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Abstract Web Services is an XML-based technology that has attracted significant

attention for building distributed Internet services. Considerable research efforts

have been trying to extend it to become a unifying management technology; initial

evaluation efforts have demonstrated promising application potential in the domain

of network and service management. This paper analyzes the monitoring require-

ments of a management system used in architectures for providing quality of ser-

vice, and shows how Web Services can be used effectively to fulfill these

requirements. In order to achieve this, a WS-based framework was designed and a

query tool was developed to support distributed, optimized retrieval of management

information exposed as Web Services. The query tool supports selective and bulk

retrieval from MPLS-capable routers. Management information retrieval is dem-

onstrated through three monitoring scenarios, and the measured performance in

terms of latency and bandwidth is compared against a conventional approach based

on SNMP.
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1 Introduction

Previous management technologies such as the Simple Network Management

Protocol (SNMP), the Common Object Request Broker Architecture (CORBA), and

the Common Management Information Protocol (CMIP) are well established and

have already found their niche markets. While all these technologies have gone a

long way trying to address management objectives efficiently [1], a new candidate

has also made its appearance. Web Services (WS) is an emerging XML technology

whose promise of faster development, interoperability, application integration and

industry acceptance has led researchers to also consider it as a potential

management technology.

While investigating the potential of WS for network and service management,

researchers in [2, 3] evaluated the performance of WS against traditional

management technologies such as SNMP. Although their results suggest that WS

bear a considerable improvement in terms of latency and bandwidth consumption

when retrieving large amounts of data, performance evaluation depends heavily on

the tools used to deploy and manage WS. Such tools are for parsing, serialization

and compression [4–6]. It was only recently, for example, that suggestions in [5] to

parse XML schemas only once in order to minimize encoding latency have been

adopted by the JAVA API for XML Processing (JAXP). Additionally, pull parsing
techniques suggested in [6] to optimize WS performance in cases where the XML

elements of a document need to be accessed in succession or when some elements

have been parsed before, have been adopted by the Apache AXIS 2.0 and Codehaus

XFire toolkits. These SOAP toolkits use the Streaming API for XML processing

pull parser (StAX) to build a partial XML Infoset tree in memory, allowing

applications to start processing XML content even before the entire document has

been parsed, thus increasing performance. Furthermore, Gzip, one of the standard

but not very fast tools for compression used with SOAP, continues to be popular

compared to differential encoding schemes that have been recently gaining ground

[7]. In addition to parsing and compression, WS performance suffered from

conceptual limitations. The use of MIME encodings to serialize binary data

increases processing cost, code size and decreases performance. The use of DIME

binary encodings as suggested in [5] to overcome these problems, are now

supported by the Java API for XML Web Services (JAX-WS), the latter being

supported by AXIS 2.0 and XFire.

By adopting all the above optimizations the performance of SOAP toolkits has

increased. Currently, some of the fastest toolkits available are Apache AXIS 2.0 and

XFire. In a comparison between AXIS 2.0 (v.1.4) and AXIS 1.3, the authors of [8]

showed that using StAX, and the ADB (Axis Data Binding) or the XML Beans

binding frameworks for serializing data, has improved the latency performance of

AXIS 2.0 by 4–5 times compared to AXIS 1.3. Additionally, the same authors in [9]

have shown that the ADB framework is better compared to the JAXB framework

and this is the main reason behind the superiority of AXIS 2.0 over XFire.

The performance of WS though is not just influenced by the parsing and

serialization techniques used in SOAP/WS toolkits, but is also affected by the

processing required to handle the XML infoset. Recent work in [10] has shown that
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the performance of the XML Path language (XPath) used to search and process

management data stored in XML is worse compared to a query toolkit that processes

raw data instead. In [11] we have shown that the overhead introduced by processing

management data is equally and in some cases even more important than the parsing

and serialization overhead (i.e. XPath implementations introduce 10–16 times more

latency than the raw data query tool in cases where the volume of information to be

processed is large). It is thus evident that the performance of tools to process

management data can affect greatly the performance of monitoring and event

reporting operations.

Motivated by the fact that the performance of WS has not been appropriately

investigated and compared against other technologies in scenarios where informa-

tion processing is required, a study was performed in order to: (a) look into what has

been done so far in the field of WS-based monitoring and event reporting; (b)

investigate what facilities, such as bulk and selective retrieval or facilities for

distributing monitoring load and tasks, can offer in these two fields; (c) examine if it

is plausible to offer such facilities using WS or other technologies and whether they

can help in addressing monitoring requirements; and (d) test the performance of

these facilities based on a real monitoring and event reporting scenario.

As it would be difficult to investigate the performance of polling based

monitoring for all available management technologies in the context of this paper,

we chose to limit the scope of our work to SNMP and WS. Event reporting, which is

also an important aspect of monitoring has been examined in [12] where the IBM

WS-Notification standard [13] has been used to compare WS notifications to SNMP

traps. In contrast to previous research, this paper aims to accomplish the following:

• Study the scalability of WS and SNMP for polling based monitoring when load/

task distribution and information processing is performed using tools for bulk

and selective data retrieval.

• Study if current WS tools are suitable for load/task distribution and information

processing. As described in Sect. ‘‘4.2’’, new lightweight tools may have to be

designed since currently available facilities are not suitable for this purpose. We

have designed such a tool and developed a framework for distributed monitoring

to support it.

• Investigate the scalability of WS and SNMP using a real case study where

distributing tasks and operations for bulk information retrieval, filtering and data

processing may be required. The scenarios chosen are based on a network

providing QoS over MPLS enabled devices. As such, we examine: (a) what

measurements are required for QoS; (b) how these measurements are performed

with specific SNMP Management Information Bases (MIBs) and WS; and (c)

identify measurement scenarios requiring bulk retrieval, filtering and data

processing.

The remainder of this paper is structured as follows. In Sect. ‘‘2’’, we provide a

review of related work in the field of monitoring with WS and SNMP. This section

also includes a discussion on tools for bulk/selective information retrieval and

information processing. Section ‘‘3’’ investigates QoS monitoring over MPLS

enabled devices. This section analyzes three scenarios where relatively complex
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monitoring tasks and information processing are required. Based on these scenarios

we investigate the performance of the tools described in Sect. ‘‘2’’ for WS and

SNMP. Section ‘‘4’’ discusses how to perform the measurements with WS and

SNMP for the three QoS scenarios. In Sect. ‘‘5’’ we provide details about the

experimental setup and the scenario measurements that involve latency and traffic

overhead. Finally, Sect. ‘‘6’’ presents our conclusions.

2 Related Work

2.1 Distributed Monitoring with Web Services

Over the past few years, XML has proven capable of providing the means to build

interoperable applications. Two such examples are the Distributed Management

Task Force’s (DMTF) Web Based Enterprise Management (WBEM) collection of

specifications and the OASIS (IBM, HP) WS Distributed Management (WSDM)

group of documents. From the first group of specifications the WS for Management

(WS-Management) specification [14] is of most notable importance. This document

specifies how to identify a manageable resource and how to initiate communication

with it. WS-Management depends on other specifications such as XML Schema to

describe the content and structure of XML documents [15, 16] and the WS

Description Language (WSDL) to describe network services. Additionally

WS-Addressing is used to identify the endpoints where services are offered, WS-

Eventing [17] for subscribing or receiving events and WS-Enumeration [18] for

reading event logs and other data collections. Moreover WS-Transfer [19] is used as

a general SOAP-based protocol using various communication models for accessing

XML representations of Web service-based resources, and WS-Security offers

mechanisms for message integrity, message confidentiality and single message

authentication [20]. The WSDM group on the other hand has issued two

specification documents; (a) the Management Using WS (MUWS) specification

[21], and (b) the Management of WS (MOWS) [22] specification. The former

describes the use of WS for resource management and the latter describes the

management of WS endpoints through WS protocols. These specifications roughly

depend on the same standards as WS-Management, with the exception of WS-

Eventing which is replaced by the WS-Base Notification standard [13]. Both the

MUWS and WS-Management standards define operations and mechanisms to

perform WS management with the latter being more lightweight. Efforts are

currently underway to merge these two standards.

The above two standards (MUWS, WS-Management) have originally been

designed for service management but can be tailored to address the needs of

network management. Such an example can be found in [23] where the authors use

these standards to simulate SNMP operations (get, getBulk) and test their

performance against the latter when performing polling based monitoring. SNMP

operations can be supported by both standards but with a different degree of

complexity. Through native operations MUWS provides a simplified way to

simulate SNMP operations. This is not the case for WS-Management [23]. Another
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way to simulate SNMP with both approaches is through XPath. The WS-

Management mechanism though that supports these expressions, called fragment
level transfer, is optional. This allows applications implementing the specification to

omit this feature leaving only non practical ways to simulate SNMP. MUWS

supports XPath expressions by default through the QueryResourceProperties
operation and thus is more flexible to simulate SNMP. XPath expressions in both

standards can also be used to support bulk or selective retrieval facilities. In this

investigation the authors found these frameworks more heavyweight than SNMP.

Nevertheless, the authors do not investigate the potential of query tools with either

standard. Instead they focus on emulating SNMP, based on the assumption that such

mechanisms will result in performance penalties on WS monitoring operations, thus

inhibiting the performance of WS even more in comparison to SNMP.

In addition to [23] substantial research effort has been directed in the past to

assess the performance of WS-based network management. In [24–26], authors

investigate different approaches to support the management of SNMP legacy

devices by WS managers. WS to SNMP gateways are examined and their

performance is evaluated. In [2, 3] the performance of a pure WS framework is

compared against that of SNMP and CORBA for polling based monitoring. Both

authors support that SNMP’s performance for polling based monitoring is better

than that of WS especially for a small volume of data. This may not be true as this

work, and also [23] do not investigate the potential of distributing load and tasks to

end devices for polling based monitoring. In [2, 23] authors assume their WS

framework implementation will become more resource intensive compared to

SNMP if extra facilities are added. We do not share this opinion and, as it will be

demonstrated later, facilities for bulk and selective retrieval to distribute monitoring

load and tasks can minimize the footprint of WS management applications. Apart

from the performance of WS and SNMP for polling based monitoring the scalability

of WS notifications has been investigated in [12, 27]. In [27] and also [12] event

reporting is examined in a management by task delegation environment. In [12] we

use the WS-Notification standard to define policy rules on the actions that need to be

performed when certain conditions occur. The performance of our task delegation

approach is compared to SNMP traps and is found to be better, even when retrieving

small amounts of data, contradicting the conclusions of [2, 3].

To the best of our knowledge, the research community has not yet examined the

impact on scalability when the monitoring load is distributed in the context of

polling based monitoring and where management information processing is

required. We believe that processing overhead is equally and in some cases more

important than the serialization and encoding overhead for monitoring and event

reporting operations. This has been the main motivation behind our work which

investigates the feasibility and performance of tools used to process management

data to offer bulk and selective data retrieval capabilities using WS. The most

obvious selection of such tools to realize the required functionality would be

software implementations of the MUWS specification along with XPath 1.0 [28] or

2.0 [29]. Concerns in the NetConf community [30] regarding memory and latency

overheads of XPath, led us to design and develop an information retrieval query tool

and parser [31] for monitoring and event reporting. It should be noted that the above
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concerns have been verified by [32, 33]. In a monitoring and event reporting case

study of the query tool in [10, 11] we demonstrated that its performance is superior

to both XPath 1&2. Since this query tool is not supported by MUWS, the choice of

framework should not compromise interoperability and performance. For this

reason we have developed a new framework for distributed monitoring with a well

accepted WS toolkit (AXIS 1.4). The encoding style used in this framework is RPC/

Literal, which is a style supported by the WS-Interoperability profile (WS-I) for

building interoperable services. MUWS and the WS-Management framework

though have moved in developing management applications using a Document/

Literal style. This is accounted to two main reasons: (a) fewer toolkits support the

RPC/literal style [34]; and (b) the RPC/Literal style is difficult to validate.

Nevertheless, the Document/Literal style has two shortcomings: (a) it drops the

operation name in the SOAP body making it difficult or impossible to dispatch a

message to the implementation of the operation; and (b) it is WS-Interoperability

(WS-I) compliant but with restrictions [34]. For the above reasons all literal styles

are useful and currently supported by WS-I. Additionally, frameworks such as

MUWS, as shown in [23], can be less lightweight than SNMP. The authors of [35]

suggest the use of custom lightweight solutions within a network domain for

performance and standards like WS-Notification at the edges for interoperability.

This can also be applied in polling based monitoring using for example MUWS at

the edges, and a custom framework in the core that minimizes processing, parsing,

and serialization overheads.

2.2 Distributed Monitoring with SNMP

To investigate similar facilities for bulk and selective retrieval and information

processing with SNMP requires examination of how distributed monitoring

principles can be applied. Back in 1999 the IETF Distributed Management Working

Group (DISMAN) was chartered to define a set of managed objects for specific

distributed network management applications. Part of this group’s work was the

Definitions of Managed Objects for the Delegation of Management Scripts (Script

MIB) [36] and the Distributed Management Expression MIB (Expression MIB)

[37].

The Script MIB was conceived by the DISMAN working group and employs the

advantages of distributed management over the centralized concept to tackle the

increasing demands of network management. The Script MIB promised delegation

of tasks, CPU and network load to mid-level managers and agents, thus increasing

the robustness and reliability of a network. Despite the benefits, a number of

important shortcomings limited this MIB’s deployment. One problem was the

‘‘management of management’’ [38] increasing maintenance cost incurred by the

need to distribute, run, update and control a script, and to gather and correlate the

intermediate and final execution results—significant performance issues are

identified in [38, 39]. Additionally, development costs are high since many aspects

were left undefined such as: (a) how to get the Script MIB tables populated; (b) how

to get scripts re-fetched and restarted after updates; and (c) procedural details of

event forwarding. Most importantly there are security issues. Running software or
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scripts is inherently dangerous (difficult to check what the nature of a script is) and

makes it clear why approaches such as mobile agents or the script MIB never found

significant deployment [1]. Furthermore, SNMPv3 that properly addressed security

problems came too late. Eventually the IETF abandoned any further development of

SNMP and consequently of its extensions [1].

The Expression MIB [37] was introduced as a way to create new, customized

MIB objects for monitoring. Customized objects are required, for example, in event

reporting so that monitoring is not limited to objects in predefined MIBs. The

Expression MIB works by defining the objects to be monitored and also an

expression evaluating these objects to create new ones. In theory, the expression

MIB can also be used to provide bulk and selective retrieval capabilities for polling

based monitoring, but the requirement is to use the Expression MIB in an

architecture similar to the one in [40]. Here, a parser analyzes an expression to

tokens of pre-defined grammar which invoke action routines assigned to retrieve

management objects and evaluate the result. Although feasible, there are a number

of problems associated with this approach. First and foremost, integrating the

Expression MIB in existing agents that do not support it is not possible unless the

agent uses an extensibility feature like AgentX [41]. Even so, ‘‘sub-agent access

from the master agent for MIB variables’’ [41] is a non goal for AgentX. In addition,

the expression MIB allows access only to local data for expressions since remote

addresses are not supported. This eliminates the use of remote objects in the

evaluated expressions, and thus limits the applicability of distributed monitoring

principles with the Expression MIB only to local agent resources. The inherent

distributed nature of WS allows us to overcome such problems since HTTP calls are

usually accepted over firewalls [42]. Moreover, the standard itself [37] states that

using the Expression MIB is often not a good trade-off for objects that are simply to

be recorded or displayed, which is often the objective of monitoring and event

reporting. Furthermore, as stated in the DISMAN charter [43] ‘‘implementing the

Expression MIB is non-trivial work and takes lots of months to complete’’. Last but

not least, the use of the Expression MIB to support bulk and selective retrieval is not

practical, even with wildcarding, as the objects to be accessed and evaluated by an

expression have to be re-set for different monitoring tasks. Due to the above

deficiencies the Expression MIB has never seen any significant uptake in the real

world.

2.3 Discussion

Despite the promise of the Script and Expression MIBs for distributed management,

security problems, the lack of industry support, and to some extent their impractical

nature, led the Internet management community to practically abandon their use.

The decision in 2002 [44] to stop any further development of SNMP and the focus

of the management community to XML-based technologies prevented further

evolution of these technologies. Though the Expression MIB could be used to

perform a set of more complex monitoring tasks such as a the query tool introduced

later to minimize the processing overhead of WS monitoring operations, its use as

shown later is impractical and introduces greater overhead. Additionally the Script
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MIB could be used to perform a set of monitoring tasks by introducing a script for

each task. Apart from the security concerns this raises compared to having a

standard query tool for monitoring, it will be shown later that the need to update and

control a script does not offer the flexibility of a query tool. As such, in the QoS

scenarios of the next section, performance evaluation will be based on the classic

centralized use of SNMP using bulk but not filtering mechanisms with no

distributed management extensions.

The distributed nature of WS and the warm support received by the industry has

led to the development of many standards supporting distributed management,

security, event reporting and notifications, as well as bulk and selective retrieval for

monitoring and event reporting. As in the case of SNMP, there are also problems

associated with the use of certain XML-based tools and standards for WS

management. As previously mentioned, XPath has scalability issues [10, 32, 33]

which make its use prohibitive in standards such as MUWS, WS-Management, and

WS-Notification for WS monitoring and event reporting [23, 27]. Therefore, these

technologies are not used in our monitoring scenarios. We have instead developed a

new framework for distributed monitoring that supports a number of custom based

operations for monitoring, and uses the custom query tool and its parser in [31] for

improved scalability [10]. Although our query tool is not currently supported by

standard frameworks, it presents good integration potential with MUWS. The latter

supports the definition of relationships between state data and operations for their

retrieval, which are used by our query tool for effective monitoring. Furthermore,

MUWS is designed to be independent of the implementation specifics representing

the resources of managed devices. As such, it permits object based representations

of the underlying resources which is required by our query tool. Future plans for

MUWS also include the support of resource specific query tools as defined in [45].

3 QoS Monitoring Requirements and Scenarios

3.1 Introduction

Quality of Service provisioning has been the subject of extensive research over the

years. Examples of such work are the frameworks proposed by the TEQUILA [46,

47], CADENUS [48], and ENTHRONE [49] projects. QoS is currently provided on

the basis of a set of terms that clients and service providers have to abide by, called

Service Level Agreements (SLAs). The technical part of a SLA is known as a

Service Level Specification (SLS) [50], which defines the network characteristics

corresponding to specific services. IP Differentiated Services [51] (DiffServ) is

currently considered as the framework for providing QoS-based services. A

common approach to support the DiffServ architecture is over Multi-Protocol Label

Switching (MPLS) traffic-engineered networks. Traffic Engineering (TE) requires a

scalable monitoring system capable of acquiring long and short term data. In MPLS

networks, for scalability reasons, measurements are performed only at the MPLS

Label Switched Path (LSP) level, or at the QoS traffic class level (Per Hop

Behavior—PHB). Two types of measurements can be identified: active and passive
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ones. Active measurements are performed by injecting synthetic traffic to the

network in order to monitor delay, jitter and packet loss, whereas passive

measurements can be conducted using Management Information Bases from SNMP

and involve measuring throughput, load and packet discards at the PHB, SLS and

LSP levels [46, 47, 49]. The type and the specific points where passive

measurements can be performed are the following:

• LSP load at the ingress router (LSP L-I).

• LSP throughput at the egress router (LSP T-E).

• PHB throughput at every router (PHB T).

• PHB packet discards at every router (PHB D).

• Offered load at ingress per SLS or flow (SLS L).

• Offered throughput at egress per SLS or flow (SLS T).

As this paper focuses on testing and enhancing the scalability and performance of

WS and SNMP for collecting management data, active monitoring will not be

considered. Active measurements can be performed in the same manner for both

SNMP and WS, and are not of any benefit in the context of this work.

3.2 QoS Monitoring Scenarios

Three scenarios are considered based on which the performance and scalability of

SNMP and WS are examined. The first scenario compares the performance of WS

and SNMP for retrieving data related to the passive measurements described in the

previous section. A bulk of data is retrieved simultaneously and monitoring with

WS is performed in a similar manner to SNMP’s GetBulk operation. The

performance of consecutive SNMP GetNext operations to acquire the same data is

also examined. The second scenario investigates how bulk and selective retrieval

facilities used for data processing at the agents can relieve the manager from this

burden. Again, a bulk of data is retrieved, but this time data is processed, using the

selective retrieval facilities of the WS query tool and parser developed, before

delivered to the manager. Such facilities are not supported by SNMP for the reasons

explained in Sect. ‘‘2.1’’. This scenario shows how to delegate and distribute the

data processing load when monitoring a large number of agents. This approach will

be demonstrated as a more viable option for management using WS. The third

scenario assumes a failing MPLS interface where the manager needs to determine

the affected LSPs and service contracts (SLSs). In this scenario our query tool is

used to perform data filtering to retrieve only the relevant information from the MIB

hosted at an agent.

4 WS and SNMP Monitoring

4.1 SNMP Monitoring

To perform the measurements required for the three scenarios, some of the SNMP

special Management Information Bases (MIBs) must be used. The first five passive
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measurements of Sect. ‘‘3.1’’ can be performed using two of the SNMP’s MPLS

MIBs; the MPLS Label Switching Router (LSR) MIB (RFC 3813) [52], and the

MPLS Forwarding Equivalence Class to Next Hop Label Forwarding Entry (FEC)

MIB (RFC 3814) [53]. The LSR MIB can be used to perform PHB and LSP

measurements, whereas the FEC MIB can be used to perform the SLS load

measurements. The sixth measurement cannot be performed with the FEC MIB as

this is only deployed at an ingress router. As such, this measurement is not analyzed

in the scenarios. For experiments involving SNMP, we used a Net-SNMP agent and

the AdventNet SNMP toolkit. The manager-agent paradigm is employed, with the

agents hosting the appropriate MIBs (Interfaces LSR, FEC). For all scenarios, bulk

retrieval is allowed but selective retrieval mechanisms are not possible as plain

SNMP does not support them. Distributed management extensions are also not

applicable for the reasons mentioned previously.

The process of retrieving SLS, PHB and SLS related data for the scenarios is

explained in the next sub-section.

4.1.1 Retrieving Passive Measurement Data with SNMP

For the first five passive measurements using SNMP, a number of MIBs, tables and

entries must be accessed. For LSP measurements, the manager must query the agent

for the following data:

• LSP-IDs in order to determine how LSPs are organized in a specific table. The

row identifiers (row IDs) of the relevant table are also returned so as to perform

the next step.

• LSP load at the ingress (LSP L-I) or throughput at the egress (LSP T-E) from

tables holding statistical information using the row-IDs returned in the previous

step.

For PHB measurements the process is the following:

• Retrieve the PHB IDs in order to determine the PHB each LSP belongs to.

• Query for the throughput (PHB T) or packet discards (PHB D) for each PHB,

based on the row IDs retrieved from the previous step.

To determine SLS load, the manager must do the following:

• Query which LSPs each SLS is associated with (SLS IDs, Differentiated Service

Code Point field DSCP and LSP IDs).

• Based on the row IDs obtained, the manager can access the statistics table for

each LSP in order to compute the load for each traffic contract (SLS).

Determining the IDs of LSPs, SLSs and PHBs as a first step is an essential

process. For all measurements it is assumed that the manager is aware of the

network topology through a topology repository. This implies that the manager,

apart from topology information, also has knowledge of the ID of every contract, the

ID of each LSP at the ingress and egress routers, as well as the various traffic classes

supported. Data queries though are based on the exact location of tabular

information. As such, the manager needs to initially determine the order in which
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LSP, PHB, and SLS data is organized in the tables, and then retrieve the information

relevant to the passive measurement scenarios.

4.1.2 Granularity of SNMP Monitoring Operations on Passive Measurement Data

Another aspect that requires special consideration is the sampling granularity for

each type of data. Since each class of service has different requirements, it would be

expected that different sampling frequencies should be applied to the traffic of each

class. A premium class of service, for example, requires more frequent measure-

ments than a best-effort service. Using different sampling frequencies for SLSs

would make the monitoring architecture more complex. For this reason, we use a

selection of three different sampling frequencies based only on the type of data that

needs to be retrieved. Determining, for example, the IDs for each LSP requires a

relatively long sampling period (long granularity, in the order of days or weeks)

since the same LSP configuration is typically retained over a relatively long period

of time (a provisioning period). The value of tabular objects referring to PHB and

SLS specific data, on the other hand, may change more frequently. This occurs due

to failures on MPLS-capable interfaces, load balancing to meet the requirements of

each traffic contract, etc. During the load balancing process the traffic on heavily

utilized LSPs is assigned to less utilized ones. Solving such problems might be

possible without reconfiguring the entire network, by routing the traffic mapped on

the failing interface or on a heavily utilized link to another. As such, PHB and SLS

related information change more frequently and the polling period is of medium

granularity, in the order of 5–10 min. Lastly, sampling periods for more dynamic

data such as load and throughput are in the order of 5–20 s (short granularity).

4.2 WS Monitoring

The measurements performed with WS also make use of the LSR and FEC MIBs.

These MIBs have been re-implemented from the beginning as native WS, following

the tree structure described in their RFCs—SNMP agents are not re-used. All data is

stored in single values, tables and linked lists (raw format). To represent the MIB

hierarchy, each data structure is connected to another with special pointers allowing

the navigation of the data. Each MIB is deployed as a WS and exposes three

functions that allow access to different portions of the MIB data (single instance,

multiple instance, and all data view).

The steps and the granularity that is required to retrieve passive measurement

data for the three scenarios using WS are the same as the ones in Sects. ‘‘4.1.1’’ and

‘‘4.1.2’’.

4.2.1 WS Monitoring Process Description

To support bulk and selective retrieval in the case study scenarios of Sect. ‘‘3.2’’, we

have developed the query tool in [31]. The tool uses four types of queries, each one

with a special functionality. Each type of query is a parameter in the three methods

exposing a MIB’s data as a WS. The types of queries supported are: (a) service
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selection; (b) single instance data; (c) multiple instance data; and (d) filtering data

queries. Service selection queries are practically WS endpoints with URI syntax [54]

and allow the selection of local or remote WS representing a MIB from which data

are retrieved. SS queries also allow the navigation of relationships that state data

share for more efficient monitoring. As explained in [31] this allows a manager to

acquire a more complete view on the state of a device exposed through a WS

interface and is based on an idea similar to the scoping mechanism used in

CMIP?? [55] to select managed objects. Single and multiple instance data queries

allow the retrieval of single and multiple instance data (i.e. a table row is

represented by multiple instance objects in a linked list) from a WS exposing

management data, respectively. Filtering data queries can be applied to multiple
instance queries to filter the collected data.

The process of retrieving management data from WS implementing the

aforementioned MIBs is depicted in Fig. 1. In order to support the necessary

monitoring operations we have defined a new framework that supports three

methods, each of which takes a callback address for the manager and the tool

queries as parameters. These methods are supported by all agents and all the WS

exposing management data. Initially the manager, having knowledge of the ID of

every contract, the IDs of each LSP at ingress and egress routers, as well as the

various traffic classes from the topology repository, selects one of three methods

exposed by a WS MIB depending on the data it requires to retrieve. The manager

then sends a request for data to the agent containing service and data selection

queries, as well as a callback address. The agent analyzes each service selection

query to determine whether a local or remote WS exposing management data needs

to be accessed. In case a remote WS MIB needs to be accessed, the current agent

tries to route the service and data selection queries it received to the remote agent.

This is achieved by extracting the remote agent’s address from the service selection

query and sending a request to the next hop agent through which this address can be

reached. This continues from agent to agent until the remote agent is reached. For

this scheme to work efficiently it is better not to dispatch queries for remote

resources to agents far from the agent hosting the remote resources. Each request

made to a next hop agent contains the data queries associated with the service

selection query and also the callback address of the manager. At the remote agent,

the manager’s callback address is used to send back the required data. This is a load

and task distribution process, where a manager delegates tasks to several other

agents. If local data need to be accessed the queries are analyzed using the query

tool instance of the relevant WS and the appropriate data are retrieved from the

router an agent is associated with. Currently, routers and agents are hosted on Linux

machines supporting MPLS for Linux. After all the required data is collected the

agent sends a response to the manager which can be then stored in the monitoring

repository.

The process of how each WS MIB is deployed at the agent and how the agent is

handling the tool queries for a case where local data need to be accessed, is depicted

in Fig. 2. The agent first deploys all the WS required (step 1—the LSR, FEC, and

Interfaces MIBs have been implemented for our scenarios). Each WS creates its

own query tool instance during steps 2–4. Once all services are deployed the agent

116 J Netw Syst Manage (2009) 17:105–136

123



also deploys itself as a service component (step 5). Although data independent, each

tool instance is aware of the type of data exposed by the relevant WS and is able to

resolve incoming queries for inexistent data faster (steps 2–4). As demonstrated in

Fig. 2, the manager’s service selection queries, as in Fig. 1, are resolved through the

agent’s query tool parser instance (steps 6–8). Each service selection query is

analyzed to determine whether remote or local data need to be acquired in step 7.

For local data the queries are provided as parameters in each method the manager

invokes, and are evaluated by each WS MIB’s tool instance (steps 9–11). When all

data are collected from each WS (step 12) the agent concatenates it (step 13) and

sends a response back to the manager (step 14).

Based on the above it is evident that the benefits of our query tool are threefold.

First our query tool supports as part of the architecture described in Fig. 1 the

distribution of the monitoring load. This is possible by designing WS-agents that

support the functionality of XPath or our query tool or any other query tool.

Distribution of the monitoring load can also happen through means of a signaling

protocol as suggested in projects like Enthrone. The latter approach may be a more

Fig. 1 Distributed monitoring framework functionality (remote and local resource monitoring)
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obtrusive solution. At the same time our query tool supports the navigation of

relationships between state data relationships for effective monitoring. Finally our

query tool supports information processing for bulk and selective retrieval.

4.2.2 WS Monitoring Example

An example of using our tool for bulk and selective retrieval will make Sect.

‘‘4.2.1’’ more comprehensive. The example involves retrieving the incoming TCP

connections of type HTTP or FTP from an agent hosting the RFC 1213 MIB groups

as WSs. The queries would be as follows:

Qry_1 = {http://AgentAddress:AgentPort/TcpGroup} (service selection query).

Qry_2 = {tcpConnEntry[]} (multiple instance query).

Qry_3 = {tcpConnRemPort = 22 AND tcpConnRemPort = 80} (filtering

query).

Selecting one of the three standard monitoring operations that the agent exposes,

the manager sends the above queries as the operation’s parameters. A callback

address parameter is also included. Using query 1 the agent determines if this

involves a local or remote resource. If the former then the equivalent method of the

TcpGroup WS is called with the above multiple instance and filtering queries as

parameters. Within the service methods, the parser of the query tool of each service

is used to analyze the data queries, and the data hierarchy (raw data) is searched to

determine the relevant data to be returned to the manager in XML format. Finally,

the agent concatenates all data received from all the selected services and returns the

result in an XML document (part of the SOAP body) to the manager. If remote data

need to be accessed this is done by the remote agent.

Fig. 2 Interactions between components of the WS polling based monitoring scheme to retrieve
management information (only for local data)
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5 Measurements

5.1 Evaluation Setup

For the evaluation aspects of our scenario, a big number of LSPs need to be setup

for some of the measurements. As this is difficult to be achieved in a small testbed,

we resorted to other means for evaluating the MPLS MIBs performance overhead

for SNMP. For traffic overhead, the average size of each message is calculated by

looking into the message and analyzing the size of its subparts as presented in the

next section. For computing latency a similar number and type of objects as in the

MPLS MIBs are instantiated and Advent-Net SNMP v3.3 is used to access a Net-

SNMP v5.0.2 agent. For WS the Apache Axis 1.4 SOAP toolkit was used to deploy

the three MIBs as WS, with the same information as in SNMP. All MIBs were

deployed using an RPC/literal encoding style so that the verboseness of XML tags is

reduced and traffic overhead as well as coding latency is minimized. For the parser

of the query tool that all WS MIBs use to support selective or bulk information

retrieval, Java 1.4.2.10 and its regex engine was used. The traffic overhead was

calculated as analyzed in the next section for SNMP using an average for each type

of measurement. For WS the Linux tcpdump utility was used to measure traffic, and

latency measurements for WS and SNMP were performed using Java’s current-

TimeMillis() function by averaging 20 measurements for each sampled result. The

manager and agent were deployed on a 1,000 MHz/256 MB RAM and 466 MHz/

192 MB RAM machines, respectively, thus simulating a lower end system for the

agent. Both machines run Red-hat Linux.

5.2 SNMP Traffic Consumption Calculation

SNMP messages use ASN.1 syntax [56]. When retrieving data, a SNMP manager

can use three types of messages or Protocol Data Units (PDUs): Get, GetNext and

GetBulk. All three types consist of several fields including the version, the

community, the PDU type, the request ID field, and the variable-bindings field. Get

or GetNext also include an error status field and an error-index field, whereas

GetBulk includes a Non-repeaters and a Max-repetitions field. In the experiments

performed:

• The version field is v1/v2.

• The community field is ‘‘public’’.

• The PDU type is GetNext or GetBulk.

• Object requests will not exceed 2,000 and so the request-ID field will not exceed

this value.

• The error-status field can take only five values.

• Since the error-index shows the variable in the variable binding list that caused

an error and the number of variables we retrieve in a packet will not exceed 127,

this value cannot exceed this number.

• For the experiments the Non-repeaters = 0 and the Max-repetitions field will

not exceed 2,000.
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By calculating the size of each field using the Basic Encoding Rules in [57] and

taking into account how the measurement requirements affect the size of each field

as well as a previous study on the traffic of SNMP [2], the size of an SNMP request

or response message can be computed as follows:

Lget, getNext, getBulk � 27þ n� ð6þ L1 þ L2Þ ð1Þ
In Eq. 1, L1 is the size of the Object Identifier (OID) of a variable, L2 is the size

of the variable value itself, n is the number of OIDs to retrieve, and the numbers 27

and 6 relate to the encoded size of the message subparts. The request PDU in all

scenarios contains one or two OIDs. In the case of GetBulk the number of OIDs is

different than the number of objects returned. Therefore, the size of SNMP

operations for information retrieval, if n1 objects are retrieved and a single OID

exists in the request packet, is given in Eqs. 2 and 3.

Lget, getNext � n1 � ð54þ 12þ 2L1 þ L2Þ ð2Þ
LgetBulk � 54þ 1� ð6þ L1Þ þ n1ð6þ L1 þ L2Þ ð3Þ

Figure 3 presents the size of L1 and L2 which have been calculated for each

measurement type. These values can be substituted in Eqs. 2, 3 to determine the

maximum, minimum and average traffic of SNMP information retrieval operations

for all scenario measurements. In the results in the next section we list average

traffic.

5.3 Scenario Measurements

5.3.1 Scenario One: No Filtering or Processing

In this scenario data are retrieved with SNMP either with consecutive GetNext

operations or with a single GetBulk operation. For WS, data are retrieved with

one request that is appropriately interpreted by the query tool similar to GetBulk.

For this scenario traffic overhead for LSP, PHB and SLS measurements are

presented in Figs. 5, 6, 7, 8, 9 and 10, whereas latency results are provided in

Figure 4. For measurements of scenario 1 and 2 the following things need to be

clarified:

Fig. 3 L1 and L2 length analysis for all scenarios
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• For both WS and SNMP, PHB packet discards and throughput (T ? D) are

retrieved by asking for both variables in the request packet.

• For SNMP, SLS IDs and SLS LSP IDs (SLS ? SLS LSP IDs) are retrieved by

asking for both variables in the request packet. For WS only SLS IDs are

retrieved since processing occurs at the agent side.

• We differentiate between the WS PHB and SLS measurements between the

scenario 1 and 2 by incorporating a filtering flag (denoted nof/f, respectively).

• LSP measurements are performed in the same way for both scenarios as no

processing is required due to the way data are organized in tables.

• For SNMP, latency is about the same for all types of objects retrieved for

scenario one and two and depends roughly on the number of objects retrieved

and their location in the tree. We can find the average latency for an SNMP type

of request packet (GetNext, GetBulk) by averaging the results we had for each

measurement type in Fig. 3. In order to make the latency Figs. (4, 11) more

readable, we present only average latency plots for all measurement types in

Fig. 3 depending on the type of request packet (GetNext/GetBulk) and the

number of OIDs in the request packet (1 or 2 OIDs).

From the graphical representations (Fig. 5-LSP-IDs Fig. 6-LSP load or through-

put) it is evident that WS start producing less traffic than SNMP’s consecutive

GetNext operations if more than 30 objects are retrieved. This occurs because with

the RPC/literal encoding XML tags are less verbose and thus the initial overhead of

HTTP/SOAP is overcome. Still, the size of data and tags cannot be less than the size

of the OIDs plus the variables of a GetBulk operation. Considering latency

measurements that involve a single OID retrieval, the performance of WS is better

than SNMP’s consecutive GetNext operations (Fig. 4). Although SNMP encoding is

faster, most SNMP agents do not support caching [2] which inhibits performance.

When two variables are requested, SNMP produces even more latency as more data

must be retrieved. This emphasizes the advantage of caching capabilities when
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retrieving large amounts of data. Regarding GetBulk, the latency is slightly better

than that of WS. In the case of requesting two variables though, the gradient of the

GetBulk result is higher than that of WS. Thus, when the number of objects

retrieved exceeds 1,000, the absence of caching makes even GetBulk’s latency

worse than WS.

5.3.2 Scenario Two: Data Processing

In this scenario the same information as in the previous one is retrieved, but this

time PHB and SLS related data is processed at the agent using the query tool. This

way, the manager receives state data on a per PHB or SLS basis. As such, load,

throughput or packet discards can be computed by the manager without any
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processing at the manager side. This approach is better because although the

manager is usually hosted in a high-end system, it will have to access many agents

to retrieve PHB or SLS related data. Thus the manager runs the risk of being easily

overwhelmed by the amount of processing required. Our custom query tool allows

us to distribute the load to several agents. This is feasible today especially since the

myth of the dumb agent is no longer valid [42].

Before analyzing the measurements of this scenario some aspects need to be

highlighted. As such it must be noted that for PHB measurements the LSPs in each

router are assigned to six different traffic classes. Also for SLS measurements we

decided to investigate two cases. The first case concerns individual SLSs, each

bound to a different LSP (1LSP/C, C = contract), for which we investigated traffic

and latency for 1–300 Contracts (C). In the second case we investigated a Virtual
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Private Network (VPN) scenario for the same number of contracts where each SLS

in the ingress router is bound to three different LSPs (3LSPs/C).

In all the measurements of these scenario WS perform better than successive

GetNext operations in terms of traffic overhead, but worse than GetBulk. It is worth

analyzing though certain aspects, in order to show that if SNMP was used to retrieve

data on a per PHB or SLS basis its performance could become worse.

To acquire data on a per PHB basis the following data queries must be sent to the

agent as the parameters of the framework’s methods:
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{mplsInSegmentTrafficParamPtr[],mplsInSegment TrafficParamPtr[],…} (multiple instance

query)

{value = OID1, value = OID2,…} (filtering query)

{mplsOutSegmentPerfHcOctets[id1, id2,…], mplsOutSegmentPerfDiScards[id1,

id2,…]}

(multiple instance

query)

Figure 7 (PHB IDs f/nof) suggests that the traffic overhead for discovering PHB

IDs is roughly the same as in the previous scenario. Latency increases by a

maximum of 300 ms when 980 LSP IDs must be retrieved (Fig. 4-PHB IDs nof and

Fig. 11-PHB IDs f) as the relevant tables need to be searched six times. This

happens because the query tool does not allow the use of a single filtering query for

all traffic classes and still receive data on a per PHB basis. Consequently, latency

can improve if the query tool is optimized to support more compact queries. For

throughput/load and packet discards, the traffic overhead also increases by a

maximum of 8,000 octets for 980 LSPs (Fig. 8 PHB D ? L f and nof). The increase

in traffic overhead occurs because the manager needs to access throughput on a PHB

basis. The latter implies that the row identifiers in the statistics table for each PHB

have to be included in the request packet. Despite the overhead, throughput/load

(PHB T/L) and packet discards (PHB D) for each PHB are fairly easy to compute.

Accessing throughput/load (PHB T/L) and discards (PHB D) on a per PHB basis

also increases latency by a maximum of 200 ms for 980 LSPs (Fig. 4- T ? D nof &

Fig. 11-PHB T ? D f). Still, for all PHB measurements, the granularity require-

ments for polling data from the agent are satisfied (5–10 min for PHB IDs and

5–20 s for T ? D).
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This might not be the case if SNMP was used without distributed management

extensions. This is especially true for throughput and discards, as the manager

would have to process data from many agents to discover the PHB each LSP row

entry in the statistics table belongs to in order to query for throughput and packet

discards and also to calculate these on a per PHB basis. This would introduce more

latency even if the manager was in a high end system (for the manager used in the

experiments, this could exceed half a minute for a single monitoring task). Also,

since data would have to be retrieved on a per PHB basis to calculate throughput or

discards, all OIDs of the required objects would have to be defined in the request

packets. This forces GetBulk’s latency to become even worse (not considering

processing latency) than WS due to lack of caching as objects need to be accessed

randomly (Fig. 11 GETB 1or 2 OID random). Getbulk’s traffic overhead is also

increasing since more OIDs must be defined in the request packet. More

specifically, traffic overhead is slightly bigger than WS for the same measurements

when more than 420 objects are requested (Fig. 7 GETB-PHB IDs random,

Fig. 8-GETB-PHB D ? L for load and discards).

Even with distributed management extensions such as the Expression MIB that

could allow SNMP to calculate throughput or packet discards on a per PHB basis,

usage of the Expression MIB would not be a good trade-off. This is because the

manager would again need to determine the PHBs the row entries in the statistics

table of each LSP segment belong to. As mentioned previously, processing data

from many agents could be prohibitive when the manager has to process data from a

number of agents. Even after determining the PHB each LSP belongs to, the

manager has to set a number of parameters in the tables of the Expression MIB by

following a two step procedure. In the first step the manager has to set in the

expObjectTable of the expression MIB a series of four objects (4 OIDs

expObjectID, expObjectWildcard, expObjectSampleType, expObjectRowStatus)

for each LSP throughput or packet discards parameter. Although the expression

MIB permits wildcarding to set all the parameters in the expObjectTable in one go,

this is not possible in this case because the order according to which each LSP is

assigned to a PHB in the mplsXCTable of the LSR MIB is random. As such, the

LSP throughput or packet discards parameters have to be set in the expObjectTable

explicitly because they need to be used explicitly in an expression to calculate PHB

discards or throughput. In the second step, the manager will have to set in the

expValueTable of the expression MIB a separate expression to calculate the PHB

throughput or packet discards for each traffic class by referring to the expObjectID

parameters of the expObjectTable.

After completing the two steps described above, the manager can retrieve all the

values in the expValueTable to acquire PHB throughput or packet discards using a

getNext operation. For the first step alone, usage of the expression MIB would

roughly quadruple the monitoring overhead (four OIDs and four values for each

LSP throughput or packet discard parameter have to be set) compared to SNMP

without distributed extensions (one OID and one value for each LSP throughput or

packet discard parameter). This does not take into account the latency overhead for

setting such a big number of objects in the expression MIB. Additionally, for each

object in the expObjectTable, the expression MIB would have to query the agent
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hosting the data referenced in the expObjectTable with a series of consecutive

getNext operations (one OID and one value for each LSP throughput or packet

discard parameter). This increases latency and traffic overhead even further. The

fact that PHB related data can change every few minutes, means that it might be

necessary to change the parameters used in each expression quite frequently. It is

evident from the above that using the Expression MIB for this scenario is not

plausible.

Using the Script MIB to calculate throughput or packet discards on a per PHB

basis, apart from security issues, it may also pose significant performance issues. In

devices running at high speeds, a simple script would need 15 MBs of memory just

to run, update and control the script [38, 39], ignoring the data that would have to be

processed by it. Our query tool on the other hand (including the java libraries of

apache AXIS and tomcat, and the query tool itself and processing overhead),

requires not more than 6.5 MBs and 16 MBs for small and big networks,

respectively.

Service Level Specification measurements are a bit more complicated. In this

scenario the manager queries for the LSP IDs based on the SLS ID of each contract

(i.e. the DiffServ Code Point—DSCP). The agent returns the LSP IDs per SLS but

not the SLS IDs, since the latter are not required for the next query or for processing

at the manager side. The data queries for this scenario sent as parameters of the

framework’s methods from the manager to the agent are the following:

{mplsFTNActionPointed[]} (multiple instance

query)

{mplsFTNDscp = value1, mplsFTNDscp = value2,…} (filtering query)

{mplsInSegmentPerfHcOctets[], mplsInSegmentPerfHcOctets[],…} (multiple instance

query)

{mplsInSegmentIndex = value1 OR mplsInSegmentIndex = value2…,

mplsInSegmentIndex = value3 OR mplsInSegmentIndex = value4…,…}

(filtering query)

Although the expressions for retrieving the LSP IDs for each SLS suggest that the

request packet contains as many queries as the number of contracts, the overall WS

traffic is much less in comparison to the previous scenario for the same

measurement because less data is returned (very close to GetBulk traffic with no

filtering involved—see SLS IDs 3LSPs/C or 1LSP/C on Fig. 9). Latency is also

much less (maximum 200 ms less than GetBulk—see Fig. 4 SLS?LSP IDs nof,

Fig. 11 SLS IDs 3LSPs/C or 1LSP/C). Despite the amount of processing required,

even when a 900 entry traffic table has to be searched 300 times for the VPN

scenario, WS performance is substantially better as less data needs to be encoded in

the SOAP body. For SLS WS load measurements on the other hand, traffic and

latency (Fig. 10 SLS L 1LSP/C or 3LSP/C and SLS-L nof & Fig. 4 & 11 SLS L nof
and SLS L 1LSP/C or 3LSP/C) have increased (maximum three times more latency
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and maximum 20 K more traffic). This happens only when load (L) is polled for the

first time every granularity period (mins) since there is a need to determine the

entries in the statistics table of the incoming segment referring to each LSP. After

that, the SLS load is measured using the row identifiers obtained in the first

measurement. Traffic overhead and latency for load after the first polling period, is

similar to the WS measurement for SLS load in the previous scenario (Fig. 10 SLS

L Sec Poll any C and SLS L nof, Fig. 4 SLS L nof and Fig. 11 SLS L Sec Poll any

C). Identifying the entries in the incoming segment statistics table referring to each

LSP needs to happen with a medium term granularity since the SLSs referring to

each LSP load might change every few minutes. Therefore, the granularity

requirements for polling data from the agent are satisfied, 5–10 min for SLS IDs,

10–20 s for SLS (L). For the same reasons as for the PHBs, this might not be the

case if SNMP was used, especially for short-term measurements (Fig. 10-GETB-

SLS L random, Fig. 11, GETB-1OID random, GETB-2OIDs random and Fig. 9,

GETB-SLS ? SLS LSP IDs rand). Nevertheless, performance of the WS SLS

measurements could be improved if the query tool was enhanced to support more

compact queries.

5.3.3 Scenario Three: Filtering

In this scenario we demonstrate how a WS-based monitoring system can benefit

from data filtering. Here, we assume that an ingress router MPLS interface fails in

which case a notification is dispatched to the manager. Upon receiving this event,

the manager needs to determine the affected LSPs and SLSs so as to take

appropriate actions. For the measurements, the ingress router is configured to have

910 and 50 LSPs to simulate big and small networks, respectively, each of which is

assigned to a different customer. The reason behind assigning a different customer

to each LSP is to keep things simple with respect to validity checks when data

queries are performed. A further assumption in this experiment is the number of

LSPs and SLSs affected by the failing interface, which we assume to be six.

Although it is not easy to determine a plausible number of LSPs assigned to a single

interface, six would be a reasonable number for small networks. It may not be

realistic to use the same number in the case of large networks, but the aim is to keep

the volume of data to be retrieved relatively low. This way we can show that WS

can benefit from sophisticated retrieval mechanisms and exhibit superior perfor-

mance against SNMP even though a small volume of data needs to be retrieved (not

shown in [2, 3] or other WS performance related work). Additionally, by keeping

the same number of affected SLSs and LSPs for both small and large networks we

can maintain the traffic overhead and latency comparison between them on the same

terms.

Three steps are required to perform this scenario’s measurements: (a) determine

the identifiers of the LSP incoming/outgoing segments associated with this

interface; (b) use these identifiers to determine the affected LSPs IDs; and (c)

determine the affected SLSs using these LSP IDs. The data queries without the
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service queries sent as parameters of our framework’s operations sent to the agent

are the following:

{mplsInSegmentInterface[], mplsOutSegmentInterface[]} (multiple instance query)

{value = ifIndex, value = ifIndex} (filtering query)

{mplsXCLspld[]} (multiple instance query)

{mplsInSegmentXCIndex =

mplsInSegmentIndex1 OR mplsOutSegmentXCIndex =

mplsOutSegmentIndex1 OR…}

(fiterling query)

{mplsFTNDscp[]} (multiple instance query)

{mplsFTNActionPointer =

mplsXCLspld.mplsXCIndex.mplsXCInSegmentIndex.

mplsXCOutSegmentIndex OR…}

(filtering query)

The measurements for this scenario are presented in Figs. 12, 13, 14 and 15. The

total amount of traffic produced as a result of the three queries for both big and

small networks using WS is 6,653 octets (the same amount of information is

retrieved since filtering is supported and the number of SLSs and LSPs affected by

the failing interface is the same). The total latency for WS in small and big networks

is 134 and 425 ms, respectively. If SNMP was used for the measurements, all the

interface entries, the LSP IDs and the SLS IDs along with their LSP IDs would have
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Fig. 13 Traffic overhead measurements for WS & SNMP for a big network
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Fig. 14 Latency measurements for WS & SNMP for a big network
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to be acquired, since filtering is not supported and processing has to be done at the

manager. The total traffic for SNMP, using GetBulk, is 6,890 and 126,360 octets,

and the total latency is 247 and 3,902 ms for small and big networks, respectively.

Even if more LSPs and SLSs (more data to be retrieved for WS) were affected by

the failing interface, it is clear that WS exhibit better performance to SNMP in this

case and at the same time meet the objectives for scalable management. The only

case where SNMP might have shown better performance than WS in this scenario is

if very small networks were investigated so that the amount of information to be

retrieved or processed would be very small; but such QoS-enabled networks do not

exist in practice.

6 Conclusions

This paper demonstrates the importance of minimizing the processing overhead

when performing network monitoring tasks. In contrast to what other researchers

have done in this field, we chose to investigate monitoring in cases where task and

load distribution are required to support tasks such as bulk and selective retrieval by

performing data processing operations. We more specifically investigated the use of

a query tool for bulk and selective retrieval and for distributing monitoring load in

the context of two technologies, WS and SNMP. Our study has shown than while

both technologies can be used to perform distributed monitoring, security

problems, limited distributed management capabilities, luck of industry support,
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and increasing development costs led the management community to practically

abandon the distributed management extensions of SNMP. On the other hand, the

industrial support of WS has led to the development of standards supporting

distributed management, security, event reporting, transaction support, bulk and

selective retrieval for monitoring and event reporting. Still, our research has shown

that use of certain tools with these standards is not always the best option. The use

for example of the heavyweight, in terms of resources, XPath language along with

standards such as MUWS and WS-Management impairs the use of WS for

performing monitoring tasks. XPath can introduce 10–16 times more latency as

shown in [11] compared to a custom query tool we have designed and deployed.

MUWS and WS-Management [23] are less lightweight than SNMP. For these

reasons, we have designed and deployed our own framework to test the scalability

and performance of WS for polling based monitoring. With such an effort we want

to demonstrate that more lightweight solutions can be used inside a network domain

for monitoring, whereas more heavyweight standards can be used at the edges for

interoperability. As we have shown, this is more than possible since our query tool

has good integration potential with standards such as MUWS.

Based on the above we investigate and compare the performance of WS against

that of SNMP using a realistic case study. The latter is that of a monitoring system

of a network that provides QoS guarantees over MPLS enabled devices. As part of

this investigation we have: (a) analyzed the measurements required for QoS; (b)

shown how to perform these measurements with the MPLS MIBs both for SNMP

and WS; and (c) chosen three scenarios to demonstrate how the monitoring process

can benefit from bulk and selective information retrieval.

In the first scenario data are retrieved with both WS and SNMP in a bulk manner.

This is similar to what previous researchers have done, with the difference that we

used literal encoding for the data to minimize the verboseness of XML tags in order

to minimize XML coding latency and traffic overhead. We demonstrated that WS

can perform a lot better in terms of traffic overhead and latency in comparison to

retrieving data with consecutive SNMP getNext operations. We also showed that

when the required management information increases, the latency of WS becomes

less compared to SNMP’s GetBulk operation, mainly because SNMP agents do not

support caching. We have also shown that a newer SOAP toolkit (Axis 2.0 ver 1.4),

as opposed to Axis v1.3 used in this work, can further improve the performance of

our WS monitoring framework. Therefore, as long as care is taken to meet

management objectives, and improved versions of XML tools are used to deploy a

WS framework, WS can potentially become a scalable technology for monitoring

and event reporting.

The second scenario uses the WS framework we have developed for

distributing the monitoring load for processing management data at the agent

side in order to receive the information in a specific manner (e.g., per PHB, SLS).

This is a way to show how important it is to minimize the processing overhead of

WS monitoring and event reporting operations in addition to minimizing the

serialization and parsing overhead of WS toolkits. With this scenario we also

demonstrate that by distributing the monitoring load to several agents the manager

is relieved from this task. The latter is a more scalable option for WS compared to
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technologies such as SNMP. Although SNMP could support this scenario through

its distributed management extensions, the use of the expression MIB is not a

scalable option as it increases the latency and traffic overhead. Without distributed

extensions, an SNMP manager would have to process a lot of information as

several agents must be monitored, for example in the order of hundreds for a large

ISP network, which would introduce considerably more latency. Retrieving data

on a per PHB or SLS basis directly from the agent in this scenario also shows that

such an operation would produce more traffic for GetBulk, since all the OIDs of

the required objects would have to be defined in an appropriate order in the

request packet. This also makes GetBulk latency worse than that of WS on some

occasions because of the lack of caching. Our lightweight parser and query tool

allow processing of management data at the agent, thus meeting any granularity

requirements for monitoring, which may not be true for SNMP short term

measurements.

In the third scenario, the superiority of using our query tool for deploying WS is

demonstrated for information retrieval operations that require filtering. The traffic

overhead and latency in this scenario are in some cases 25 and 15 times less than the

equivalent SNMP ones. This might not be the case if XPath was used as shown in

[10, 11].

Despite the three listed benefits of our query tool in Sect. ‘‘4.2.1’’, our query tool

also has some shortcomings. The measurements in the second scenario suggest that

the query tool has room for improvement as more compact queries for example

would improve its latency and traffic overhead consumption.

The approach and measurements presented in this paper suggest that WS can

be used for distributed management meeting the monitoring requirements of a

complex environment. Distributing the processing load to the agents is extremely

important for WS, resulting in a more distributed and scalable system that can

support sophisticated monitoring and event reporting operations. Of course, our

agent, query tool and any WS framework that supports it would need to be

installed in routers, interfacing with the services providing elemental manage-

ment information. For this reason, the query tool was designed so that it can be

used as an add-on service functioning over existing services. This way it could

be part of any standard framework, such as MUWS, since it is in the plans of

this framework to also allow the use of resource specific query tools.

Furthermore, MUWS allows defining and exploiting the relationships between

state data which our query tool supports for more effective monitoring. Security

features need also to be incorporated in our minimal framework. It is in our

future incentives to use implementations of WS security standards such as

WSS4 J with our framework.

In summary, we hope that sophisticated WS management interfaces and light-

weight tools will be supported in future managed devices, supporting sophisticated

distributed management. Realistic scenarios in this article demonstrate that

WS-based approaches performing load and task distribution can exhibit good

performance, in addition to expressiveness in addressing management monitoring

needs.
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