertising non-existent neighbors. The detailed security
mechanism and its implications (e.g., signalling overhead for
detecting the malicious nodes) is outside the scope of this paper
and will be explored in our future work.
8. Summary and conclusions

We argue against the necessity of an indiscriminate in-path
caching strategy in ICN and investigate the possibility of caching
less in order to achieve higher performance gain. We first demon-
strated that a simple random caching strategy (Rdm) can outper-
form (though inconsistently) the current pervasive caching
paradigm under the conditions that the network topology has
low number of distinct content delivery paths and high average
delivery path length. We, then, proposed a caching strategy based
on the concept of betweenness centrality (Betw) such that content
is only cached at the nodes having the highest probability of get-
ting a cache hit along the content delivery path. Our design ensures
the content always spreads towards content users and thus re-
duces the content access latency. We also proposed an approxima-
tion of it (EgoBetw) for scalable and distributed realization in
dynamic network environments where the full topology cannot
be known a priori.

We compared the performance of our proposals against the ubiq-
uitous caching of the CCN proposal [2] (CCN). Based on our extensive
simulations, we observed that Betw consistently achieves the best
hop and server reduction ratios across topologies having different
structural properties without being restricted by the operating con-
ditions required by Rdm. Our results further suggest that EgoBetw
approximates closely Betw in non-regular topologies (e.g., B-A
graphs) and thus presents itself as a practical candidate for the
deployment of this approach. Besides synthetic topologies (i.e., k-
ary trees and B-A graphs), the observations were further verified
through a large-scale real Internet topology. We also showed that
the caching overhead of CCN is more than 60% higher than our Betw.
Thus, we conclude that indeed caching less can actually achieve
more and that our proposed (Ego)Betw approach is a potential candi-
date for realizing this promise. In our investigation we also found
that the caching schemes tend to be sensitive to the detail of network
structure. We identified that the effectiveness of Betw is dependent
on the betweenness distribution and found that topologies that ex-
hibit power law distribution (e.g., Internet AS and WWW networks)
ensure its effectiveness.
References

[1] T. Koponen et al., A data-oriented (and beyond) network architecture, in: Proc.
ACM SIGCOMM, Kyoto, Japan, Aug. 2007.

[2] V. Jacobson et al., Networking named content, in: Proc. ACM CoNEXT, 2009, pp.
1–12.

[3] D. Trossen et al., Conceptual Architecture: Principles, Patterns and Sub-
components Descriptions, May 2011. <http://www.fp7-pursuit.eu/
PursuitWeb/>.

[4] P. Jokela et al., LIPSIN: line speed publish/subscribe inter-networking, in: Proc.
ACM SIGCOMM, Barcelona, Spain, 2009.

[5] G. Garcia et al., COMET: Content mediator architecture for content-aware
networks, in: Proc. of the Future Network and Mobile Summit 2011, Warsaw,
Poland, IEEE, June 2011.

[6] G. Pavlou, N. Wang, W.K. Chai, I. Psaras, Internet-scale Content Mediation in
Information-centric Networks, Ann. Telecommun., Special Issue on Networked
Digital Media, Springer, in press. http://dx.doi.org/10.1007/s12243-012-0333-8.

[7] W.K. Chai et al., CURLING: content-ubiquitous resolution and delivery
infrastructure for next-generation services, IEEE Commun. Mag. 49 (3)
(2011) 112–120.

[8] L. Rizzo, L. Vicisano, Replacement policies for a proxy cache, IEEE/ACM Trans.
Netw. 8 (2) (2000) 158–170.

[9] P.B. Danzig, R.S. Hall, M.F. Schwartz, A case for caching file objects inside
internetworks, in: ACM SIGCOMM, Sept. 1993, pp. 239–243

[10] P. Krishnan, D. Raz, Y. Shavitt, The cache location problem, IEEE/ACM Trans.
Netw. 8 (5) (2000) 568–582.

[11] I. Psaras, R. Clegg, R. Landa, W.K. Chai, G. Pavlou, Modelling and evaluation of
CCN-caching trees, in: Proc. of IFIP Networking, Valencia, Spain, May 2011.

[12] W.K. Chai, D. He, I. Psaras, G. Pavlou, Cache less for more in information-centric
networks, in: Proc. of IFIP Networking Prague, Czech Republic, May 2012.

[13] G. Carofiglio, M. Gallo, L. Muscariello, D. Perrino, Modelling data transfer in
content centric networking, in: Proc. International Teletraffic Congress (ITC),
2011.

[14] S. Arianfar, P. Nikander, J. Ott, Packet-level caching for information-centric
networking, Finnish ICT-SHOK Future Internet Project, Tech. Rep., 2010.

[15] A. Dan, D. Towsley, An approximate analysis of the lru and fifo buffer
replacement schemes, in: ACM SIGMETRICS, 1990.

[16] P. Jelenkovic, A. Radovanovic, M.S. Squillante, Critical sizing of lru caches with
dependent requests, J. Appl. Probab. 43 (4) (2006) 1013–1027.

[17] N. Laoutaris et al., Distributed selfish caching, IEEE Trans. Parallel Distrib. Syst.
18 (10) (2007).

[18] G. Dán, Cache-to-cache: could ISPs cooperate to decrease peer-to-peer content
distribution costs? IEEE Trans. Parallel Distrib. Syst. 22 (9) (2011).

[19] H. Che, Y. Tung, Z. Wang, Hierarchical web caching systems: modelling, design
and experimental results, IEEE J. Sel. Areas Commun. 20 (7) (2002).

[20] N. Laoutaris, H. Che, I. Stavrakakis, The LCD interconnection of LRU caches and
its analysis, Perform. Eval. 63 (7) (2006) 609–634.

http://www.fp7-pursuit.eu/PursuitWeb/
http://www.fp7-pursuit.eu/PursuitWeb/
http://dx.doi.org/10.1007/s12243-012-0333-8

770 W.K. Chai et al. / Computer Communications 36 (2013) 758–770
[21] A. Heddaya, S. Mirdad, Webwave: globally balanced fully distributed caching
of hot published documents, in: Proc. IEEE Int’l. Conf. Distributed Computing
Systems, Baltimore, MD, May 1997, pp. 160–168.

[22] L. Zhang, S. Floyd, V. Jacobson, Adaptive web caching, in: NLANR Web Cache
Workshop, June 1997.

[23] L. Zhang, Adaptive web caching: toward a new global caching architecture, in:
3rd Int’l World Wide Web Caching Workshop, Manchester, UK, June 1998.

[24] E.J. Rosensweig, J. Kurose, D. Towsley, Approximate models for general cache
networks, in: IEEE INFOCOM, 2010.

[25] D. Rossi, G. Rossini, Caching performance of content centric networks under
multi-path routing, Technical Report, 2011.

[26] C. Fricker, P. Robert, J. Roberts, N. Sbihi, Impact of traffic mix on caching
performance in a content-centric network, in: IEEE INFOCOM NOMEN
Workshop 2012.

[27] D. Rossi, G. Rossini, On sizing CCN content stores by exploiting topological
information, in: IEEE INFOCOM NOMEN Workshop 2012.

[28] G. Tyson et al., A trace-driven analysis of caching in content-centric networks,
in: Proc. 21st Int’l. Conf. on Comp. Commun. Networks (ICCCN), Germany,
2012.

[29] K. Cho et al., WAVE: popularity-based and collaborative in-network caching
for content-oriented networks, in: IEEE INFOCOM NOMEN Workshop 2012.

[30] I. Psaras, W.K. Chai, G. Pavlou, Probabilistic in-network caching for
information-centric networks, in: ACM SIGCOMM ICN Workshop 2012.

[31] Wang et al., Advertising cached contents in the control plane: necessity and
feasibility, in: IEEE INFOCOM NOMEN Workshop 2012.

[32] A. Ghodsi, Information-centric networking: seeing the forest for the trees, in:
ACM Workshop on Hot Topics in Networks (HotNets-X), Cambridge, MA, Nov.
2011.

[33] T.M. Wong, J. Wilkes, My cache or yours? Making storage more exclusive, in:
Proc. USENIX Annual Technical Conference, Monterey, CA, 2002, pp. 161–175.

[34] M. Zink, K. Suh, Y. Gu, J. Kurose, Watch global, cache local: YouTube network
traces at a campus network – measurements and implications, in: Proc. IEEE
Multimedia Computing and Networking, 2008.
[35] S. Wassermann, K. Faust, Social Network Analysis: Methods and Applications,
Cambridge University Press, Cambridge, 1994.

[36] K.-I. Goh, B. Kahng, D. Kim, Universal behavior of load distribution in scale-free
networks, Phys. Rev. Lett. 87 (27) (2001) 31.

[37] K.-I. Goh et al., Load distribution in weighted complex networks, Phys. Rev. E
72 (2005) 017102.

[38] A. Beben, J. Mongay Batalla, W.K. Chai, J. Śliwiński, Multi-criteria decision
algorithms for efficient content delivery in content networks, Annals of
Telecommunications, Special Issue on Networked Digital Media, Springer, in
press. http://dx.doi.org/10.1007/s12243-012-0321-z.

[39] H. Wang, J.M. Hernandez, P. Van Mieghem, Betweenness centrality in a
weighted network, Phys. Rev. E 77 (2008) 046105.

[40] M. Everett, S. Borgatti, Ego network betweenness, Social Networks 27 (2005)
31–38.

[41] P. Pantazopoulos, M. Karaliopoulos, I. Stavrakakis, Centrality-driven scalable
service migration, in: Proc International Teletraffic Congress (ITC), 2011.

[42] A.L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286
(5439) (1999) 509–512.

[43] CAIDA dataset. <http://www.caida.org/research/topology/Datasets>.
[44] L.A. Amaral, A. Scala, M. Barthélémy, H.E. Stanley, Classes of small-world

networks, Proc. Nat. Acad. Sci. U.S.A. 97 (2000) 11149.
[45] K.-I. Goh et al., Classification of scale-free networks, Proc. Nat. Acad. Sci. U.S.A.

99 (2002) 12583–12588.
[46] R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A

Statistical Physics Approach, Cambridge University Press, Cambridge, 2004.
[47] P. Van Mieghem, Performance Analysis of Communications Systems and

Networks, Cambridge University Press, Cambridge, 2006.
[48] W.K. Chai, M. Georgiades, S. Spirou, Towards information-centric networking:

research, standardization, business and migration challenges, in: H. Moustafa,
S. Zeadally (Eds.), Media Networks: Architectures, Applications, and Standards,
2012, CRC Press, Taylor & Francis Group.

http://dx.doi.org/10.1007/s12243-012-0321-z
http://www.caida.org/research/topology/Datasets

	Cache “less for more” in information-centric networks (extended version)
	1 Introduction
	2 Related work
	3 Model description
	4 Centrality-based in-network caching scheme
	4.1 Design rationale
	4.2 Betweenness centrality caching scheme
	4.3 Distributed centrality computation via approximation

	5 Performance evaluation
	5.1 Performance metrics and evaluation methodology
	5.2 k-ary tree topologies
	5.2.1 Instantaneous behavior
	5.2.2 Effect of topology features on performance

	5.3 Scale-free topologies
	5.3.1 Instantaneous behavior
	5.3.2 Effect of topology features on performance

	5.4 Real AS-level topologies
	5.5 Caching operation overhead

	6 Characterization of Betw
	7 Discussions
	7.1 Variants
	7.2 Business model implications
	7.3 Misbehaving nodes

	8 Summary and conclusions
	References

