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Abstract—Mobile Ad Hoc networks (MANETs) are 

susceptible to having their effective operation compromised by 
a variety of security attacks.  For example, misbehaving nodes 
can cause general network disruption by not forwarding 
packets on behalf of other nodes in the network. Nodes may 
misbehave either because they are malicious and deliberately 
wish to disrupt the network, or because they are selfish and 
wish to conserve their own limited resources such as power, or 
for other reasons.  In this paper, we present a mechanism 
capable of detecting and accusing nodes that exhibit packet 
forwarding misbehavior. Our evaluation results demonstrate 
that our algorithm effectively detects and accuses nodes that 
drop a significant fraction of packets. 
 

Index Terms—Mobile ad hoc network, misbehavior 
detection, node accusation, packet forwarding. 

  

I. INTRODUCTION 
A mobile ad hoc network (MANET) consists of a group 

of devices (or nodes) that rely solely on the wireless 
communication medium and themselves for data 
transmission. Nodes cooperate by forwarding packets on 
behalf of each other when destinations are out of their direct 
wireless transmission range. A centralized administration 
and/or a pre-deployed network infrastructure are not 
necessary for a MANET to be set up, thus making its 
deployment quick and inexpensive. In addition, nodes’ 
ability to move freely ensures a flexible and versatile 
dynamic network topology which can be desirable in many 
situations. Mobile ad hoc networks are ideal in environments 
where installing an infrastructure is not appropriate for 
reasons such as cost, quality, or vulnerability, or where the 
network is too transient, or the infrastructure has been 
destroyed. Examples of MANET applications are: 
emergency disaster relief (destroyed infrastructure), military 
operations over a battlefield (vulnerable infrastructure), and 
wilderness expeditions (transient networks), and community 
networking and interaction between students during a 
lecture. 

The wireless nature and inherent features of mobile ad 
hoc networks make them vulnerable to a wide variety of 
attacks by misbehaving nodes. Such attacks range from 
passive eavesdropping, where a node tries to obtain 
unauthorized access to data destined for another node, to 
active interference where malicious nodes hinder network 
performance by not obeying globally acceptable rules. For 
instance, a node can behave maliciously by not forwarding 
packets on behalf of other peer nodes. However, when a node 

exhibits malicious behavior it is not always because it intends 
to do so. A node may also misbehave because it is 
overloaded, broken, compromised or congested in addition to 
intentionally being selfish or malicious [3,11]. An 
overloaded node lacks the CPU cycles to attend its local 
and/or network tasks, which leads it to drop packets owing to 
its inability to process them. A broken node has a software or 
hardware fault that prevents it from performing its network 
duties properly. A compromised node may be victim of an 
attack that degrades its data forwarding capabilities. A 
congested node receives more packets than the bandwidth 
available to it allows it to send, its buffer fills and eventually 
it has to drop incoming packets.  A selfish node is unwilling 
to use its resources such as battery life, bandwidth or 
processing power to forward packets on behalf of other 
nodes. A malicious node drops packets or generates 
additional packets solely to disrupt the network performance 
and prevent other nodes from accessing any network services 
(a denial of service attack). Both selfish and malicious nodes 
expect, however, other nodes to forward packets on their 
behalf in spite of their own misbehavior. 
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Misbehavior can be divided into two categories [3]: 
routing misbehavior (failure to behave in accordance with a 
routing protocol) and packet forwarding misbehavior (failure 
to correctly forward data packets in accordance with a data 
transfer protocol). In this paper we focus on the latter. Our 
approach consists of an algorithm that performs two tasks: a) 
enables packet forwarding misbehavior detection through the 
principle of conservation of flow [25], and b) enables the 
accusation of nodes that are consistently detected exhibiting 
packet forwarding misbehavior. A node that is accused of 
misbehavior is denied access to the network by its peers, 
which ignore any of its transmission attempts. Thus, 
misbehaving nodes are isolated from the rest of the network. 
Our scheme is not tightly coupled to any specific routing 
protocol and, therefore, it can operate regardless of the 
routing strategy adopted. Our criterion for judging a 
detection on a node is the estimated percentage of packets 
dropped, which is compared against a pre-established 
misbehavior threshold. Any node dropping packets in excess 
of this threshold is deemed a misbehaving node while those 
below the threshold are considered to be correctly behaving. 

Our scheme detects and accuses misbehaving nodes 
(whether selfish, malicious or otherwise) capable of 
launching two known attacks: the simplest of them is the 
black hole attack. In this attack a misbehaving node drops all 
the packets that it receives instead of normally forwarding 
them. A variation on this is a gray hole attack, in which nodes 
either drop packets selectively (e.g. dropping all UDP 
packets while forwarding TCP packets) or drop packets in a 
statistical manner (e.g. dropping 50% of the packets or 
dropping them with a probabilistic distribution). Both types 
of gray hole attacks seek to disrupt the network without being 
detected by the security measures in place. 
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In this paper we first present a framework and a relevant 
algorithm and protocol that deal with these attacks. We then 
demonstrate through simulations that an appropriate 
selection of the misbehavior threshold allows for a good 
discrimination between misbehaved and well-behaved nodes, 
as well as providing robustness against different degrees of 
node mobility in a network that is affected by black hole 
and/or gray hole attacks. 

The rest of this paper is organized as follows. Section II 
describes related work in the area of MANET security. 
Section III specifies our assumptions on the network and 
security models and clarifies the terminology adopted. 
Section IV describes our algorithm for packet forwarding 
misbehavior detection and accusation, and Section V 
presents a performance evaluation. Finally, the paper is 
concluded in Section VI. 

 

II. RELATED WORK 
Work has been conducted by other authors both on 

securing the route discovery part of routing protocols, and on 
packet forwarding. In this Section we initially look at ways of 
protecting the network against misbehaving nodes and data 
forwarding anomalies. We then review work that attempts to 
detect and penalize misbehavior in data packet forwarding. 

A. Routing and Packet Forwarding Protection 
Secure routing protocols have been proposed based on 

existing ad hoc routing protocols. These eliminate some of 
the optimizations introduced in the original routing protocols 
because they can be exploited to launch different types of 
attacks. Examples of such protocols are the secure efficient 
distance vector (SEAD) routing [6] which is based on the 
destination sequenced distance vector (DSDV) [12], the 
secure ad-hoc on-demand distance vector (SAODV) routing 
protocol [9, 10] based on AODV [13, 14], and the secure 
on-demand routing protocol for ad hoc networks (Ariadne) 
[2] based on the dynamic source routing (DSR) protocol [15] 
and the timed efficient stream loss-tolerant authentication 
(TESLA) protocol proposed in [17]. Also extending DSR to 
provide it with security mechanisms is CONFIDANT 
(Cooperation Of Nodes: Fairness In Dynamic Ad-hoc 
NeTworks) [18]. These approaches only secure the path 
discovery and establishment functionality of routing 
protocols, thus our approach complements them by securing 
the data forwarding functionality. 

Some research effort has also been focused on the 
development of new routing protocols whose objective is to 
protect the network from security threats that were not 
addressed by work preceding them. The Secure Routing 
Protocol (SRP) [7] and Authenticated Routing for Ad hoc 
Networks (ARAN) [8] achieve routing protection assuming 
and making use of the existence of a priori relationships in a 
network. However, a priori relationships in MANETs may 
not exist. As with SEAD, SAODV, Ariadne and 
CONFIDANT these protocols can be coupled with our 
approach, which is not routing protocol dependent, to offer 
an improved security solution. 

The routing protocol proposed in [16] offers resilience to 
Byzantine behavior (any action that results in the disruption 
or degradation of the data forwarding service) by an 
algorithm that allows the detection of an anomalous link after 
log n faults have occurred on a path, where n is the hop length 
of the path. In [19] when a node has broken the security 

mechanisms of a network is regarded as an intruder. Each 
node is able to detect signs of intrusion locally and 
neighboring nodes collaborate to further investigate 
malicious behavior. In both these approaches a node uses its 
own data to identify another node as an intruder. In contrast, 
in our approach a node detects anomalies in packet 
forwarding based on data acquired by other nodes in the 
network as well as on its own data.  

The Secure Message Transmission (SMT) and Secure 
Single Path (SSP) protocols are both introduced in [20]. In 
SMT a message that is to be sent towards a destination is first 
divided in N parts and then sent by N independent paths. 
Each part carries a limited amount of redundancy in such a 
way that only M parts, where M<N, are needed at the 
destination to recover the whole message. SSP is a specific 
case of SMT where only one path is used at a time and the 
source tries a different path each time an acknowledgment is 
not received. However, SMT is very bandwidth-intensive, 
and these protocols do not attempt to find the source of the 
packet loss. Our protocol, on the contrary, identifies any 
source(s) that appear to be causing packet losses, allowing 
for their isolation at a later stage through the accusation 
phase. 

Attack patterns have been the object of research in order 
to identify known attacks through abnormal packets. In [4] 
and [5] the authors propose a framework for misuse detection 
which divides the nodes in a network into two categories: 
insiders and outsiders. Insiders are always well-behaved 
nodes that belong to trusted users and run an intrusion 
detection system (IDS) module to detect attacks launched by 
outsiders through packets with abnormal contents. 
Unfortunately, this framework fails to make use of 
well-behaved outsiders that could contribute to relevant tasks 
and rewards misbehaving outsiders by allowing them to use 
the network. In this regard, our protocol punishes 
misbehaving nodes by denying them access to the network 
and its services. 

B. Misbehavior Detection 
There has been some work that aims to protect data 

packet forwarding against malicious attacks in order to 
provide reliable network connectivity. The final part of this 
section describes some approaches that detect malicious 
behavior in the data forwarding phase. WATCHERS 
(Watching for Anomalies in Transit Conservation: a 
Heuristic for Ensuring Router Security) [25] is a protocol 
designed to detect disruptive routers in fixed networks 
through analysis of the number of packets entering and 
exiting a router. In this approach each router executes the 
WATCHERS protocol at regular intervals in order to identify 
neighboring routers that misroute traffic and avoid them. 
WATCHERS requires the existence of at least one path not 
affected by disruptive routers between any two well behaved 
routers in the network. Although WATCHERS is based on 
the principle of conservation of flow in a network in the same 
way as our proposed algorithm, its design focuses only on 
fixed networks and is not applicable to mobile ad hoc 
networks. Additionally, in our approach the broadcasting 
nature of the wireless medium allows for multiple possible 
paths between any two well behaved nodes.  

In [24] the authors look at traffic transmission patterns 
between any two communicating nodes in order to facilitate 
verification by a receiver. Such traffic patterns can be 
analyzed if they are used in concert with suboptimal 
techniques at the medium access control (MAC) layer that 
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preserve the statistical regularity from hop to hop. In this 
scheme a node can distinguish between a misbehaving node 
and a congested node, knowing the traffic transmission rates 
from other nodes to the target node. This work, however, has 
a very narrow scope of application due to its MAC layer 
assumptions to preserve statistical regularity, and thus it is 
very unlikely for it to be useful in scenarios other than 
military applications. 

SCAN (self-organized network layer security in mobile 
ad hoc networks) [3] focuses on securing packet delivery. It 
uses AODV [13, 14], but argues that the same ideas are 
applicable to other routing protocols. SCAN assumes a 
network with sufficient node density that nodes can overhear 
packets being received by a neighbor, in addition to packets 
being sent by the neighbor.  SCAN nodes monitor their 
neighbors by listening to packets that are forwarded to them.  
The SCAN node maintains a copy of the neighbor’s routing 
table and determines the next-hop node to which the neighbor 
should forward the packet; if the packet is not overheard as 
being forwarded, it is considered to have been dropped.  In 
contrast, in our algorithm nodes do not need to overhear 
transmissions to and from any neighbor in order to detect 
misbehavior. In SCAN each node must possess a valid token 
to be able to interact with the network and though nodes 
monitor their neighbors independently, all nodes in a local 
neighborhood collaborate with each other to eventually 
convict a suspicious node by revoking its token. The tokens’ 
lifetime is determined by a credit strategy that helps reducing 
the total network overhead. Token renewal and revocation is 
done through threshold secret sharing and secret share 
updates. SCAN develops these ideas from [21] where they 
are used to give a valid key to a new node entering the 
network and from then onwards to renew its key periodically. 
Similar techniques have also been studied in various papers 
such as [22], where they are used to achieve distribution of 
trust throughout a network.  SCAN is similar to our approach 
in the sense that it does not only detect the source of 
misbehavior, but it also punishes any misbehaving nodes. 
However, SCAN makes use of cryptographic techniques that 
may prove too resource demanding for devices with limited 
capabilities. 

Finally, in [23] a system that can mitigate the effects of 
packet dropping is proposed. This is composed of two 
mechanisms that are kept in all network nodes: a watchdog 
and a pathrater. The watchdog mechanism identifies any 
misbehaving nodes by promiscuously listening to the next 
node in the packet’s path. If such a node drops more than a 
predefined threshold of packets the source of the 
communication is notified. The pathrater mechanism keeps a 
rate for every other node in the network it knows about. A 
node’s rate is decreased each time a notification of its 
misbehavior is received. Then, nodes’ rates are used to 
determine the most reliable path towards a destination, thus 
reducing the chance of finding a misbehaving node along the 
selected path. This work as described uses DSR but it is 
claimed it can easily be adapted to other source routing 
protocols. However, its applicability has not yet been 
addressed for distance-vector based routing protocols. 
Moreover, the watchdog might not detect a misbehaving 
node in the presence of ambiguous collisions, receiver 
collisions or nodes capable of controlling their transmission 
power (described in section IV.A). Such weaknesses are the 
result of using promiscuous listening to determine whether a 
node has forwarded a packet or not. Our approach does not 
have these same weaknesses since it is based on metrics 

obtained from nodes that are actually sending and receiving 
packets to and from the node whose behavior is under 
evaluation, as explained in section IV.A. Also, using 
pathrater can be considered a reward for selfish nodes since 
the flow is diverted towards other nodes in the network while 
selfish nodes preserve their resources. In contrast, our 
approach denies access to the network to any node that has 
been accused of misbehavior, thus discouraging them from 
dropping packets. 

 

III. ASSUMPTIONS AND TERMINOLOGY  

A. Model Assumptions 
The physical layer of a wireless network is often 

vulnerable to denial of service (DoS) attacks such as 
frequency jamming. Spread spectrum and frequency hopping 
are examples of techniques that have been studied as means 
of preventing this type of attacks. The link layer is also 
subject to attacks where nodes gain unfair access to the 
medium or where they disrupt communications, for example 
by dropping packets related to typical handshake processes. 
We disregard attacks aimed at the physical and link layers. 

We assume bidirectional communication symmetry in 
every direct link between a pair of nodes. This means that if a 
node v2 receives a packet from node v1, v1 can also receive a 
packet from v2. This is a sensible assumption since our 
approach needs MAC protocols with collision avoidance 
mechanisms to work properly, such as the extensively 
deployed IEEE 802.11, MACA (Multiple Access with 
Collision Avoidance) [11] and MACAW (MACA for 
Wireless LANs) [1], which require bidirectional 
communication for reliable transmission. 

We assume the MAC layer protocol to be reliable (e.g. 
IEEE 802.11).  This is required to provide confidence that a 
data packet has been successfully transmitted to the next-hop 
node, and enables us to apply the principle of flow 
conservation (see Section IV.A). 

We also assume that all nodes in the network are adapted 
with wireless interfaces that support promiscuous mode 
operation. This operational mode allows a node to process all 
transmissions from nodes within hearing range. This is 
required in order to determine active nodes in a node’s 
neighborhood and schedule events to check their behavior at 
a later stage. 

At the network layer we assume that nodes misbehave by 
dropping packets despite having agreed to forward them 
during route discovery. Other types of misbehavior are not 
taken into account including any type of attack by two or 
more colluding nodes. 

This paper does not address security measures for our 
misbehavior detection and accusation approach since it 
focuses on the basic proposal of misbehavior and detection 
mechanisms. However, cryptographic techniques such as 
threshold secret sharing and secret share updates used in 
SCAN [3] could be used as viable ways of protecting the 
detection and accusation packets (Section IV.C) of our 
approach. 

B. Terminology 
We use the term neighbor to refer to a node that is within 

the direct wireless transmission range of another node. From 
this, it follows that both nodes are able to establish a reliable 
bidirectional communication. Likewise, the term 
neighborhood refers to all nodes that are neighbors of a 
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particular node. A node is not a neighbor of itself and, 
therefore, a node does not belong to its own neighborhood. 

We use the term detection to mean that our algorithm has 
identified that a node appears to be misbehaving. A detection 
is based on a single check of the node’s behavior. An 
accusation, on the other hand, occurs when a node reports 
another node as misbehaving. It is our view that an 
accusation should be based on more than a single positive 
detection to increase confidence in the assessment, as we 
discuss in Section IV.C below. Additionally, in Section V it 
is shown how the number of detections needed to raise an 
accusation affects the percentage of nodes correctly accused 
of misbehavior. 

A misbehaving node is represented by a given drop 
characteristic, e.g. dropping packets with 30% probability. In 
our simulations, a uniform distribution is used.  We use the 
parameter d to indicate the fraction of packets dropped. 

 

IV. DETECTING AND ACCUSING MISBEHAVING NODES  
Our work provides a novel methodology to secure the 

data forwarding functionality in mobile ad hoc networks. We 
propose an approach that takes advantage of the principle of 
flow conservation in a network. This states that all 
bytes/packets sent to a node, and not destined for that node, 
are expected to exit the node. In this Section we first present, 
from a theoretical point of view, how this principle works 
assuming it is implemented in an ideal network, and then we 
demonstrate that by making some reasonable assumptions 
and adaptations, our algorithm can cope with the practical 
problems that are encountered in real MANETs.  

A. The Principle of Flow Conservation 
We now formally introduce the principle of flow 

conservation over an ideal static network model: 

• Let vj be a node such that vj ∈ V, where V = {v1, v2, v3 … 
vN} is the set of all nodes in the network, N is the total 
number of nodes in the network, and j= 1, 2, 3 … N. 

• Let Uj be the subset of nodes in the network which are 
neighbors of vj, i.e. Uj is the neighborhood of vj. It follows 
that vj ∉ Uj and also Uj ⊂ V. 

• Let Δt be the period of time elapsed between two points in 
time t0 and t1 such that Δt = t1 – t0. 

• Let Tij be the number of packets that node vi has 
successfully sent to node vj for vj to forward to a further 
node; vi ∈ Uj, vj ∈ Ui, i ≠ j and Tij(t0) = 0. 

• Let Rij be the number of packets that node vi has 
successfully received from node vj that did not originate at 
vj; vi ∈ Uj, vj ∈ Ui, i ≠ j and Rij(t0) = 0. 

If all nodes vj ∈ V remain static for a period of time Δt 
during which no collisions occur in any of the transmissions 
over an ideal (noiseless) wireless channel, then for a node vj: 

∑∑
∈∀∈∀

=
jiji Uvi
ij

Uvi
ij tTtR

|
1

|
1 )()(                                           (1) 

Equation (1) gives the fundamental premise of the flow 
conservation principle in an ideal static network applied to 
packets rather than raw bytes. It states that if all neighbors of 
a node vj are queried for i) the amount of packets sent to vj to 
forward and ii) the amount of packets forwarded by vj to 

them, the total amount of packets sent to and received from vj 
must be equal. 

In practice networks exhibit conditions that are far from 
ideal. First of all, the wireless channel is error prone and 
packets get lost while in transit. Secondly, collisions happen 
when the network uses protocols where nodes have to 
compete for the medium, such as when the link layer protocol 
is based on the distributed coordination function (contention 
period) of the IEEE 802.11 a/b standard. In order to allow 
equation (1) to hold we propose to use a reliable MAC 
protocol such as IEEE 802.11, MACA or MACAW. 

A reliable MAC protocol at the link layer acknowledges 
each successfully transmitted packet and thus transmitter and 
receiver can maintain synchronized values of their metrics Tij 
and Rij. For instance, when node v1 needs to transmit a packet 
to v2, v1 sends an RTS frame and v2 replies with a CTS frame. 
Following the reception of the CTS, v1 sends the data which 
may collide at the receiver with the transmission of some 
other node v3 that heard neither the RTS nor the CTS frame 
for example because v3 has just moved into range. In this case 
v2 does not increase its R21 metric because it did not receive 
the data, and v1 does not increase its T12 because the packet 
was never acknowledged. Even in the eventuality that an 
ACK frame gets lost the nodes would realize the error when 
v1 retransmits the data. In this case, v2 increases its R21 metric 
the first time it receives the data packet and sends back the 
respective ACK frame. Node v1 does not increase its T12 
metric since it does not receive the ACK frame and instead it 
retransmits the packet, sending an RTS frame and waiting for 
a CTS frame. The second time that v2 receives the packet it 
will notice that the packet has been already received by 
checking the sequence control field in the MAC header, so it 
does not increase its R21 metric and it acknowledges again the 
packet as stipulated in the 802.11 standard. When v1 receives 
the ACK it will increase its T12 metric and equation (1) holds 
again. 

The use of a reliable MAC protocol in conjunction with 
the conservation of flow principle means that we are not 
susceptible to problems that arise when overhearing other 
nodes’ transmissions. Thus, problems such as ambiguous 
collisions, receiver collisions, and the ability of a node to 
control its transmission power do not exist in our approach. 
Ambiguous collisions occur when a node v1 is trying to 
determine if another node v2 is properly forwarding a packet. 
It may happen that node v2 forwards the packet to a further 
node v3, which is out of the transmission range of v1, while a 
second transmission prevents v1 from overhearing the 
forwarded packet, thus v1 will not know if the packet was 
forwarded. On the other hand, in the receiver collision 
problem v2 forwards the packet to v3 at which point a 
collision occurs. Node v1 is unaware of such a collision and 
assumes that the packet was forwarded even if v2 does not 
attempt a retransmission. Another common problem is 
caused by nodes capable of controlling their transmission 
power. Thus, v2 can transmit with enough power for v1 to 
overhear but not enough power for v3 to receive it, leaving v1 
unaware of the situation. All these weaknesses, which can be 
used by malicious nodes to disrupt the network, are due to the 
fact that overhearing is used by nodes to check for 
misbehavior in other nodes, as in [3, 23]. In our algorithm the 
nodes that maintain statistics that are used to determine 
whether the forwarding was properly made are the nodes 
actively involved in the transmission process, i.e. the 
transmitter and the receiver of each transmission. 
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However, a node may exhibit malicious behavior even if 
it is not purposefully doing so. For example, an overloaded 
node may temporarily lack the CPU cycles, buffer space or 
bandwidth to forward packets. In addition, some reactive 
routing protocols, e.g. AODV, cause buffered packets to be 
dropped if they go through a path that is even temporarily 
unavailable. For these reasons equation (1) cannot be applied 
in a rigorous manner and a threshold needs to be established 
to account for packets dropped by a node through no fault of 
its own. Equation (2), which holds for well behaved nodes, 
reflects this change: 

 
                         (2) 

The αthreshold factor can take values between 0 and 1 and as 
we shall see plays an important role in the detection power of 
our proposed algorithm, i.e. the capability of the algorithm to 
detect misbehaving nodes. The lower αthreshold is the more 
likely it is that our algorithm detects any malicious behavior. 
However, it also means that the probability of a false 
detection increases, as it can be inferred from our simulations 
(Section V). A false detection occurs when the result of a 
single evaluation of a node mistakenly determines that the 
node appears to be misbehaving. Therefore, fine tuning is 
required to reach a fair point in this tradeoff and reduce the 
probability of an incorrect accusation. 

B. Adapting Conservation of Flow to Mobile Networks 
In MANETs the neighborhood Uj of a node vj changes 

dynamically over time, making it difficult to determine those 
nodes that have transmitted or received packets to or from a 
node vj. Our scheme overcomes this problem by means of a 
limited broadcast that tracks down nodes that have been in 
contact with node vj as explained later in Section IV.C. 

Every node in the network is required to keep three tables: 
an overhead nodes table, a detection table and an accusation 
table. The overheard nodes table contains the IDs of those 
nodes that have been overheard recently through 
promiscuous listening. Entries in this table are removed once 
they go stale (e.g. if a node in the table has not been 
overheard in the last t seconds). This process helps a node vj 
to keep track of nodes that have become part of its 
neighborhood Uj while they were actively intervening in the 
network. The detection table contains the IDs of those nodes 
that have been detected as misbehaving and the number of 
times their misbehavior has been reported. Finally, the 
accusation table keeps the IDs of those nodes that have been 
accused of misbehavior. Nodes are typically accused of 
misbehavior because they have reached within a predefined 
period of time the number of misbehavior detections required 
to be accused. 

C. Algorithm 
The core parts of our algorithm are detailed in the 

pseudocode shown in figure 1.  A node vi maintains a table 
with two metrics Tij and Rij (Fig. 1.a), which contains an entry 
for each node vj to which vi has respectively transmitted 
packets to or received packets from. Node vi increments Tij on 
successful transmission of a packet to vj for vj to forward to 
another node, and increments Rij on successful receipt of a 
packet forwarded by vj that did not originate at vj. 

All nodes in the network continuously monitor their 
neighbors and update the list of those they have heard 
recently (Fig. 1.b). If the ID of an overheard node is not 

included in the table of overheard nodes a new entry is 
created. Otherwise, the existing entry is updated with a 
timestamp corresponding to the time the node was last 
overheard. Upon the creation of a new entry, a node 
schedules a task/event to check the behavior of the node 
whose ID has been saved in the new entry. Nodes randomly 
select a period of time between Tmin and Tmax to schedule the 
behavior checking task. This random selection seeks to 
reduce the possibility of two or more nodes starting a 
behavior check on the same node at the same time, wasting 
network bandwidth, battery energy and other network 
resources. 

When a scheduled task is triggered in node vi to check vj’s 
behavior (Fig. 1.c), node vi broadcasts a metrics request 
packet (MREQ) with TTL = 1 in the IP header. An MREQ 
includes the ID of the node emitting the request (SRC_ID), 
the ID of the node whose behavior is to be checked 
(CHK_ID), an MREQ_ID and a timestamp indicating the 
time at which the task was triggered. The MREQ_ID is used 
in the same way as in some routing protocols which base their 
route discovery phase on broadcasting. If a node sees an 
MREQ that has the same MREQ_ID and SRC_ID of a packet 
seen before, the MREQ is dropped. This technique prevents 
flooding packets from traversing a zone of the network more 
than once. The timestamp, on the other hand, is used to 
resolve conflicts when two nodes start a behavior check on 
the same node at almost the same time. In such cases, nodes 
can see which of the packets corresponds to the earlier 
triggered task and disregard the other. Nevertheless, two or 
more unsynchronized nodes performing a behavior check on 
the same node will generate different timestamps. In this case 
nodes receiving the MREQ packets will select the packet 
with the earliest timestamp and will reply accordingly. Thus 
our approach does not require accurate synchronization of 
the nodes’ clocks. Finally, after the MREQ packet is 
broadcast, a task is scheduled to be triggered a period of time 
Tmax (maximum elapsed period of time without checking an 
active node’s behavior) later.  This means it is highly unlikely 
that the same node will originate two successive checks of 
another node, and gives other nodes a chance to perform the 
behavior check. 

The handling of requests (Fig. 1.d) illustrates the heart of 
our limited broadcast algorithm. When a node receives an 
MREQ it first checks if the CHK_ID is in its table of 
overheard nodes; if it is not the node ignores the MREQ and 
discards the check. However, if the CHK_ID appears in its 
table then it rebroadcasts the MREQ with TTL = 1 in the IP 
header. Setting the TTL to one allows our algorithm to 
control how far the broadcast of the MREQ is to go, instead 
of leaving this task to the IP protocol. Thus, every MREQ 
travels only one hop at a time, and is then analyzed and 
rebroadcast if the protocol so determines. By following this 
algorithm, our protocol is capable of tracking down nodes 
that have been in contact with the checked node, as illustrated 
in Figure 2. We assume transmissions can be overheard by 
vertically, horizontally and diagonally adjacent nodes. In the 
Figure, node v7 is first in position a where it can be overheard 
by nodes v1, v2, v3, v6, v8, v11, v12 and v13. Each of these nodes 
makes an entry in their table of overheard nodes when v7 first 
transmits and each of them schedules a task to check its 
behavior. At some point in time, v7 decides to move 
following the path depicted in Figure 2 coming in contact 
with nodes v14, v17, v18, v19, v20, v23, v24 and v25. It finally stops 
in position b. In the Figure the scheduled behavior check 
initiation task (Fig. 1.c) in v8 is the first to be triggered and the 
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limited broadcast commences. All nodes that have overheard 
node v7 re-broadcast the MREQ, whereas nodes such as v4, v9 
and v15 also receive the MREQ but ignore it because they 
have not overheard node v7. 

 
a. MONITORING 
if node vi successfully sends a packet to node vj 
.   increase Tij 
endif 
if node vi receives a packet successfully forwarded by node vj 
.   increase Rij 
endif 
 
b. BEHAVIOR CHECK SCHEDULING 
if node vi overhears a node vj ∈  Uk 
.   if node vj is not in vi’s table of overheard nodes 
.   .   add node vj to vi’s table of overheard nodes 
.   .   schedule an event to check vj’s behavior 
.   else 
.   .   update last time node vj was heard 
.   endif 
endif 
 
c. INITIATE BEHAVIOR CHECK 
if in node vi an event to check node vj’s behavior is triggered 
.   send a metrics request packet (MREQ) with node vj’s ID 
.   schedule another event to check vj’s behavior again at t+Tmax 
endif 
 
 
d. REQUEST HANDLING 
if node vi receives a metrics request for node vj 
.   if node vi has node vj in its table of overheard nodes 
.   .   rebroadcast metrics request packet (MREQ) 
.   .   reschedule any event to check vj’s behavior 
.   .   if node vi has metrics for node vj 
.   .   .   send a metrics reply (MREP) back to the requesting node 
.   .   endif 
.   else 
.   .   ignore request 
.   endif 
endif 
 
e. REPLY HANDLING 
if a request was sent out 
.   while there are more replies to be received for node vj 
.   .   receive reply 
.   .   acknowledge reply reception (send MACK) 
.   .   add received metrics to totals 
.   endwhile 
. 
.   if   ∑∑

∈∀∈∀

≤−
jiji Uvi
ij

Uvi
ijthreshold TR

||
)1( α

.   .   node vj is misbehaving (detection) 

.   .   send a detection alert packet (DAP) with node vj’s ID 

.   else 

.   .   node vj is not misbehaving (non-detection) 

.   endif 
endif 
 
f. DETECTION ALERT HANDLING 
if node vi receives a detection alert for node vj 
.   if node vi has node vj in its table of overheard nodes 
.   .   rebroadcast detection alert packet (DAP) 
.   .   if max_num_of_detections for node vj has been reached 
.   .   .   broadcast na accusation packet (AP) with node vj’s ID 
.   .   endif 
.   else 
.   .   ignore detection alert 
.   endif 

endif 
 
g. ACCUSATION HANDLING 
if node vi receives an accusation packet for node vj 
.   if node vi has node vj in its accusation table 
.   .   ignore accusation packet 
.   else 
.   .   add node vj to vi’s accusation table 
.   .   rebroadcast accusation packet (AP) 
.   endif 
endif 
 
h. PUNISHING ACCUSED NODES 
if node vi receives a packet from node vj 
.   if node vj is in node vi’s accusation table 
.   .   ignore packet 
.   else 
.   .   handle and process the packet 
.   endif 
endif 

Figure 1.  Our algorithm pseudocode. 

It may also happen that node v7 stops transmitting and 
receiving packets before it moves to a different network area. 
Then, after moving, v7 may become active again forming a 
new neighborhood. In this case the old and new 
neighborhoods are not connected by nodes that have 
overheard v7 and, therefore, a limited broadcast triggered in 
one neighborhood will not reach the other. In spite of this, 
our algorithm still works properly because two independent 
behavior checks will be performed on v7: one at its old 
neighborhood and another at its new neighborhood. The 
outcome of each of these behavior checks depends on the 
behavior exhibited by v7 at each neighborhood. 
 

 

Figure 2.  Example of limited broadcast to track down nodes that have  
overheard node v7. 

Once a node has decided whether to continue or not 
broadcasting a MREQ, it reschedules any pending task to 
check the behavior of the checked node specified in the 
CHK_ID field of the MREQ. The new behavior checking 
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task is scheduled in the same way as when a new entry is 
made in the table of overheard nodes, i.e. a period of time is 
randomly selected between Tmin and Tmax. In this way if the 
random selection is uniformly distributed the average 
frequency with which an active node’s behavior is checked 
is: 

)(
2

2/)(
1_

maxminmaxmin TTTT
freqavg

+
=

+
=                          (3) 

The last task a node performs when it receives a MREQ is 
to check if it has any metrics (Rij or Tij) relating to the node 
being checked. If any of the metrics has a value other than 
zero the node returns a metrics reply packet (MREP) (Fig. 
1.d) containing the metrics, but if the value of both metrics is 
zero then the node does not send back any response. In our 
scheme a metrics reply packet is returned to the node that 
originated the MREQ following the reverse of the MREQ’s 
path. This requires nodes to set a backward pointer when they 
receive an MREQ. This approach avoids the high overhead 
produced by reactive routing protocols when they perform 
route discovery for many MREP packets. 

Reply handling is executed in the node that initiated the 
MREQ. This node, v8 in Fig. 2, waits for a period of time in 
order to give all nodes with metrics about the checked node 
the opportunity of replying. When the time expires, the node 
checks the behavior of the analyzed node by verifying that 
equation (2) holds (Fig. 1.e). If it does not, this is considered 
a detection and a detection alert packet (DAP) containing the 
detected node ID is broadcast with TTL = 1 in its IP header. 
Detection alert packets are broadcast in the same way as 
MREQs, i.e. they follow our limited broadcast algorithm 
(Fig. 1.f). 

Due to the nature of our algorithm nodes are not perfectly 
synchronized with each other. A MREQ will reach close 
nodes faster than nodes placed a few hops away. The last 
nodes to receive the MREQ have enough time to send or 
receive some extra packets to and from the analyzed node, 
thus unbalancing the values of the Tij and Rij metrics. This 
discrepancy, in which some packets may have been sent to 
the node being analyzed but not yet forwarded by it, is 
accommodated by αthreshold. 

A problem that has been detected in our simulations has 
its roots in the dynamic nature of MANETs. Nodes receiving 
a MREQ with non-zero metrics for the checked node send 
back their reply. However, such replies sometimes get lost 
due to collisions, noise in the wireless channel or link/path 
breakages due to the mobility of the nodes. If the value of the 
metrics contained in the lost reply is small compared to the 
total obtained after adding up the replies that do not get lost, 
αthreshold can accommodate them and equation (2) holds. 
Unfortunately, this is not always the case and some of those 
replies that get lost contain key information for the 
calculations and the checked node is then falsely detected as 
misbehaving. This is one of the reasons why an accusation 
should not be made based on a single detection. Using a 
single detection to accuse a node is not sufficient since such 
an approach may lead to false accusations against correctly 
behaving nodes. Our scheme in which multiple detections by 
different nodes are necessary to accuse a node is fairer to 
well-behaved nodes, while keeping a high probability of 
correctly accusing misbehaving nodes. Additionally, to 
circumvent the lost replies problem we propose an optional 
module to our algorithm. A node receiving an MREP as it is 
forwarded towards its destination (i.e. the node performing 

the behavior checking task) will also send a metrics 
acknowledgement packet (MACK). Thus, nodes 
sending/forwarding an MREP wait for an MACK from the 
next hop in the route. If the confirmation does not arrive then 
they retransmit the MREP. The process is repeated up to 
MAXRetx retransmission retries before giving up. The results 
obtained in our simulations have demonstrated that this 
technique can significantly improve the results in MANETs 
with a high degree of mobility. Simulations have also shown 
that the most significant improvement can be seen when 
comparing the results for MAXRetx=0 (without retransmitting 
any reply) and MAXRetx=1. Subsequent increases to MAXRetx 
improve the results further but not significantly. 

The handling of detection alerts (Fig 1.f) is also 
determined by our limited broadcast algorithm. This means 
that the information to accuse a node of misbehavior is 
collected locally rather than globally. When a node receives a 
detection alert packet (DAP) it first checks if the reported 
node ID contained in the received packet is present in its table 
of overheard nodes; if it is not the node stops broadcasting 
the DAP. However, if the ID appears in its table then it 
rebroadcasts the DAP with TTL = 1 in the IP header. Thus, 
nodes can control how far the DAP broadcast is to go in the 
same way they do with a MREQ. For instance, assuming that 
v8 in Fig. 2 detects that v7 is misbehaving, the DAP follows 
the same path as that depicted in the Fig. 2 for a MREQ 
packet. Although this approach prevents nodes from 
generating excessive network overhead, it may also permit 
malicious nodes constantly changing their geographical 
position in a clever manner (without going back to previously 
visited areas) to avoid being accused. After a node has 
decided whether continue broadcasting a DAP or not, it 
checks if an entry for the reported node ID has been already 
created in its detections table. If it has not a new entry is 
created with its field number of detections equal to one. If the 
entry is already present its number of detections is increased 
and then compared against a detections threshold. When the 
number of detections reaches the detections threshold in less 
than a predefined period of time Tthreshold there is enough 
evidence to accuse the reported node of misbehavior. 
Therefore, an accusation packet (AP) is broadcast in a 
network wide fashion so that access is denied to the reported 
node all over the network. 

Nodes that receive an accusation packet (Fig. 1.g) 
examine their accusation tables to see whether the reported 
node has been accused previously. When an AP with a newly 
accused node is received a new entry is created in the 
accusation table and the broadcast of the AP continues. 
Otherwise, the packet is ignored and dropped to prevent 
unnecessary network traffic. Finally, all nodes in the 
MANET are responsible to ensure that packets coming from 
an accused node (a node present in their accusation table) are 
immediately dropped (Fig. 1.h). This approach denies 
misbehaving nodes any chance to have their packets 
transmitted in the network as well as to participate in route 
discovery, thus preventing them from causing further 
disruption in the communication process. 

 

V. EVALUATION 
We perform our simulations using the GloMoSim 

simulation package. The results presented for each value are 
the average of 10 simulation runs. Tests with a larger number 
of simulations (e.g. 20) give results that vary typically no 
more than 1% from those presented here. Unless explicitly 
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stated otherwise our simulation parameters, which 
correspond to typical values used by other authors, take the 
following values: i) nodes move according to the random 
waypoint mobility model with a speed randomly chosen with 
uniform distribution between 0ms-1 and 10ms-1, this yields a 
mean node speed of 5ms-1 and a speed standard deviation of 
2.89ms-1,  ii) the pause time takes a value that is exponentially 
distributed with mean 30 seconds, iii) the wireless 
transmission range of every node is 100 meters, iv) the link 
capacity is 2 Mbps, v) the MAC layer protocol is the IEEE 
802.11 DCF, vi) the underlying routing protocol is AODV, 
and vii) the total simulation time for each scenario is 1800 
seconds. Our results are presented in two parts: part A 
focuses on the detection power of our algorithm, i.e. how 
well our algorithm can distinguish between well behaved and 
misbehaving nodes, and part B focuses on the capability of 
our algorithm to accuse misbehaving nodes and improve the 
average network throughput while maintaining an acceptable 
network overhead. 

A. Detecting Misbehaving Nodes 
An important parameter to evaluate the effectiveness of 

an approach that detects and accuses misbehaving nodes is its 
detection power. In this section we present results that 
demonstrate that our approach has a high probability of 
detecting truly misbehaving nodes while maintaining a low 
probability of performing false detections, i.e. wrongly 
detecting a well behaved node as a misbehaving one. For this 
set of results the network was set-up with 40% of its total 
nodes misbehaving by not forwarding all packets. Nodes 
check the behavior of active nodes within a period chosen 
uniformly between 40 and 60 seconds, and keep any 
overheard node in their tables for 120 seconds after the last 
time they are heard. On average an active node is checked 
approximately 36 times in each 1800 second simulation. The 
principal metric in our tests is the percentage of detections 
and it is assessed in terms of misbehavior threshold and node 
speed. 

We initially consider our misbehavior detection algorithm 
in terms of the misbehavior threshold, which is the parameter 
αthreshold in equation (2), i.e. the maximum percentage of 
packets that a node is allowed to drop without being detected 
as a misbehaving node. In order to see the effect of the 
misbehavior threshold on nodes, simulations were carried out 
with networks containing 20 and 60 nodes, and areas of 
40 000m2 (200m*200m) and 120 000m2 
(346.41m*346.41m) respectively. These values ensure that 
node density is preserved between both scenarios. We varied 
both the packet drop probability of misbehaving nodes and 
the misbehavior threshold between 0% and 100%. 

Figures 3 and 4 show the percentage of positive 
detections as a function of misbehavior threshold for nodes 
exhibiting different probabilities of misbehavior for 
networks with 20 and 60 nodes respectively. It can be 
inferred from both graphs that the criterion to select an 
adequate misbehavior threshold depends on the level of trust 
required in the network as well as on network characteristics 
such as network size and node density. The lower the 
threshold is the more packets nodes need to forward to be 
considered well-behaved. However, since characteristics 
inherent to MANETs such as mobility and the noisy wireless 
medium can cause some packets to be lost (including packets 
of our own protocol), it also means that an increasing number 

of correctly behaving nodes can be falsely detected as 
misbehaving ones. 
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Figure 3.  Percentage of positive detections as a function of the increasing 
misbehavior threshold (20 node network). 
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Figure 4.  Percentage of positive detections as a function of the increasing 
misbehavior threshold (60 node network). 

A similar problem occurs with misbehaving nodes that 
drop a small percentage of packages, e.g. less than 10% of 
packets. The graphs show how the less misbehavior a node 
exhibits the more its curve resembles that of a well behaved 
node, making distinguishing between them a complex task. 
Finally, it can also be seen from Fig. 3 and Fig. 4 that 
selecting a misbehavior threshold equal to a node’s 
misbehaving probability prevents our approach from 
identifying misbehaving nodes with certainty, i.e. the 
probability of detection is approximately 50%. These 
occurrences are all contained in the zone between 40% and 
60% probability of detection in the figures. 

Selecting an acceptable or tolerable level of misbehavior 
x in a network is a policy decision. This policy then allows a 
value of αthreshold to be set depending on the desired detection 
probability. For example, for a detection probability of >90% 
our results suggest that αthreshold should then be set at 
approximately x-0.1 for the 20 node network and x-0.15 for 
the 60 node network. 

Our second set of results assesses the performance of our 
misbehavior detection algorithm in terms of the degree of 
mobility of the nodes in the network. This time the 
misbehaving nodes drop packets with a 50% probability 
while the misbehavior threshold is kept at 40%. The mean 
node speed varies between 0ms-1 (a static network) and 
20ms-1 while the speed standard deviation for all 
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measurements is 0.58ms-1. Whereas Fig. 5 is plotted for 
misbehaving and well-behaved nodes in a 20 node network, 
Fig. 6 is plotted for misbehaving and well-behaved nodes in a 
60 node network. 

It can be seen from Fig. 5 that our misbehavior detection 
protocol is not significantly affected by the speed of the 
nodes in small networks. Our approach robustly keeps a gap 
between misbehaving nodes and correctly behaving nodes 
making it easy to spot nodes that are purposefully violating 
the principle of flow conservation. The fluctuations seen in 
both curves are likely to have occurred due to the sporadic 
losses of metrics reply packets (MREP) rather than the node 
speed. However, the same is not true for large scale networks, 
as it can be appreciated from Fig. 6. As the mean node speed 
increases the gap between misbehaving and correctly 
behaving nodes grows smaller. Nevertheless, a good level of 
discrimination is maintained. These results support our 
hypothesis that using a single detection to accuse a node is 
not sufficient since such an algorithm may lead to false 
accusations against correctly behaving nodes (Section IV.C). 
An accusation should be the result of a distributed consensus 
mechanism such as that proposed in SCAN [3] to ensure 
fairness to well behaved nodes while keeping a high 
probability of correctly accusing misbehaving nodes. 
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Figure 5.  Percentage of detections as a function of the increasing  
mean node speed (20 node network). 
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Figure 6.  Percentage of detections as a function of the increasing  
mean node speed (60 node network). 

B. Accusing Misbehaving Nodes 
This section presents first an evaluation of the average 

throughput gain offered by our proposed algorithm to 
networks affected by nodes that drop packets in a 

20, 40, 60 and 120 nodes. Then, our final set of results 
analyzes the network overhead created by our approach and 
how it compares against the total traffic produced in the 
network. Networks simulated in this section were set up with 
20% of its total nodes misbehaving by dropping packets with 
60% percent probability (d = 0.6). The misbehavior threshold 
was 40% (αthreshld = 0.4). 

In order to see the im

probabilistic manner. Results are shown for networks with 

provement that our approach can 
bring to networks affected by packet forwarding misbehavior 
we consider the average throughput in terms of the mean 
node speed. Our graphs present results for networks without 
misbehaving nodes, networks with misbehaving nodes but 
without defense mechanisms in place, and networks that use 
our algorithm to deny access to misbehaving nodes. Results 
are displayed for networks containing 20, 40 and 60 nodes, 
which are distributed over areas of 40 000m2 (200m*200m), 
80 000m2 (282.84m*282.84m), and 120 000m2 
(346.41m*346.41m) respectively in order to maintain a 
constant node density. 
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Figure 7.  Average network throughput as a function of the increasing 
mean node speed (20 node network). 
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Figure 8.  Average network throughput as a function of the increasing 

node 
net

mean node speed (40 node network). 

Figures 7, 8 and 9 show curves for 20, 40 and 60 
works respectively. Each graph displays the average 

network throughput as a function of the increasing mean 
node speed for a) networks without misbehaving nodes (No 
Misbehavior), b) networks making use of our detection and 
accusation approach (Our Approach), and c) networks with 
misbehaving nodes but with no means of defending 
themselves from any type of attack (Misbehavior Alone).  As 
it can be seen from the figures our approach improves the 
network throughput when it is used in networks exhibiting 
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packet forwarding misbehavior. However, the average 
throughput cannot reach that of a network where there is not 
any misbehavior present. This is due to the fact that our 
algorithm requires of certain amount of time to collect the 
necessary data to detect and accuse misbehaving nodes. 
Thus, during this initial phase (data collection) misbehaving 
nodes can drop packets before being accused and isolated 
from the network. 
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Figure 9.  Average network throughput as a function of the increasing 
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ccusation 
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gen

mean node speed (60 node network). 

With the purpose of seein
nges in a network’s node density our next set of results 

has been carried out in a network that preserves the same area 
as our previous 60 node network (120.000 m2 = 
346.41m*346.41m), but has double its number of nodes (120 
nodes) so as to double its density. Figure 10 presents results 
for networks without misbehaving nodes, networks with 
misbehaving nodes but without defense mechanisms in place, 
and networks that use our algorithm to deny access to 
misbehaving nodes. 

From figure 10 it can
networks with relative high node density. The network 

throughput of networks using our approach improves when 
compared against networks containing misbehaving nodes 
that are neither avoided nor penalized. However, networks 
that do not present node misbehavior at all still exhibit the 
best performance in terms of network throughput. 

A network that implements our detection and a
orithm looks at bootstrap as a network without a 

protection scheme. However, as time elapses our algorithm 
starts detecting and accusing those nodes that drop a fraction 
of packets above a preset misbehavior threshold αthreshold. 
Consequently, in such a network any misbehaving nodes will 
eventually be detected, accused and denied network access, 
allowing the network to obtain an overall performance close 
to a network where nodes do not misbehave. 

The final set of results assesses the netw
erated by our misbehavior detection and accusation 

algorithm as a function of the increasing mean node speed, 
and compares it against the network overhead produced by 
four constant bit rate (CBR) connections present in the 
network. Although CBR traffic is generated at the application 
layer, it is accounted for at the TCP/IP layer in the form of 
UDP network overhead. In this set of simulations 
misbehaving nodes drop packets with a 60% probability 
(d=0.6), the misbehavior threshold αthreshold is 40%, the node 
speed varies between 0ms-1 (a static network) and 20ms-1, 
and the speed standard deviation is set at 0.58ms-1. The 
network resources are calculated by adding one each time a 

packet crosses a different link: thus a MREQ packet 
broadcast that traverses three hops (links) contributes three 
packet-links to the total. Results are displayed for a network 
containing 40 nodes distributed over an area of 80 000m2 
(282.84m*282.84m). 

The network overhead shown in Fig. 11 is the sum of the 
overhead produced by the MREQ, MREP, MACK, DAP and 
AP packets. It is least when the nodes are stationary and 
increases with the mean node speed. The reader may be 
confused to see the UDP overhead to be the lowest in a static 
network (mean node speed = 0 m/sec). This can be explained 
as follows. In static networks link breakages are due only to 
collisions and the channel noise. This means that packets are 
more likely to arrive to their destination without need for 
retransmissions. This yields a high throughput and a lower 
network overhead since packets arrive constantly to their 
destination and traverse less times each link. On the other 
hand, in dynamic networks mobility frequently cause link 
breakages, retransmissions take place over almost every link 
increasing the network overhead. The throughput, instead, 
decreases due to the fact that fewer packets reach their 
destination. In contrast, the overhead generated by our 
scheme is higher in dynamic network because a node has 
greater probability to become in contact with more nodes. 
Therefore, more behavior checking tasks are scheduled 
which translates in a higher number of MREQ, MREP and 
MACK packets being transmitted. 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 2 4 6 8 10 12 14 16 18 20

Mean Node Speed [m/sec]

A
ve

ra
ge

 N
et

w
or

k 
Th

ro
ug

hp
ut

 [b
its

/s
ec

]

No Misbehavior
Our Approach
Misbehavior Alone

 

Figure 10.  Average network throughput as a function of the increasing 
mean node speed (120 node network). 
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Figure 11.  Network overhead as a function of the increasing 
mean node speed (40 nodes). 



GONZALEZ et al.: DETECTION AND ACCUSATION OF PACKET FORWARDING MISBEHAVIOR IN MOBILE AD-HOC NETWORKS                                            191 
 

MANETs requires that they
be able to network. Limit
resources m
mis

den

s in MANETs 
cau

thre

[1]  Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW
Media Access Pr e Proc. ACM SIGCOMM 
Conference ctures, Protocols and 

ber 2002. 

 hoc on-demand distance vector 

 a new channel access method for packet radio,” in 

 dynamic destination-sequenced 

ondon, UK, September 1994. 

r (AODV) routing”, 

amic source routing 

[16] ita-Rotaru, and H. Rubens, “An 

Efficient 

02. 

atos, and Z. Haas, “Secure data communication in mobile 

g robust and 

e Ad hoc Networks”, in Proc. 6  ACM 

mber 2003. 

 
in 2002, and the MSc degree from the University 
of Surrey, Guildford, in 2005. He is currently 

iversity of Uyo, 
Nigeria, in 2002, and the MSc degree in 
Communications Networks and Software from the 

VI. CONCLUSIONS 
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behave by not correctly forwarding packets (selfish 
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In this paper we have presented an algorithm that is 
capable of detecting and accusing nodes that exhibit packet 
forwarding misbehavior. The algorithm does not require high distance-vector routing (DSDV) for mobile computers”, in Proc. ACM 

SIGCOMM Conference on Communications Architectures, Protocols 
and Applications, Lsity networks in which many nodes can overhear each 

others’ received and transmitted packets, but instead uses 
statistics accumulated by each node as it transmits to and 
receives data from its neighbors. Also, our algorithm does not 
interfere with the routing protocol which allows for its use 
regardless of the routing strategy employed. 

We have shown that we can detect nodes that misbehave 
by dropping a significant percentage of packets. Detection is 
successful in spite of inherent packet losse

sed by noisy links, mobility, and packet losses due to 
routing protocol behavior. To avoid falsely accusing 
correctly behaved nodes of misbehavior an accusation in our 
approach is based on a predefined number of detections 
performed not necessarily by the same node. 

Selecting an acceptable or tolerable level of misbehavior 
in a network is a policy decision that enables us to choose an 
adequate misbehavior threshold α . Hthreshold owever, this 

shold also depends on dynamic network parameters such 
as node density and network area. Therefore finding a way to 
calculate an optimal misbehavior threshold in a dynamic 
manner is of great importance, especially in autonomic 
environments where the network should automatically adjust 
its parameters so as to adapt itself to changes in its 
surroundings. In this respect our future research will focus on 
the study of methods to collect and synthesize network 
context information, and techniques to calculate an adaptive 
misbehavior threshold using such information. 
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