
GONZALEZ et al.: DETECTION AND ACCUSATION OF PACKET FORWARDING MISBEHAVIOR IN MOBILE AD-HOC NETWORKS 181

Detection and Accusation of Packet Forwarding
Misbehavior in Mobile Ad-Hoc Networks

Oscar F. Gonzalez, Godwin Ansa, Michael Howarth, and George Pavlou

Abstract—Mobile Ad Hoc networks (MANETs) are

susceptible to having their effective operation compromised by
a variety of security attacks. For example, misbehaving nodes
can cause general network disruption by not forwarding
packets on behalf of other nodes in the network. Nodes may
misbehave either because they are malicious and deliberately
wish to disrupt the network, or because they are selfish and
wish to conserve their own limited resources such as power, or
for other reasons. In this paper, we present a mechanism
capable of detecting and accusing nodes that exhibit packet
forwarding misbehavior. Our evaluation results demonstrate
that our algorithm effectively detects and accuses nodes that
drop a significant fraction of packets.

Index Terms—Mobile ad hoc network, misbehavior
detection, node accusation, packet forwarding.

I. INTRODUCTION
A mobile ad hoc network (MANET) consists of a group

of devices (or nodes) that rely solely on the wireless
communication medium and themselves for data
transmission. Nodes cooperate by forwarding packets on
behalf of each other when destinations are out of their direct
wireless transmission range. A centralized administration
and/or a pre-deployed network infrastructure are not
necessary for a MANET to be set up, thus making its
deployment quick and inexpensive. In addition, nodes’
ability to move freely ensures a flexible and versatile
dynamic network topology which can be desirable in many
situations. Mobile ad hoc networks are ideal in environments
where installing an infrastructure is not appropriate for
reasons such as cost, quality, or vulnerability, or where the
network is too transient, or the infrastructure has been
destroyed. Examples of MANET applications are:
emergency disaster relief (destroyed infrastructure), military
operations over a battlefield (vulnerable infrastructure), and
wilderness expeditions (transient networks), and community
networking and interaction between students during a
lecture.

The wireless nature and inherent features of mobile ad
hoc networks make them vulnerable to a wide variety of
attacks by misbehaving nodes. Such attacks range from
passive eavesdropping, where a node tries to obtain
unauthorized access to data destined for another node, to
active interference where malicious nodes hinder network
performance by not obeying globally acceptable rules. For
instance, a node can behave maliciously by not forwarding
packets on behalf of other peer nodes. However, when a node

exhibits malicious behavior it is not always because it intends
to do so. A node may also misbehave because it is
overloaded, broken, compromised or congested in addition to
intentionally being selfish or malicious [3,11]. An
overloaded node lacks the CPU cycles to attend its local
and/or network tasks, which leads it to drop packets owing to
its inability to process them. A broken node has a software or
hardware fault that prevents it from performing its network
duties properly. A compromised node may be victim of an
attack that degrades its data forwarding capabilities. A
congested node receives more packets than the bandwidth
available to it allows it to send, its buffer fills and eventually
it has to drop incoming packets. A selfish node is unwilling
to use its resources such as battery life, bandwidth or
processing power to forward packets on behalf of other
nodes. A malicious node drops packets or generates
additional packets solely to disrupt the network performance
and prevent other nodes from accessing any network services
(a denial of service attack). Both selfish and malicious nodes
expect, however, other nodes to forward packets on their
behalf in spite of their own misbehavior.

Manuscript received September 25, 2007.
Oscar Gonzalez, Godwin Ansa, and Michael Howarth are with the Center

for Communications Systems Research, University of Surrey, Guildford, UK
(e-mails: {o.gonzalez-duque, g.ansa, m.howarth}@surrey.ac.uk). George
Pavlou is with Dept. of Electronic & Electrical Engineering, University
College London, UK (e-mail: g.pavlou@ee.ucl.ac.uk).

Misbehavior can be divided into two categories [3]:
routing misbehavior (failure to behave in accordance with a
routing protocol) and packet forwarding misbehavior (failure
to correctly forward data packets in accordance with a data
transfer protocol). In this paper we focus on the latter. Our
approach consists of an algorithm that performs two tasks: a)
enables packet forwarding misbehavior detection through the
principle of conservation of flow [25], and b) enables the
accusation of nodes that are consistently detected exhibiting
packet forwarding misbehavior. A node that is accused of
misbehavior is denied access to the network by its peers,
which ignore any of its transmission attempts. Thus,
misbehaving nodes are isolated from the rest of the network.
Our scheme is not tightly coupled to any specific routing
protocol and, therefore, it can operate regardless of the
routing strategy adopted. Our criterion for judging a
detection on a node is the estimated percentage of packets
dropped, which is compared against a pre-established
misbehavior threshold. Any node dropping packets in excess
of this threshold is deemed a misbehaving node while those
below the threshold are considered to be correctly behaving.

Our scheme detects and accuses misbehaving nodes
(whether selfish, malicious or otherwise) capable of
launching two known attacks: the simplest of them is the
black hole attack. In this attack a misbehaving node drops all
the packets that it receives instead of normally forwarding
them. A variation on this is a gray hole attack, in which nodes
either drop packets selectively (e.g. dropping all UDP
packets while forwarding TCP packets) or drop packets in a
statistical manner (e.g. dropping 50% of the packets or
dropping them with a probabilistic distribution). Both types
of gray hole attacks seek to disrupt the network without being
detected by the security measures in place.

182 JOURNAL OF INTERNET ENGINEERING, VOL. 2, NO. 1, JUNE 2008

In this paper we first present a framework and a relevant
algorithm and protocol that deal with these attacks. We then
demonstrate through simulations that an appropriate
selection of the misbehavior threshold allows for a good
discrimination between misbehaved and well-behaved nodes,
as well as providing robustness against different degrees of
node mobility in a network that is affected by black hole
and/or gray hole attacks.

The rest of this paper is organized as follows. Section II
describes related work in the area of MANET security.
Section III specifies our assumptions on the network and
security models and clarifies the terminology adopted.
Section IV describes our algorithm for packet forwarding
misbehavior detection and accusation, and Section V
presents a performance evaluation. Finally, the paper is
concluded in Section VI.

II. RELATED WORK
Work has been conducted by other authors both on

securing the route discovery part of routing protocols, and on
packet forwarding. In this Section we initially look at ways of
protecting the network against misbehaving nodes and data
forwarding anomalies. We then review work that attempts to
detect and penalize misbehavior in data packet forwarding.

A. Routing and Packet Forwarding Protection
Secure routing protocols have been proposed based on

existing ad hoc routing protocols. These eliminate some of
the optimizations introduced in the original routing protocols
because they can be exploited to launch different types of
attacks. Examples of such protocols are the secure efficient
distance vector (SEAD) routing [6] which is based on the
destination sequenced distance vector (DSDV) [12], the
secure ad-hoc on-demand distance vector (SAODV) routing
protocol [9, 10] based on AODV [13, 14], and the secure
on-demand routing protocol for ad hoc networks (Ariadne)
[2] based on the dynamic source routing (DSR) protocol [15]
and the timed efficient stream loss-tolerant authentication
(TESLA) protocol proposed in [17]. Also extending DSR to
provide it with security mechanisms is CONFIDANT
(Cooperation Of Nodes: Fairness In Dynamic Ad-hoc
NeTworks) [18]. These approaches only secure the path
discovery and establishment functionality of routing
protocols, thus our approach complements them by securing
the data forwarding functionality.

Some research effort has also been focused on the
development of new routing protocols whose objective is to
protect the network from security threats that were not
addressed by work preceding them. The Secure Routing
Protocol (SRP) [7] and Authenticated Routing for Ad hoc
Networks (ARAN) [8] achieve routing protection assuming
and making use of the existence of a priori relationships in a
network. However, a priori relationships in MANETs may
not exist. As with SEAD, SAODV, Ariadne and
CONFIDANT these protocols can be coupled with our
approach, which is not routing protocol dependent, to offer
an improved security solution.

The routing protocol proposed in [16] offers resilience to
Byzantine behavior (any action that results in the disruption
or degradation of the data forwarding service) by an
algorithm that allows the detection of an anomalous link after
log n faults have occurred on a path, where n is the hop length
of the path. In [19] when a node has broken the security

mechanisms of a network is regarded as an intruder. Each
node is able to detect signs of intrusion locally and
neighboring nodes collaborate to further investigate
malicious behavior. In both these approaches a node uses its
own data to identify another node as an intruder. In contrast,
in our approach a node detects anomalies in packet
forwarding based on data acquired by other nodes in the
network as well as on its own data.

The Secure Message Transmission (SMT) and Secure
Single Path (SSP) protocols are both introduced in [20]. In
SMT a message that is to be sent towards a destination is first
divided in N parts and then sent by N independent paths.
Each part carries a limited amount of redundancy in such a
way that only M parts, where M<N, are needed at the
destination to recover the whole message. SSP is a specific
case of SMT where only one path is used at a time and the
source tries a different path each time an acknowledgment is
not received. However, SMT is very bandwidth-intensive,
and these protocols do not attempt to find the source of the
packet loss. Our protocol, on the contrary, identifies any
source(s) that appear to be causing packet losses, allowing
for their isolation at a later stage through the accusation
phase.

Attack patterns have been the object of research in order
to identify known attacks through abnormal packets. In [4]
and [5] the authors propose a framework for misuse detection
which divides the nodes in a network into two categories:
insiders and outsiders. Insiders are always well-behaved
nodes that belong to trusted users and run an intrusion
detection system (IDS) module to detect attacks launched by
outsiders through packets with abnormal contents.
Unfortunately, this framework fails to make use of
well-behaved outsiders that could contribute to relevant tasks
and rewards misbehaving outsiders by allowing them to use
the network. In this regard, our protocol punishes
misbehaving nodes by denying them access to the network
and its services.

B. Misbehavior Detection
There has been some work that aims to protect data

packet forwarding against malicious attacks in order to
provide reliable network connectivity. The final part of this
section describes some approaches that detect malicious
behavior in the data forwarding phase. WATCHERS
(Watching for Anomalies in Transit Conservation: a
Heuristic for Ensuring Router Security) [25] is a protocol
designed to detect disruptive routers in fixed networks
through analysis of the number of packets entering and
exiting a router. In this approach each router executes the
WATCHERS protocol at regular intervals in order to identify
neighboring routers that misroute traffic and avoid them.
WATCHERS requires the existence of at least one path not
affected by disruptive routers between any two well behaved
routers in the network. Although WATCHERS is based on
the principle of conservation of flow in a network in the same
way as our proposed algorithm, its design focuses only on
fixed networks and is not applicable to mobile ad hoc
networks. Additionally, in our approach the broadcasting
nature of the wireless medium allows for multiple possible
paths between any two well behaved nodes.

In [24] the authors look at traffic transmission patterns
between any two communicating nodes in order to facilitate
verification by a receiver. Such traffic patterns can be
analyzed if they are used in concert with suboptimal
techniques at the medium access control (MAC) layer that

GONZALEZ et al.: DETECTION AND ACCUSATION OF PACKET FORWARDING MISBEHAVIOR IN MOBILE AD-HOC NETWORKS 183

preserve the statistical regularity from hop to hop. In this
scheme a node can distinguish between a misbehaving node
and a congested node, knowing the traffic transmission rates
from other nodes to the target node. This work, however, has
a very narrow scope of application due to its MAC layer
assumptions to preserve statistical regularity, and thus it is
very unlikely for it to be useful in scenarios other than
military applications.

SCAN (self-organized network layer security in mobile
ad hoc networks) [3] focuses on securing packet delivery. It
uses AODV [13, 14], but argues that the same ideas are
applicable to other routing protocols. SCAN assumes a
network with sufficient node density that nodes can overhear
packets being received by a neighbor, in addition to packets
being sent by the neighbor. SCAN nodes monitor their
neighbors by listening to packets that are forwarded to them.
The SCAN node maintains a copy of the neighbor’s routing
table and determines the next-hop node to which the neighbor
should forward the packet; if the packet is not overheard as
being forwarded, it is considered to have been dropped. In
contrast, in our algorithm nodes do not need to overhear
transmissions to and from any neighbor in order to detect
misbehavior. In SCAN each node must possess a valid token
to be able to interact with the network and though nodes
monitor their neighbors independently, all nodes in a local
neighborhood collaborate with each other to eventually
convict a suspicious node by revoking its token. The tokens’
lifetime is determined by a credit strategy that helps reducing
the total network overhead. Token renewal and revocation is
done through threshold secret sharing and secret share
updates. SCAN develops these ideas from [21] where they
are used to give a valid key to a new node entering the
network and from then onwards to renew its key periodically.
Similar techniques have also been studied in various papers
such as [22], where they are used to achieve distribution of
trust throughout a network. SCAN is similar to our approach
in the sense that it does not only detect the source of
misbehavior, but it also punishes any misbehaving nodes.
However, SCAN makes use of cryptographic techniques that
may prove too resource demanding for devices with limited
capabilities.

Finally, in [23] a system that can mitigate the effects of
packet dropping is proposed. This is composed of two
mechanisms that are kept in all network nodes: a watchdog
and a pathrater. The watchdog mechanism identifies any
misbehaving nodes by promiscuously listening to the next
node in the packet’s path. If such a node drops more than a
predefined threshold of packets the source of the
communication is notified. The pathrater mechanism keeps a
rate for every other node in the network it knows about. A
node’s rate is decreased each time a notification of its
misbehavior is received. Then, nodes’ rates are used to
determine the most reliable path towards a destination, thus
reducing the chance of finding a misbehaving node along the
selected path. This work as described uses DSR but it is
claimed it can easily be adapted to other source routing
protocols. However, its applicability has not yet been
addressed for distance-vector based routing protocols.
Moreover, the watchdog might not detect a misbehaving
node in the presence of ambiguous collisions, receiver
collisions or nodes capable of controlling their transmission
power (described in section IV.A). Such weaknesses are the
result of using promiscuous listening to determine whether a
node has forwarded a packet or not. Our approach does not
have these same weaknesses since it is based on metrics

obtained from nodes that are actually sending and receiving
packets to and from the node whose behavior is under
evaluation, as explained in section IV.A. Also, using
pathrater can be considered a reward for selfish nodes since
the flow is diverted towards other nodes in the network while
selfish nodes preserve their resources. In contrast, our
approach denies access to the network to any node that has
been accused of misbehavior, thus discouraging them from
dropping packets.

III. ASSUMPTIONS AND TERMINOLOGY

A. Model Assumptions
The physical layer of a wireless network is often

vulnerable to denial of service (DoS) attacks such as
frequency jamming. Spread spectrum and frequency hopping
are examples of techniques that have been studied as means
of preventing this type of attacks. The link layer is also
subject to attacks where nodes gain unfair access to the
medium or where they disrupt communications, for example
by dropping packets related to typical handshake processes.
We disregard attacks aimed at the physical and link layers.

We assume bidirectional communication symmetry in
every direct link between a pair of nodes. This means that if a
node v2 receives a packet from node v1, v1 can also receive a
packet from v2. This is a sensible assumption since our
approach needs MAC protocols with collision avoidance
mechanisms to work properly, such as the extensively
deployed IEEE 802.11, MACA (Multiple Access with
Collision Avoidance) [11] and MACAW (MACA for
Wireless LANs) [1], which require bidirectional
communication for reliable transmission.

We assume the MAC layer protocol to be reliable (e.g.
IEEE 802.11). This is required to provide confidence that a
data packet has been successfully transmitted to the next-hop
node, and enables us to apply the principle of flow
conservation (see Section IV.A).

We also assume that all nodes in the network are adapted
with wireless interfaces that support promiscuous mode
operation. This operational mode allows a node to process all
transmissions from nodes within hearing range. This is
required in order to determine active nodes in a node’s
neighborhood and schedule events to check their behavior at
a later stage.

At the network layer we assume that nodes misbehave by
dropping packets despite having agreed to forward them
during route discovery. Other types of misbehavior are not
taken into account including any type of attack by two or
more colluding nodes.

This paper does not address security measures for our
misbehavior detection and accusation approach since it
focuses on the basic proposal of misbehavior and detection
mechanisms. However, cryptographic techniques such as
threshold secret sharing and secret share updates used in
SCAN [3] could be used as viable ways of protecting the
detection and accusation packets (Section IV.C) of our
approach.

B. Terminology
We use the term neighbor to refer to a node that is within

the direct wireless transmission range of another node. From
this, it follows that both nodes are able to establish a reliable
bidirectional communication. Likewise, the term
neighborhood refers to all nodes that are neighbors of a

184 JOURNAL OF INTERNET ENGINEERING, VOL. 2, NO. 1, JUNE 2008

particular node. A node is not a neighbor of itself and,
therefore, a node does not belong to its own neighborhood.

We use the term detection to mean that our algorithm has
identified that a node appears to be misbehaving. A detection
is based on a single check of the node’s behavior. An
accusation, on the other hand, occurs when a node reports
another node as misbehaving. It is our view that an
accusation should be based on more than a single positive
detection to increase confidence in the assessment, as we
discuss in Section IV.C below. Additionally, in Section V it
is shown how the number of detections needed to raise an
accusation affects the percentage of nodes correctly accused
of misbehavior.

A misbehaving node is represented by a given drop
characteristic, e.g. dropping packets with 30% probability. In
our simulations, a uniform distribution is used. We use the
parameter d to indicate the fraction of packets dropped.

IV. DETECTING AND ACCUSING MISBEHAVING NODES
Our work provides a novel methodology to secure the

data forwarding functionality in mobile ad hoc networks. We
propose an approach that takes advantage of the principle of
flow conservation in a network. This states that all
bytes/packets sent to a node, and not destined for that node,
are expected to exit the node. In this Section we first present,
from a theoretical point of view, how this principle works
assuming it is implemented in an ideal network, and then we
demonstrate that by making some reasonable assumptions
and adaptations, our algorithm can cope with the practical
problems that are encountered in real MANETs.

A. The Principle of Flow Conservation
We now formally introduce the principle of flow

conservation over an ideal static network model:

• Let vj be a node such that vj ∈ V, where V = {v1, v2, v3 …
vN} is the set of all nodes in the network, N is the total
number of nodes in the network, and j= 1, 2, 3 … N.

• Let Uj be the subset of nodes in the network which are
neighbors of vj, i.e. Uj is the neighborhood of vj. It follows
that vj ∉ Uj and also Uj ⊂ V.

• Let Δt be the period of time elapsed between two points in
time t0 and t1 such that Δt = t1 – t0.

• Let Tij be the number of packets that node vi has
successfully sent to node vj for vj to forward to a further
node; vi ∈ Uj, vj ∈ Ui, i ≠ j and Tij(t0) = 0.

• Let Rij be the number of packets that node vi has
successfully received from node vj that did not originate at
vj; vi ∈ Uj, vj ∈ Ui, i ≠ j and Rij(t0) = 0.

If all nodes vj ∈ V remain static for a period of time Δt
during which no collisions occur in any of the transmissions
over an ideal (noiseless) wireless channel, then for a node vj:

∑∑
∈∀∈∀

=
jiji Uvi
ij

Uvi
ij tTtR

|
1

|
1)()((1)

Equation (1) gives the fundamental premise of the flow
conservation principle in an ideal static network applied to
packets rather than raw bytes. It states that if all neighbors of
a node vj are queried for i) the amount of packets sent to vj to
forward and ii) the amount of packets forwarded by vj to

them, the total amount of packets sent to and received from vj
must be equal.

In practice networks exhibit conditions that are far from
ideal. First of all, the wireless channel is error prone and
packets get lost while in transit. Secondly, collisions happen
when the network uses protocols where nodes have to
compete for the medium, such as when the link layer protocol
is based on the distributed coordination function (contention
period) of the IEEE 802.11 a/b standard. In order to allow
equation (1) to hold we propose to use a reliable MAC
protocol such as IEEE 802.11, MACA or MACAW.

A reliable MAC protocol at the link layer acknowledges
each successfully transmitted packet and thus transmitter and
receiver can maintain synchronized values of their metrics Tij
and Rij. For instance, when node v1 needs to transmit a packet
to v2, v1 sends an RTS frame and v2 replies with a CTS frame.
Following the reception of the CTS, v1 sends the data which
may collide at the receiver with the transmission of some
other node v3 that heard neither the RTS nor the CTS frame
for example because v3 has just moved into range. In this case
v2 does not increase its R21 metric because it did not receive
the data, and v1 does not increase its T12 because the packet
was never acknowledged. Even in the eventuality that an
ACK frame gets lost the nodes would realize the error when
v1 retransmits the data. In this case, v2 increases its R21 metric
the first time it receives the data packet and sends back the
respective ACK frame. Node v1 does not increase its T12
metric since it does not receive the ACK frame and instead it
retransmits the packet, sending an RTS frame and waiting for
a CTS frame. The second time that v2 receives the packet it
will notice that the packet has been already received by
checking the sequence control field in the MAC header, so it
does not increase its R21 metric and it acknowledges again the
packet as stipulated in the 802.11 standard. When v1 receives
the ACK it will increase its T12 metric and equation (1) holds
again.

The use of a reliable MAC protocol in conjunction with
the conservation of flow principle means that we are not
susceptible to problems that arise when overhearing other
nodes’ transmissions. Thus, problems such as ambiguous
collisions, receiver collisions, and the ability of a node to
control its transmission power do not exist in our approach.
Ambiguous collisions occur when a node v1 is trying to
determine if another node v2 is properly forwarding a packet.
It may happen that node v2 forwards the packet to a further
node v3, which is out of the transmission range of v1, while a
second transmission prevents v1 from overhearing the
forwarded packet, thus v1 will not know if the packet was
forwarded. On the other hand, in the receiver collision
problem v2 forwards the packet to v3 at which point a
collision occurs. Node v1 is unaware of such a collision and
assumes that the packet was forwarded even if v2 does not
attempt a retransmission. Another common problem is
caused by nodes capable of controlling their transmission
power. Thus, v2 can transmit with enough power for v1 to
overhear but not enough power for v3 to receive it, leaving v1
unaware of the situation. All these weaknesses, which can be
used by malicious nodes to disrupt the network, are due to the
fact that overhearing is used by nodes to check for
misbehavior in other nodes, as in [3, 23]. In our algorithm the
nodes that maintain statistics that are used to determine
whether the forwarding was properly made are the nodes
actively involved in the transmission process, i.e. the
transmitter and the receiver of each transmission.

GONZALEZ et al.: DETECTION AND ACCUSATION OF PACKET FORWARDING MISBEHAVIOR IN MOBILE AD-HOC NETWORKS 185

∑∑
∈∀∈∀

≤−
jiji Uvi
ij

Uvi
ijthreshold tTtR

|
1

|
1)()()1(α

However, a node may exhibit malicious behavior even if
it is not purposefully doing so. For example, an overloaded
node may temporarily lack the CPU cycles, buffer space or
bandwidth to forward packets. In addition, some reactive
routing protocols, e.g. AODV, cause buffered packets to be
dropped if they go through a path that is even temporarily
unavailable. For these reasons equation (1) cannot be applied
in a rigorous manner and a threshold needs to be established
to account for packets dropped by a node through no fault of
its own. Equation (2), which holds for well behaved nodes,
reflects this change:

 (2)

The αthreshold factor can take values between 0 and 1 and as
we shall see plays an important role in the detection power of
our proposed algorithm, i.e. the capability of the algorithm to
detect misbehaving nodes. The lower αthreshold is the more
likely it is that our algorithm detects any malicious behavior.
However, it also means that the probability of a false
detection increases, as it can be inferred from our simulations
(Section V). A false detection occurs when the result of a
single evaluation of a node mistakenly determines that the
node appears to be misbehaving. Therefore, fine tuning is
required to reach a fair point in this tradeoff and reduce the
probability of an incorrect accusation.

B. Adapting Conservation of Flow to Mobile Networks
In MANETs the neighborhood Uj of a node vj changes

dynamically over time, making it difficult to determine those
nodes that have transmitted or received packets to or from a
node vj. Our scheme overcomes this problem by means of a
limited broadcast that tracks down nodes that have been in
contact with node vj as explained later in Section IV.C.

Every node in the network is required to keep three tables:
an overhead nodes table, a detection table and an accusation
table. The overheard nodes table contains the IDs of those
nodes that have been overheard recently through
promiscuous listening. Entries in this table are removed once
they go stale (e.g. if a node in the table has not been
overheard in the last t seconds). This process helps a node vj
to keep track of nodes that have become part of its
neighborhood Uj while they were actively intervening in the
network. The detection table contains the IDs of those nodes
that have been detected as misbehaving and the number of
times their misbehavior has been reported. Finally, the
accusation table keeps the IDs of those nodes that have been
accused of misbehavior. Nodes are typically accused of
misbehavior because they have reached within a predefined
period of time the number of misbehavior detections required
to be accused.

C. Algorithm
The core parts of our algorithm are detailed in the

pseudocode shown in figure 1. A node vi maintains a table
with two metrics Tij and Rij (Fig. 1.a), which contains an entry
for each node vj to which vi has respectively transmitted
packets to or received packets from. Node vi increments Tij on
successful transmission of a packet to vj for vj to forward to
another node, and increments Rij on successful receipt of a
packet forwarded by vj that did not originate at vj.

All nodes in the network continuously monitor their
neighbors and update the list of those they have heard
recently (Fig. 1.b). If the ID of an overheard node is not

included in the table of overheard nodes a new entry is
created. Otherwise, the existing entry is updated with a
timestamp corresponding to the time the node was last
overheard. Upon the creation of a new entry, a node
schedules a task/event to check the behavior of the node
whose ID has been saved in the new entry. Nodes randomly
select a period of time between Tmin and Tmax to schedule the
behavior checking task. This random selection seeks to
reduce the possibility of two or more nodes starting a
behavior check on the same node at the same time, wasting
network bandwidth, battery energy and other network
resources.

When a scheduled task is triggered in node vi to check vj’s
behavior (Fig. 1.c), node vi broadcasts a metrics request
packet (MREQ) with TTL = 1 in the IP header. An MREQ
includes the ID of the node emitting the request (SRC_ID),
the ID of the node whose behavior is to be checked
(CHK_ID), an MREQ_ID and a timestamp indicating the
time at which the task was triggered. The MREQ_ID is used
in the same way as in some routing protocols which base their
route discovery phase on broadcasting. If a node sees an
MREQ that has the same MREQ_ID and SRC_ID of a packet
seen before, the MREQ is dropped. This technique prevents
flooding packets from traversing a zone of the network more
than once. The timestamp, on the other hand, is used to
resolve conflicts when two nodes start a behavior check on
the same node at almost the same time. In such cases, nodes
can see which of the packets corresponds to the earlier
triggered task and disregard the other. Nevertheless, two or
more unsynchronized nodes performing a behavior check on
the same node will generate different timestamps. In this case
nodes receiving the MREQ packets will select the packet
with the earliest timestamp and will reply accordingly. Thus
our approach does not require accurate synchronization of
the nodes’ clocks. Finally, after the MREQ packet is
broadcast, a task is scheduled to be triggered a period of time
Tmax (maximum elapsed period of time without checking an
active node’s behavior) later. This means it is highly unlikely
that the same node will originate two successive checks of
another node, and gives other nodes a chance to perform the
behavior check.

The handling of requests (Fig. 1.d) illustrates the heart of
our limited broadcast algorithm. When a node receives an
MREQ it first checks if the CHK_ID is in its table of
overheard nodes; if it is not the node ignores the MREQ and
discards the check. However, if the CHK_ID appears in its
table then it rebroadcasts the MREQ with TTL = 1 in the IP
header. Setting the TTL to one allows our algorithm to
control how far the broadcast of the MREQ is to go, instead
of leaving this task to the IP protocol. Thus, every MREQ
travels only one hop at a time, and is then analyzed and
rebroadcast if the protocol so determines. By following this
algorithm, our protocol is capable of tracking down nodes
that have been in contact with the checked node, as illustrated
in Figure 2. We assume transmissions can be overheard by
vertically, horizontally and diagonally adjacent nodes. In the
Figure, node v7 is first in position a where it can be overheard
by nodes v1, v2, v3, v6, v8, v11, v12 and v13. Each of these nodes
makes an entry in their table of overheard nodes when v7 first
transmits and each of them schedules a task to check its
behavior. At some point in time, v7 decides to move
following the path depicted in Figure 2 coming in contact
with nodes v14, v17, v18, v19, v20, v23, v24 and v25. It finally stops
in position b. In the Figure the scheduled behavior check
initiation task (Fig. 1.c) in v8 is the first to be triggered and the

186 JOURNAL OF INTERNET ENGINEERING, VOL. 2, NO. 1, JUNE 2008

limited broadcast commences. All nodes that have overheard
node v7 re-broadcast the MREQ, whereas nodes such as v4, v9
and v15 also receive the MREQ but ignore it because they
have not overheard node v7.

a. MONITORING
if node vi successfully sends a packet to node vj
. increase Tij
endif
if node vi receives a packet successfully forwarded by node vj
. increase Rij
endif

b. BEHAVIOR CHECK SCHEDULING
if node vi overhears a node vj ∈ Uk
. if node vj is not in vi’s table of overheard nodes
. . add node vj to vi’s table of overheard nodes
. . schedule an event to check vj’s behavior
. else
. . update last time node vj was heard
. endif
endif

c. INITIATE BEHAVIOR CHECK
if in node vi an event to check node vj’s behavior is triggered
. send a metrics request packet (MREQ) with node vj’s ID
. schedule another event to check vj’s behavior again at t+Tmax
endif

d. REQUEST HANDLING
if node vi receives a metrics request for node vj
. if node vi has node vj in its table of overheard nodes
. . rebroadcast metrics request packet (MREQ)
. . reschedule any event to check vj’s behavior
. . if node vi has metrics for node vj
. . . send a metrics reply (MREP) back to the requesting node
. . endif
. else
. . ignore request
. endif
endif

e. REPLY HANDLING
if a request was sent out
. while there are more replies to be received for node vj
. . receive reply
. . acknowledge reply reception (send MACK)
. . add received metrics to totals
. endwhile
.
. if ∑∑

∈∀∈∀

≤−
jiji Uvi
ij

Uvi
ijthreshold TR

||
)1(α

. . node vj is misbehaving (detection)

. . send a detection alert packet (DAP) with node vj’s ID

. else

. . node vj is not misbehaving (non-detection)

. endif
endif

f. DETECTION ALERT HANDLING
if node vi receives a detection alert for node vj
. if node vi has node vj in its table of overheard nodes
. . rebroadcast detection alert packet (DAP)
. . if max_num_of_detections for node vj has been reached
. . . broadcast na accusation packet (AP) with node vj’s ID
. . endif
. else
. . ignore detection alert
. endif

endif

g. ACCUSATION HANDLING
if node vi receives an accusation packet for node vj
. if node vi has node vj in its accusation table
. . ignore accusation packet
. else
. . add node vj to vi’s accusation table
. . rebroadcast accusation packet (AP)
. endif
endif

h. PUNISHING ACCUSED NODES
if node vi receives a packet from node vj
. if node vj is in node vi’s accusation table
. . ignore packet
. else
. . handle and process the packet
. endif
endif

Figure 1. Our algorithm pseudocode.

It may also happen that node v7 stops transmitting and
receiving packets before it moves to a different network area.
Then, after moving, v7 may become active again forming a
new neighborhood. In this case the old and new
neighborhoods are not connected by nodes that have
overheard v7 and, therefore, a limited broadcast triggered in
one neighborhood will not reach the other. In spite of this,
our algorithm still works properly because two independent
behavior checks will be performed on v7: one at its old
neighborhood and another at its new neighborhood. The
outcome of each of these behavior checks depends on the
behavior exhibited by v7 at each neighborhood.

Figure 2. Example of limited broadcast to track down nodes that have
overheard node v7.

Once a node has decided whether to continue or not
broadcasting a MREQ, it reschedules any pending task to
check the behavior of the checked node specified in the
CHK_ID field of the MREQ. The new behavior checking

GONZALEZ et al.: DETECTION AND ACCUSATION OF PACKET FORWARDING MISBEHAVIOR IN MOBILE AD-HOC NETWORKS 187

task is scheduled in the same way as when a new entry is
made in the table of overheard nodes, i.e. a period of time is
randomly selected between Tmin and Tmax. In this way if the
random selection is uniformly distributed the average
frequency with which an active node’s behavior is checked
is:

)(
2

2/)(
1_

maxminmaxmin TTTT
freqavg

+
=

+
= (3)

The last task a node performs when it receives a MREQ is
to check if it has any metrics (Rij or Tij) relating to the node
being checked. If any of the metrics has a value other than
zero the node returns a metrics reply packet (MREP) (Fig.
1.d) containing the metrics, but if the value of both metrics is
zero then the node does not send back any response. In our
scheme a metrics reply packet is returned to the node that
originated the MREQ following the reverse of the MREQ’s
path. This requires nodes to set a backward pointer when they
receive an MREQ. This approach avoids the high overhead
produced by reactive routing protocols when they perform
route discovery for many MREP packets.

Reply handling is executed in the node that initiated the
MREQ. This node, v8 in Fig. 2, waits for a period of time in
order to give all nodes with metrics about the checked node
the opportunity of replying. When the time expires, the node
checks the behavior of the analyzed node by verifying that
equation (2) holds (Fig. 1.e). If it does not, this is considered
a detection and a detection alert packet (DAP) containing the
detected node ID is broadcast with TTL = 1 in its IP header.
Detection alert packets are broadcast in the same way as
MREQs, i.e. they follow our limited broadcast algorithm
(Fig. 1.f).

Due to the nature of our algorithm nodes are not perfectly
synchronized with each other. A MREQ will reach close
nodes faster than nodes placed a few hops away. The last
nodes to receive the MREQ have enough time to send or
receive some extra packets to and from the analyzed node,
thus unbalancing the values of the Tij and Rij metrics. This
discrepancy, in which some packets may have been sent to
the node being analyzed but not yet forwarded by it, is
accommodated by αthreshold.

A problem that has been detected in our simulations has
its roots in the dynamic nature of MANETs. Nodes receiving
a MREQ with non-zero metrics for the checked node send
back their reply. However, such replies sometimes get lost
due to collisions, noise in the wireless channel or link/path
breakages due to the mobility of the nodes. If the value of the
metrics contained in the lost reply is small compared to the
total obtained after adding up the replies that do not get lost,
αthreshold can accommodate them and equation (2) holds.
Unfortunately, this is not always the case and some of those
replies that get lost contain key information for the
calculations and the checked node is then falsely detected as
misbehaving. This is one of the reasons why an accusation
should not be made based on a single detection. Using a
single detection to accuse a node is not sufficient since such
an approach may lead to false accusations against correctly
behaving nodes. Our scheme in which multiple detections by
different nodes are necessary to accuse a node is fairer to
well-behaved nodes, while keeping a high probability of
correctly accusing misbehaving nodes. Additionally, to
circumvent the lost replies problem we propose an optional
module to our algorithm. A node receiving an MREP as it is
forwarded towards its destination (i.e. the node performing

the behavior checking task) will also send a metrics
acknowledgement packet (MACK). Thus, nodes
sending/forwarding an MREP wait for an MACK from the
next hop in the route. If the confirmation does not arrive then
they retransmit the MREP. The process is repeated up to
MAXRetx retransmission retries before giving up. The results
obtained in our simulations have demonstrated that this
technique can significantly improve the results in MANETs
with a high degree of mobility. Simulations have also shown
that the most significant improvement can be seen when
comparing the results for MAXRetx=0 (without retransmitting
any reply) and MAXRetx=1. Subsequent increases to MAXRetx
improve the results further but not significantly.

The handling of detection alerts (Fig 1.f) is also
determined by our limited broadcast algorithm. This means
that the information to accuse a node of misbehavior is
collected locally rather than globally. When a node receives a
detection alert packet (DAP) it first checks if the reported
node ID contained in the received packet is present in its table
of overheard nodes; if it is not the node stops broadcasting
the DAP. However, if the ID appears in its table then it
rebroadcasts the DAP with TTL = 1 in the IP header. Thus,
nodes can control how far the DAP broadcast is to go in the
same way they do with a MREQ. For instance, assuming that
v8 in Fig. 2 detects that v7 is misbehaving, the DAP follows
the same path as that depicted in the Fig. 2 for a MREQ
packet. Although this approach prevents nodes from
generating excessive network overhead, it may also permit
malicious nodes constantly changing their geographical
position in a clever manner (without going back to previously
visited areas) to avoid being accused. After a node has
decided whether continue broadcasting a DAP or not, it
checks if an entry for the reported node ID has been already
created in its detections table. If it has not a new entry is
created with its field number of detections equal to one. If the
entry is already present its number of detections is increased
and then compared against a detections threshold. When the
number of detections reaches the detections threshold in less
than a predefined period of time Tthreshold there is enough
evidence to accuse the reported node of misbehavior.
Therefore, an accusation packet (AP) is broadcast in a
network wide fashion so that access is denied to the reported
node all over the network.

Nodes that receive an accusation packet (Fig. 1.g)
examine their accusation tables to see whether the reported
node has been accused previously. When an AP with a newly
accused node is received a new entry is created in the
accusation table and the broadcast of the AP continues.
Otherwise, the packet is ignored and dropped to prevent
unnecessary network traffic. Finally, all nodes in the
MANET are responsible to ensure that packets coming from
an accused node (a node present in their accusation table) are
immediately dropped (Fig. 1.h). This approach denies
misbehaving nodes any chance to have their packets
transmitted in the network as well as to participate in route
discovery, thus preventing them from causing further
disruption in the communication process.

V. EVALUATION
We perform our simulations using the GloMoSim

simulation package. The results presented for each value are
the average of 10 simulation runs. Tests with a larger number
of simulations (e.g. 20) give results that vary typically no
more than 1% from those presented here. Unless explicitly

188 JOURNAL OF INTERNET ENGINEERING, VOL. 2, NO. 1, JUNE 2008

stated otherwise our simulation parameters, which
correspond to typical values used by other authors, take the
following values: i) nodes move according to the random
waypoint mobility model with a speed randomly chosen with
uniform distribution between 0ms-1 and 10ms-1, this yields a
mean node speed of 5ms-1 and a speed standard deviation of
2.89ms-1, ii) the pause time takes a value that is exponentially
distributed with mean 30 seconds, iii) the wireless
transmission range of every node is 100 meters, iv) the link
capacity is 2 Mbps, v) the MAC layer protocol is the IEEE
802.11 DCF, vi) the underlying routing protocol is AODV,
and vii) the total simulation time for each scenario is 1800
seconds. Our results are presented in two parts: part A
focuses on the detection power of our algorithm, i.e. how
well our algorithm can distinguish between well behaved and
misbehaving nodes, and part B focuses on the capability of
our algorithm to accuse misbehaving nodes and improve the
average network throughput while maintaining an acceptable
network overhead.

A. Detecting Misbehaving Nodes
An important parameter to evaluate the effectiveness of

an approach that detects and accuses misbehaving nodes is its
detection power. In this section we present results that
demonstrate that our approach has a high probability of
detecting truly misbehaving nodes while maintaining a low
probability of performing false detections, i.e. wrongly
detecting a well behaved node as a misbehaving one. For this
set of results the network was set-up with 40% of its total
nodes misbehaving by not forwarding all packets. Nodes
check the behavior of active nodes within a period chosen
uniformly between 40 and 60 seconds, and keep any
overheard node in their tables for 120 seconds after the last
time they are heard. On average an active node is checked
approximately 36 times in each 1800 second simulation. The
principal metric in our tests is the percentage of detections
and it is assessed in terms of misbehavior threshold and node
speed.

We initially consider our misbehavior detection algorithm
in terms of the misbehavior threshold, which is the parameter
αthreshold in equation (2), i.e. the maximum percentage of
packets that a node is allowed to drop without being detected
as a misbehaving node. In order to see the effect of the
misbehavior threshold on nodes, simulations were carried out
with networks containing 20 and 60 nodes, and areas of
40 000m2 (200m*200m) and 120 000m2
(346.41m*346.41m) respectively. These values ensure that
node density is preserved between both scenarios. We varied
both the packet drop probability of misbehaving nodes and
the misbehavior threshold between 0% and 100%.

Figures 3 and 4 show the percentage of positive
detections as a function of misbehavior threshold for nodes
exhibiting different probabilities of misbehavior for
networks with 20 and 60 nodes respectively. It can be
inferred from both graphs that the criterion to select an
adequate misbehavior threshold depends on the level of trust
required in the network as well as on network characteristics
such as network size and node density. The lower the
threshold is the more packets nodes need to forward to be
considered well-behaved. However, since characteristics
inherent to MANETs such as mobility and the noisy wireless
medium can cause some packets to be lost (including packets
of our own protocol), it also means that an increasing number

of correctly behaving nodes can be falsely detected as
misbehaving ones.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Increasing Misbehavior Threshold, α threshold

Pe
rc

en
ta

ge
 o

f D
et

ec
tio

ns

80% Misbehavior Drop (d = 0.8)
50% Misbehavior Drop (d = 0.5)
20% Misbehavior Drop (d = 0.2)
10% Misbehavior Drop (d = 0.1)
Non Misbehaving Nodes (d = 0)

Figure 3. Percentage of positive detections as a function of the increasing
misbehavior threshold (20 node network).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Increasing Misbehavior Threshold, α threshold

Pe
rc

en
ta

ge
 o

f D
et

ec
tio

ns

80% Misbehavior Drop (d = 0.8)
50% Misbehavior Drop (d = 0.5)
20% Misbehavior Drop (d = 0.2)
10% Misbehavior Drop (d = 0.1)
Non Misbehaving Nodes (d = 0)

Figure 4. Percentage of positive detections as a function of the increasing
misbehavior threshold (60 node network).

A similar problem occurs with misbehaving nodes that
drop a small percentage of packages, e.g. less than 10% of
packets. The graphs show how the less misbehavior a node
exhibits the more its curve resembles that of a well behaved
node, making distinguishing between them a complex task.
Finally, it can also be seen from Fig. 3 and Fig. 4 that
selecting a misbehavior threshold equal to a node’s
misbehaving probability prevents our approach from
identifying misbehaving nodes with certainty, i.e. the
probability of detection is approximately 50%. These
occurrences are all contained in the zone between 40% and
60% probability of detection in the figures.

Selecting an acceptable or tolerable level of misbehavior
x in a network is a policy decision. This policy then allows a
value of αthreshold to be set depending on the desired detection
probability. For example, for a detection probability of >90%
our results suggest that αthreshold should then be set at
approximately x-0.1 for the 20 node network and x-0.15 for
the 60 node network.

Our second set of results assesses the performance of our
misbehavior detection algorithm in terms of the degree of
mobility of the nodes in the network. This time the
misbehaving nodes drop packets with a 50% probability
while the misbehavior threshold is kept at 40%. The mean
node speed varies between 0ms-1 (a static network) and
20ms-1 while the speed standard deviation for all

GONZALEZ et al.: DETECTION AND ACCUSATION OF PACKET FORWARDING MISBEHAVIOR IN MOBILE AD-HOC NETWORKS 189

measurements is 0.58ms-1. Whereas Fig. 5 is plotted for
misbehaving and well-behaved nodes in a 20 node network,
Fig. 6 is plotted for misbehaving and well-behaved nodes in a
60 node network.

It can be seen from Fig. 5 that our misbehavior detection
protocol is not significantly affected by the speed of the
nodes in small networks. Our approach robustly keeps a gap
between misbehaving nodes and correctly behaving nodes
making it easy to spot nodes that are purposefully violating
the principle of flow conservation. The fluctuations seen in
both curves are likely to have occurred due to the sporadic
losses of metrics reply packets (MREP) rather than the node
speed. However, the same is not true for large scale networks,
as it can be appreciated from Fig. 6. As the mean node speed
increases the gap between misbehaving and correctly
behaving nodes grows smaller. Nevertheless, a good level of
discrimination is maintained. These results support our
hypothesis that using a single detection to accuse a node is
not sufficient since such an algorithm may lead to false
accusations against correctly behaving nodes (Section IV.C).
An accusation should be the result of a distributed consensus
mechanism such as that proposed in SCAN [3] to ensure
fairness to well behaved nodes while keeping a high
probability of correctly accusing misbehaving nodes.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

Mean Node Speed [m/sec]

Pe
rc

en
ta

ge
 o

f D
et

ec
tio

ns

50% Drop Misbehavior (d = 0.5)
Non Misbehaving Nodes (d = 0)

Figure 5. Percentage of detections as a function of the increasing
mean node speed (20 node network).

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

Mean Node Speed [m/sec]

Pe
rc

en
ta

ge
 o

f D
et

ec
tio

ns

50% Drop Misbehavior (d = 0.5)
Non Misbehaving Nodes (d = 0)

Figure 6. Percentage of detections as a function of the increasing
mean node speed (60 node network).

B. Accusing Misbehaving Nodes
This section presents first an evaluation of the average

throughput gain offered by our proposed algorithm to
networks affected by nodes that drop packets in a

20, 40, 60 and 120 nodes. Then, our final set of results
analyzes the network overhead created by our approach and
how it compares against the total traffic produced in the
network. Networks simulated in this section were set up with
20% of its total nodes misbehaving by dropping packets with
60% percent probability (d = 0.6). The misbehavior threshold
was 40% (αthreshld = 0.4).

In order to see the im

probabilistic manner. Results are shown for networks with

provement that our approach can
bring to networks affected by packet forwarding misbehavior
we consider the average throughput in terms of the mean
node speed. Our graphs present results for networks without
misbehaving nodes, networks with misbehaving nodes but
without defense mechanisms in place, and networks that use
our algorithm to deny access to misbehaving nodes. Results
are displayed for networks containing 20, 40 and 60 nodes,
which are distributed over areas of 40 000m2 (200m*200m),
80 000m2 (282.84m*282.84m), and 120 000m2
(346.41m*346.41m) respectively in order to maintain a
constant node density.

8500

8750

9000

9250

9500

9750

10000

10250

10500

0 2 4 6 8 10 12 14 16 18 20

Mean Node Speed [m/sec]

A
ve

ra
ge

 N
et

w
or

k
Th

ro
ug

hp
ut

 [b
its

/s
ec

]

No Misbehavior
Our Approach
Misbehavior Alone

Figure 7. Average network throughput as a function of the increasing
mean node speed (20 node network).

8000

8250

8500

8750

9000

9250

9500

9750

10000

10250

10500

0 2 4 6 8 10 12 14 16 18 2

Mean Node Speed [m/sec]

A
ve

ra
ge

 N
et

w
or

k
Th

ro
ug

hp
ut

 [b
its

/s
ec

]

0

No Misbehavior
Our Approach
Misbehavior Alone

Figure 8. Average network throughput as a function of the increasing

node
net

mean node speed (40 node network).

Figures 7, 8 and 9 show curves for 20, 40 and 60
works respectively. Each graph displays the average

network throughput as a function of the increasing mean
node speed for a) networks without misbehaving nodes (No
Misbehavior), b) networks making use of our detection and
accusation approach (Our Approach), and c) networks with
misbehaving nodes but with no means of defending
themselves from any type of attack (Misbehavior Alone). As
it can be seen from the figures our approach improves the
network throughput when it is used in networks exhibiting

190 JOURNAL OF INTERNET ENGINEERING, VOL. 2, NO. 1, JUNE 2008

packet forwarding misbehavior. However, the average
throughput cannot reach that of a network where there is not
any misbehavior present. This is due to the fact that our
algorithm requires of certain amount of time to collect the
necessary data to detect and accuse misbehaving nodes.
Thus, during this initial phase (data collection) misbehaving
nodes can drop packets before being accused and isolated
from the network.

8000

8250

8500

8750

9000

9250

9500

9750

10000

10250

10500

0 2 4 6 8 10 12 14 16 18 2

Mean Node Speed [m/sec]

A
ve

ra
ge

 N
et

w
or

k
Th

ro
ug

hp
ut

 [b
its

/s
ec

]

0

No Misbehavior
Our Approach
Misbehavior Alone

Figure 9. Average network throughput as a function of the increasing

g how our approach reacts to
cha

 be seen that our approach still works
in

ccusation
alg

ork overhead
gen

mean node speed (60 node network).

With the purpose of seein
nges in a network’s node density our next set of results

has been carried out in a network that preserves the same area
as our previous 60 node network (120.000 m2 =
346.41m*346.41m), but has double its number of nodes (120
nodes) so as to double its density. Figure 10 presents results
for networks without misbehaving nodes, networks with
misbehaving nodes but without defense mechanisms in place,
and networks that use our algorithm to deny access to
misbehaving nodes.

From figure 10 it can
networks with relative high node density. The network

throughput of networks using our approach improves when
compared against networks containing misbehaving nodes
that are neither avoided nor penalized. However, networks
that do not present node misbehavior at all still exhibit the
best performance in terms of network throughput.

A network that implements our detection and a
orithm looks at bootstrap as a network without a

protection scheme. However, as time elapses our algorithm
starts detecting and accusing those nodes that drop a fraction
of packets above a preset misbehavior threshold αthreshold.
Consequently, in such a network any misbehaving nodes will
eventually be detected, accused and denied network access,
allowing the network to obtain an overall performance close
to a network where nodes do not misbehave.

The final set of results assesses the netw
erated by our misbehavior detection and accusation

algorithm as a function of the increasing mean node speed,
and compares it against the network overhead produced by
four constant bit rate (CBR) connections present in the
network. Although CBR traffic is generated at the application
layer, it is accounted for at the TCP/IP layer in the form of
UDP network overhead. In this set of simulations
misbehaving nodes drop packets with a 60% probability
(d=0.6), the misbehavior threshold αthreshold is 40%, the node
speed varies between 0ms-1 (a static network) and 20ms-1,
and the speed standard deviation is set at 0.58ms-1. The
network resources are calculated by adding one each time a

packet crosses a different link: thus a MREQ packet
broadcast that traverses three hops (links) contributes three
packet-links to the total. Results are displayed for a network
containing 40 nodes distributed over an area of 80 000m2
(282.84m*282.84m).

The network overhead shown in Fig. 11 is the sum of the
overhead produced by the MREQ, MREP, MACK, DAP and
AP packets. It is least when the nodes are stationary and
increases with the mean node speed. The reader may be
confused to see the UDP overhead to be the lowest in a static
network (mean node speed = 0 m/sec). This can be explained
as follows. In static networks link breakages are due only to
collisions and the channel noise. This means that packets are
more likely to arrive to their destination without need for
retransmissions. This yields a high throughput and a lower
network overhead since packets arrive constantly to their
destination and traverse less times each link. On the other
hand, in dynamic networks mobility frequently cause link
breakages, retransmissions take place over almost every link
increasing the network overhead. The throughput, instead,
decreases due to the fact that fewer packets reach their
destination. In contrast, the overhead generated by our
scheme is higher in dynamic network because a node has
greater probability to become in contact with more nodes.
Therefore, more behavior checking tasks are scheduled
which translates in a higher number of MREQ, MREP and
MACK packets being transmitted.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 2 4 6 8 10 12 14 16 18 20

Mean Node Speed [m/sec]

A
ve

ra
ge

 N
et

w
or

k
Th

ro
ug

hp
ut

 [b
its

/s
ec

]

No Misbehavior
Our Approach
Misbehavior Alone

Figure 10. Average network throughput as a function of the increasing
mean node speed (120 node network).

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

0 2 4 6 8 10 12 14 16 18 20

Mean Node Speed [m/sec]

To
ta

l N
et

w
or

k
O

ve
rh

ea
d

[p
ac

ke
ts

]

UDP Overhead
Our Approach Overhead

Figure 11. Network overhead as a function of the increasing
mean node speed (40 nodes).

GONZALEZ et al.: DETECTION AND ACCUSATION OF PACKET FORWARDING MISBEHAVIOR IN MOBILE AD-HOC NETWORKS 191

MANETs requires that they
be able to network. Limit
resources m
mis

den

s in MANETs
cau

thre

[1] Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW
Media Access Pr e Proc. ACM SIGCOMM
Conference ctures, Protocols and

ber 2002.

 hoc on-demand distance vector

 a new channel access method for packet radio,” in

 dynamic destination-sequenced

ondon, UK, September 1994.

r (AODV) routing”,

amic source routing

[16] ita-Rotaru, and H. Rubens, “An

Efficient

02.

atos, and Z. Haas, “Secure data communication in mobile

g robust and

e Ad hoc Networks”, in Proc. 6 ACM

mber 2003.

in 2002, and the MSc degree from the University
of Surrey, Guildford, in 2005. He is currently

iversity of Uyo,
Nigeria, in 2002, and the MSc degree in
Communications Networks and Software from the

VI. CONCLUSIONS
The self-regulating nature of

ed monitor the behavior of the
at there iean th s an incentive for nodes to

behave by not correctly forwarding packets (selfish
nodes); nodes may also misbehave for other reasons.

In this paper we have presented an algorithm that is
capable of detecting and accusing nodes that exhibit packet
forwarding misbehavior. The algorithm does not require high distance-vector routing (DSDV) for mobile computers”, in Proc. ACM

SIGCOMM Conference on Communications Architectures, Protocols
and Applications, Lsity networks in which many nodes can overhear each

others’ received and transmitted packets, but instead uses
statistics accumulated by each node as it transmits to and
receives data from its neighbors. Also, our algorithm does not
interfere with the routing protocol which allows for its use
regardless of the routing strategy employed.

We have shown that we can detect nodes that misbehave
by dropping a significant percentage of packets. Detection is
successful in spite of inherent packet losse

sed by noisy links, mobility, and packet losses due to
routing protocol behavior. To avoid falsely accusing
correctly behaved nodes of misbehavior an accusation in our
approach is based on a predefined number of detections
performed not necessarily by the same node.

Selecting an acceptable or tolerable level of misbehavior
in a network is a policy decision that enables us to choose an
adequate misbehavior threshold α . Hthreshold owever, this

shold also depends on dynamic network parameters such
as node density and network area. Therefore finding a way to
calculate an optimal misbehavior threshold in a dynamic
manner is of great importance, especially in autonomic
environments where the network should automatically adjust
its parameters so as to adapt itself to changes in its
surroundings. In this respect our future research will focus on
the study of methods to collect and synthesize network
context information, and techniques to calculate an adaptive
misbehavior threshold using such information.

VII. REFERENCES
V. : A

otocol for Wir less LANs”, in
on Communications Archite

Applications, London, UK, September 1994.
[2] Y. C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand

routing protocol for ad hoc networks”, in Proc. 8th ACM International
Conference on Mobile Computing and Networking, Atlanta, USA,
September 2002.

[3] H. Yang, J. Shu, X. Meng, and S. Lu, “SCAN: Self-organized
network-layer security in mobile ad hoc networks,” IEEE Journal on
Selected Areas in Communications, vol. 24, no. 2, February 2006, pp.
261-273.

[4] D. Subhadrabandhu, S. Sarkar, and F. Anjum, “A framework for
misuse detection in ad hoc networks – part I”, IEEE Journal on
Selected Areas in Communications, vol. 24, no. 2, February 2006, pp.
274-289.

[5] D. Subhadrabandhu, S. Sarkar, and F. Anjum, “A framework for
misuse detection in ad hoc networks – part II”, IEEE Journal on
Selected Areas in Communications, vol. 24, no. 2, February 2006, pp.
290-304.

[6] Y. C. Hu, D. B. Johnson, and A. Perrig, “SEAD: secure efficient
distance vector routing for mobile wireless ad hoc networks,” in Proc.
4th IEEE workshop on Mobile Computing Systems & Applications,
New York, USA, June 2002.

[7] P. Papadimitratos, and Z. J. Haas, “Secure routing for mobile ad hoc
networks,” in Proc. SCS Communication Networks and Distributed
Systems Modeling and Simulation Conference, San Antonio, USA,
January 2002.

[8] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M.
Belding-Royer, “A secure routing protocol for ad hoc networks”, in
Proc. 10th IEEE International Conference on Network Protocols, Paris,
France, Novem

[9] M. Guerrero-Zapata and N. Asokan, “Securing ad hoc routing
protocols”, in Proc. 3rd ACM Workshop on Wireless Security, New
York, USA, 2002.

[10] M. Guerrero-Zapata, “Secure ad
(SAODV) routing”, Internet Draft, IETF Mobile Ad Hoc Networking
Working Group, February 2005.

[11] P. Karn, “MACA –
Proc. ARRL/CRRL Amateur Radio Computer Networking Conference,
September 1990.

[12] C. E. Perkins and P. Bhagwat, “Highly

[13] C. E. Perkins, and E. M. Royer, “Ad-hoc on-demand distance vector
routing”, in Proc. 2nd IEEE Workshop on Mobile Computer Systems &
Applications, New Orleans, USA, February 1999.

[14] C. E. Perkins, “Ad hoc on-demand distance vecto
Request For Comments (RFC) 3561, July 2003, Available online at:
http://www.ietf.org/rfc/rfc3561.txt

[15] D. B. Johnson, D. A Maltz, and Y. C. Hu, “The dyn
protocol for mobile ad hoc networks (DSR)”, Internet Draft, IETF
MANET Working Group, July 2004.
B. Awerbuch, D. Holmes, C. N
on-demand secure routing protocol resilient to Byzantine failures”, in
Proc. 3rd ACM Workshop on Wireless Security, New York, USA, 2002.

[17] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “
authentication and signing of multicast streams over lossy channels”, in
Proc. IEEE Symposium on Security and Privacy, Berleley, USA, May
2000.

[18] S. Buchegger, and J. Le Boudec, “Performance analysis of the
CONFIDANT protocol,” in Proc. 3rd ACM International Symposium
on Mobile Ad Hoc Networking & Computing, Lausanne, Switzerland,
June 20

[19] Y. Zhang, and W. Lee, “Intrusion detection in wireless ad-hoc
networks”, in Proc. 6th ACM International Conference on Mobile
Computing and Networking, Boston, USA, August 2000.

[20] P. Papadimitr
ad hoc networks”, IEEE Journal on Selected Areas in
Communications, vol. 24, no. 2, February 2006, pp. 343-356.

[21] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providin
ubiquitous security support for mobile ad-hoc networks”, in Proc. 9th
IEEE International Conference on Network Protocols, Riverside,
USA, November 2001.

[22] L. Zhou, and Z. Haas, “Securing ad hoc networks”, IEEE Network
Magazine, vol. 13, no. 6, November/December 1999, pp. 24-30.

[23] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating Routing
Misbehavior in Mobil th

International Conference on Mobile Computing and Networking, pp.
255-265, Boston, USA, August 2000.

[24] R. Rao, and G. Kesidis, “Detecting malicious packet dropping using
statistically regular traffic patterns in multihop wireless networks that
are not bandwidth limited”, in Proc. IEEE Global Telecommunications
Conference, San Fransisco, USA, Dece

[25] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson,
“Detecting disruptive routers: a distributed network monitoring
approach”, in Proc. Symposium on Security and Privacy, May 1998.

Oscar Gonzalez received the BEng degree from
the National University of Colombia, Manizales,

working towards the PhD degree in the Faculty of
Engineering and Physical Sciences, University of
Surrey, Guildford. His research interests include
wireless networking, network security and trust,
and autonomic communications.

Godwin Ansa received the BSc degree in
Computer Science from the Un

University of Surrey, UK, in 2008. He is currently
working towards his PhD degree in the Department
of Electronic Engineering at the University of
Surrey. His research interests include network
security, wireless networking and satellite network
architectures.

192 JOURNAL OF INTERNET ENGINEERING, VOL. 2, NO. 1, JUNE 2008

Michael Howarth received the bachelor’s degree
in engineering science and the DPhil degree in

c

electrical engineering, both from Oxford
University and the MSc degree in
telecommunications from the University of Surrey,
United Kingdom. Prior to joining the University of
Surrey, he worked for several networking and IT
consultancies. He is a lecturer in networking at the
Centre for Communication Systems Research
(CCSR), University of Surrey. His research

 engineering, quality of service, security systems,
protocol design, and optimization of satellite communications. He is a
chartered electrical engineer and a member of the United Kingdom IET.

George Pavlou is Professor of Communication
Networks in the Dept. of Electronic & Electrical
Engineering, University College London, United
Kingdom, where he coordinates the activities of the
Networks and Services Research Lab. He holds a
BEng in Electrical and Mechanical Engineering
from the National Technical University of Athens,
Greece, and MSc and Ph.D. degrees in Computer
Science from University College London, UK. He
is responsible for a number of European and UK
research projects and industrial collaborations. His
on network management, networking and service
aspects such as network dimensioning, traffic

engineering, quality of service management, ad hoc/mesh/sensor networks,
policy-based systems, autonomic networking and communications
middleware. He has also contributed to standardization activities in ISO,
ITU-T, TMF, OMG and IETF.

interests include traffi
research interests focus
engineering, including

