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The control, governance, and management of the web have become increasingly centralised, resulting in security, privacy, and
censorship concerns. Decentralised initiatives have emerged to address these issues, beginning with decentralised file systems. These
systems have gained popularity, with major platforms serving millions of content requests daily. Complementing the file systems are
decentralised search engines and name registry infrastructures, together forming the basis of a decentralised web. This survey paper
analyses research trends and emerging technologies for content retrieval on the decentralised web, encompassing both academic
literature and industrial projects.

Several challenges hinder the realisation of a fully decentralised web. Achieving comparable performance to centralised systems
without compromising decentralisation is a key challenge. Hybrid infrastructures, blending centralised components with verifiability
mechanisms, show promise to improve decentralised initiatives. While decentralised file systems have seen more mature deployments,
they still face challenges such as usability, performance, privacy, and content moderation. Integrating these systems with decentralised
name-registries offers a potential for improved usability with human-readable and persistent names for content. Further research
is needed to address security concerns in decentralised name-registries and enhance governance and crypto-economic incentive
mechanisms.
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1 INTRODUCTION

Over the past decade, the World Wide Web has become a significant part of people’s lives. The web supports the global
economy, provides entertainment and is often the primary source of information about the world [208]. Furthermore,
the web has a tremendous impact on shaping people’s views, opinions, and choices [7].
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In recent years, the infrastructure providing the core web services on the Internet has become increasingly consoli-
dated, with a handful of players controlling most of the market [15]. While these players provide outstanding services
and Quality-of-Experience (QoE) for users, their centralised model of service delivery has introduced several drawbacks
such as lack of transparency [38], lack of privacy-protection [52], a single point of failure [181], and censorship [71].

Recent initiatives in research and industry aim to tackle these issues by creating an open and decentralised web,
which seeks to fix the problems that come with centralisation—in particular, they focus on openness, security by
design, and decentralised governance and control. This is achieved by using transparent, open-source software and
Peer-to-Peer (P2P) architectures [135], allowing anyone to join and contribute to the system. Furthermore, tools like
blockchains [195], proofs of work [102] and self-certification through content addressing [26] are used to establish trust
between anonymous users and reliably reward system contributors.

While the objective of the decentralised web is to achieve decentralisation—i.e. redistribution of ownership and
control from centralised infrastructures to individual users—it is an open question whether this can be achieved in
practice. Current web centralisation is mainly driven by economic concentration, and whether the same would happen
to the decentralised web is unclear. Furthermore, interacting with untrusted, anonymous peers requires additional
security mechanisms that are difficult to design and can lower the system’s overall performance. Finally, the current
centralised model emerged from ad-monetised services usually delivered with high QoE to users without monetary
compensation. Although end-users do not directly pay for these centralised services, the service providers collect
user-related data to display targeted advertisements, making the ecosystem economically viable [138]. To be successful,
the decentralised web ecosystem would require appropriate rewards for service providers and content creators while
combating users’ intrinsic reluctance to spend money.

1.1 Contributions

In this paper, we provide a survey on content retrieval on the decentralised web. We explore whether the decentralisation
objective is realised by investigating the incentive structures, as well as the performance, security and privacy aspects of
the content retrieval process (Fig. 1), starting with decentralised search engines, then decentralised name-registries, and
finally decentralised file systems.

We identify these focus areas as key components for which decentralised alternatives must be developed. For each of
these, we first describe the status quo, i.e. how operations are performed in the current web. We then compare them
with state-of-the-art decentralised implementations and proposals from both academia and industry. We use insights
gained throughout the process to define a number of open issues.

Many of the discussed platforms lack clear documentation and a vision of integration to realise a decentralised web.
Furthermore, terms used in documentation differ greatly across projects, and the fast development pace in the field
makes obtaining a clear view and deep understanding challenging. With this work, we hope to clear up some of the
contradictions and confusion. By defining a clear framework, we help to provide a big picture to understand and define
future research opportunities.

1.2 Scope

While the documentation of novel decentralised web projects is often scarce, their underlying concepts are usually
derived from an extensive body of research. In this work, we utilise this underlying literature for background but do not
go in-depth into the specific implementations. Rather, we focus on recent initiatives over the period 2009-2024 that have
produced working implementations, as well as research proposals. While we give an overview of how components are
Manuscript submitted to ACM
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Fig. 1. Decentralised content retrieval process.

handled in the current web, we do not mention specific centralised solutions except when comparisons are appropriate.
Furthermore, this paper highlights architectures, their properties, and their aims. However, it is too early to definitively
conclude that they can live up to their claimed potential, and we have added this nuance in the open issues. This work
mainly serves as a general analysis of the decentralised web at large, a framework for analysing and implementing new
initiatives, and the first comprehensive body of work looking at decentralised web technologies and their role in content
retrieval analogous to the current web. Therefore, this survey is relevant to industry practitioners and researchers who
aim to better understand the field at large.

1.3 Methodology

To survey a relevant body of work we started by querying research search engines (e.g. Google Scholar) for works
which contain {decentralised + web} in their title, keywords, or abstract. We also queried for {distributed + web}, which
generally returned works of the prior P2P era. We used these earlier works and broader literature related to {web +

content retrieval} to identify key components and structure our framework. We also looked at related work specifically
in our key components of {search engine, name registry, file system}, and surveyed works which combined components
with keywords like {web3, blockchain}.

Besides academic works, we surveyed industry contributions, including white papers, yellow papers, blog posts, and
more. We paid particular attention to resources that were additionally cited in academic sources to curate a high-quality
body of work without a marketing focus, obscure or incorrect jargon, or over-optimistic claims. To verify quality, we did
manual inspection and selection. We emphasise industry contributions because the decentralised web remains a rapidly
evolving field, with many concepts yet to be formalised in research. We always inspect the underlying technology and
design and check third-party sources to ensure objectivity.

The rest of this survey is structured as follows. Section 2 gives an overview of web content retrieval, provides a
timeline of advancements, and presents a systematisation framework for structuring this survey. We subsequently
provide general background on key concepts in Section 3. In Section 4, we discuss search engines; in Section 5, we
describe name-registry; and in Section 6, we examine decentralised file systems. Finally, we review related work in
Section 7, and summarise our key findings and conclude the paper in Section 8.

2 WEB CONTENT RETRIEVAL

In this section, we describe the process of retrieving web content, discuss the need for decentralisation, and define our
systematisation framework.

Manuscript submitted to ACM
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Current web Decentralised web
Trust Centralised Root of Trust Distributed Trust Model

Retrieval Location-Centric Content-Centric
Addressing URL Hash-based

Infrastructure Centralised Entities (e.g. DNS) Node Resource Sharing
Benefits Performance, Accessibility, Scalability Censorship Free, Availability

Drawbacks Power Imbalance, Transparency, Privacy, Replication Usability, Incentivisation, Interoperability
Table 1. Comparison of the current and decentralised web.

2.1 Retrieving Content on the Current Web

Content retrieval on the current web involves a multi-step process. Often, a search-based workflow is used, where users
submit a query to their favourite search engine with a description of a content object of interest in the form of a few
keywords. The description may include a content creator or publisher name, a real-world description of the content,
and more. In turn, a search engine returns results consisting of web references; that is, the Uniform Resource Locators

(URLs) such as https://example.com/category_B/subcategory_C/Foo/.
With its “hostname/pathname” structure, a URL referencing a content object embeds both the hostname of the

content’s provider and the (server-specific) location of the object within the directory structure of the hosting provider’s
server(s). As a result, moving a content object to a different provider invalidates existing reference names to the content.
Furthermore, replicating an object across different servers requires duplicating server-specific directory structures
across different servers; this makes replication and movement of content difficult in the current web [196] and has led
to increased centralisation.

Once a user obtains a valid URL of a content object, the next step in the content retrieval process is to perform a
name resolution on the URL’s hostname component to obtain the content provider’s storage location. In the current
web, the Domain Name System (DNS) performs the name resolution service through a distributed database storing
mappings from domain names (i.e. hostnames) to IP addresses (i.e. locations) of hosts. Users can retrieve a content
object once a host location is resolved through the DNS.

In the current web, content producers increasingly rely on Content Distribution Networks (CDNs) for large-scale
content distribution, such as video streaming to many geographically distributed users. These networks use proprietary
technologies to serve content requests using a distributed infrastructure of content caches. Although CDNs achieve
scalable content distribution using a distributed system of centrally controlled caches, one can argue that the need for
CDNs in the current web stems from the lack of a viable decentralised content delivery technology. Several decentralised
web projects [26, 180, 210] aim to replace the CDNs with decentralised file systems, which we discuss in Section 6.

The current host-centric content retrieval ecosystem on the web is exposed to serious flaws and vulnerabilities
because of centralisation in control and ownership of the entities involved, such as the search engines, the DNS, and the
content storage (e.g. Cloud) providers. At present, there is a large power imbalance between these centralised entities
and users, which allows these centralised parties to influence users by adding bias and censorship, tracking and selling
personal data, influencing public opinion, and so on. The users are expected by default to trust these centralised entities
unconditionally (i.e. a centralised trust model), while they operate without much transparency.
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2.2 Retrieving Content on the Decentralised Web

In a distributed trust model, the content retrieval can no longer depend on trusted third parties (e.g. a single root of
trust as in a Public-Key Infrastructure [PKI] or DNS). Instead, the users must ideally be able to verify each step of the
content retrieval process (Fig. 1). For example, the users must be able to verify the binding between the contents of a
retrieved data object and its reference name; that is, to verify that the object is the correct one for the given reference
name without a centralised, third-party vouching for its provenance (i.e. the data object came from the appropriate
source). This verification can be achieved by technical solutions such as self-certifying names and zero-knowledge
proofs [72]. We further elaborate on the challenges and tools that can be used to establish distributed trust in Section 3.

The decentralised web aims to evolve the current web away from a host-centric paradigm and instead use a content-
centric paradigm where reference names (i.e. content identifiers or CIDs, for short) directly identify content objects (also
referred to as content addressing). This allows retrieval of content objects from anywhere in the network, rather than
being restricted to retrieving them only from one of the content providers’ locations. The location-independence of this
paradigm is important because frequent replication and migration of content is the expected norm in the decentralised
web. Furthermore, decentralised services are realised by nodes in the network who share their resources for the network
to outsource tasks like storage, computation, and bandwidth to them. Incentives and rewards play an important role in
ensuring fair compensation for resource sharing and mitigating against malicious entities. Table 1 briefly illustrates the
key differences between the current and decentralised web.

Similar to the current web, we envision a search-based workflow to take place in the decentralised web, starting with
decentralised search engines. Because CIDs are typically not human-readable for reasons of security2 (see Section 3.2),
canonical names for content have an important functionality to serve as names that humans can refer to. A decentralised
name-registry service replaces the DNS and performs the resolution of canonical names to CIDs. For the actual content
retrieval, an extra resolution is needed to obtain location(s) from CIDs, and this is typically performed by decentralised
content storage networks (i.e. decentralised file systems).

The resulting search-based content retrieval process in the current web and the decentralised web are depicted in
Fig. 1. Although the search-based workflow is popular, other workflows exist to access content on the current web, such
as following hyperlinks from one page to another and sharing hyperlinks to objects on Cloud-based shared drives. In
this work, we focus on the search-based workflow, as it encompasses the other workflows—i.e. the other workflows start
from later points in the same sequence of events, and therefore analysing only the search-based workflow is sufficient.

2.3 Timeline

The content of this paper mainly spans the time period between 2009 and 2024. However, there is a large body of
foundational works and developments. To illustrate the relations and chronological advancements, Table 2 presents a
timeline of developments, their benefits, and key works studied.

The period 1980-2000 is characterised by the emergence of fundamental structures like the DNS and the web itself,
bringing about global connectivity. Going into the 2000s, P2P networks emerged, as well as web 2.0. In the period
2005-2010, social media’s exponential growth transformed connectivity, communication, and business interactions
while innovations like blockchain and mobile edge computing emerged.

Between 2010 and 2015, the rise of smart contract blockchains, decentralised name-registries, and novel storage and
search technologies increased the focus on decentralisation, security, and transparency. Most recently, developments in

2CIDs are typically self-certifying names to secure the binding between name and content object it refers to.
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Time Event Benefits Notable Works
1980-2000 Introduction of the DNS Human-readable name resolution, scalability, standardisation [14, 136, 184]

Introduction of the Web Global connectivity, information accessibility [31, 98]
Unstructured P2P Decentralised information storage and retrieval with low overhead [32, 107, 165]

2000-2005 Structured P2P Efficient decentralised content retrieval, scalability [129, 160, 178]
Introduction of Web 2.0 Dynamic content, further engagement and collaborations [45, 142, 148]

Popularity of Search Engines Information accessibility, content discovery, monetisation [33, 34, 42]
2005-2010 Growth of Social Media Connectivity, communication, global sharing, business [128, 153]

Introduction of Blockchain Decentralised trust, cryptocurrency, security, transparency [66, 143, 212]
Mobile Edge Computing Reduced latency, improved performance, scalability [123, 125, 168]

2010-2015 Smart Contract Blockchains Decentralised and trustless execution, incentivisation [35, 140, 201]
Decentralised Name Registry Decentralisation, security, immutability, censorship resistance [92, 213, 221]
Novel Decentralised Storage Availability, security, persistence [26, 50, 193, 210]
Novel Decentralised Search Censorship resistance, transparency, decentralised governance [94, 109, 155, 159]

2015-present NFTs and Blockchain Scalability Immutable ownership records, business models, improved performance [75, 198, 199]
Novel Resource Sharing and Web3 Collaboration, incentivisation, trust, transparency [28, 141]

Table 2. Timeline of key web advancements.

Search Engine Name Registry File System

Indexing RankingCuration AddressingRetrievalStorageResolutionRegistration

Fig. 2. Overview of key content retrieval components on the web.

non-fungible tokens (NFT) and blockchain scalability have contributed to a vision of a decentralised web, with shared
services and resource sharing.

2.4 Systematisation Framework

We use the process of traditional web retrieval, as described in Section 2.1, to define a framework which can be applied
to study decentralised web initiatives. As shown in Fig. 2, we divide web retrieval into three main components: search
engine, name-registry, and file system. For each of these areas, decentralised initiatives should be developed. This
framework should allow them to position themselves amidst others in the space and define how interoperability can be
achieved.

In order to search for content on the decentralised web, users will need to use a search engine, which can index web
content. The search engine also needs to decide which content to index through curation and in what order results are
returned to users, which is decided by a ranking algorithm. Indexing and retrieval of content depend on human-readable
names (i.e. canonical names), which are linked to CIDs using decentralised name-registries. Users need to be able to
register name-to-value mappings to this service and resolve names to CIDs. Finally, content is stored on a decentralised
file system, blockchain, or a web server and needs to be retrieved from these systems using its address or CID.

Our framework identifies these orthogonal components to describe the key pillars of a decentralisedweb infrastructure.
However, in practice, many components may overlap and share underlying technologies. For example, each component
uses blockchains to promote honest participation and resource-sharing through incentives. Each component could use
Manuscript submitted to ACM
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Concept Description Variations Challenges

P2P
Networks

Distributed application architectures,
allowing for resource sharing between peers

Structured, unstructured,
hybrid

Churn, scalability,
discovery, efficiency,

security
Addressing
Web Content

Method for addressing Web content.
Content addressing uses hashing and verifiable bindings

Hash of content,
hash of public key

Human-readability,
security, decentralisation

Incentivising
Participation

Incentives for sharing resources in decentralised protocols,
often governed by smart contracts Tokens, cryptocurrency Fair exchange, sybil attacks,

reputation
Table 3. Overview of background concepts.

the same blockchain network and underlying P2P network (e.g. Ethereum [212]). To keep clarity and structure in this
work, we describe these overlapping components in the background (Section 3) and refer to them in later analyses
when relevant or distinct in implementation.

In Sections 4, 5, and 6, we will go through each of the key components in our framework and discuss the status quo
of centralised systems; after that, we discuss and compare these to decentralised initiatives, and identify open issues.

3 BACKGROUND

In this section, we provide background on key concepts in content retrieval on the decentralised web, consisting of
peer-to-peer networks, addressing of web content, and incentivisation of participation. Table 3 provides an overview of
the concepts covered in this section.

3.1 Peer-to-Peer Networks

Peer-to-Peer (P2P) networks form the basis of decentralised architectures that partition application-level tasks or
workloads between peers. Peers are equally privileged participants in the application, making P2P networks a sound
basis for the decentralised web. Peers make a portion of their resources, such as processing power, disk storage or
network bandwidth, directly available to other network participants without the need for central coordination by servers
or stable (i.e. always-on) hosts. Peers are suppliers and consumers of resources, unlike the traditional client-server
model, where roles are distinctly separate.

P2P networks implement a virtual overlay network on top of the physical network topology, where the nodes in the
overlay form a subset of the nodes in the physical network. Data is still exchanged directly over the underlying TCP/IP
network, but at the application layer, peers can communicate with each other directly via the logical overlay links.
Overlays are used for indexing, peer discovery, and to make the P2P systems independent from the physical network
topology. The two main types of P2P networks are (i) unstructured and (ii) structured.

3.1.1 Unstructured P2P Networks. Unstructured P2P networks do not impose a particular structure on the overlay
network by design; instead, they are formed by nodes that randomly form connections to each other [32, 107, 165].
Without a globally imposed structure, unstructured networks are easy to build and are highly robust to churn.

On the other hand, finding content is difficult in an unstructured network. In the earlier P2P networks, such as
Gnutella [165], the search queries were flooded through the overlay network to find as many peers as possible for the
searched data. However, flooding is unscalable as its overhead on the network grows linearly with the number of search
queries, which in turn grows with system size. The problem gets more severe for unpopular content, which is present
at only a few nodes. More recent P2P systems use slightly more scalable search mechanisms, such as random walk, as
discussed in Section 4.2.1.
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3.1.2 Structured P2P Networks. In structured P2P networks, the overlay is organised into a specific topology, and the
protocol ensures that any node can efficiently search the network for content, even if the resource is extremely rare.
The most common type of structured P2P networks implement a Distributed Hash Table (DHT) [129, 161, 166, 178, 227]
in which a variant of consistent hashing is used to assign responsibility for maintaining each content or resource to a
particular peer. This enables peers to search for resources on the network using a hash table; that is, (key, value) pairs
are stored in the DHT, and any participating node can efficiently retrieve the value associated with a given key within a
bounded number of steps (usually 𝑂 (𝑙𝑜𝑔(𝑛)), where 𝑛 is the number of peers in the network).

Unfortunately, maintaining a structured overlay topology makes this type of network less robust in networks with a
high churn rate. Maintaining a structure also exposes the network to a vast range of attacks that can be more difficult
to perform in an unstructured P2P network [187].

3.2 Addressing Web Content

Asmentioned in Section 2.2, a distributed trust model requires a secure and verifiable content retrieval process. Therefore,
the users must verify the authenticity of the binding (mapping) between reference names to the retrieved content object.
This can be achieved by using content addressing, where more importance is given to the integrity of the content,
rather than its origin.

Decentralised file systems typically use verifiable (i.e. self-certifying [130]) CIDs as reference names to achieve
verifiability without trusted third parties. Self-certifying names for content objects are typically generated using one of
the two mechanisms:

(1) Hash of the content: Generated by applying a well-known hash function to the object’s contents. The users can
apply the same hash function on the retrieved content object to verify the binding between the name and the
object.

(2) Hash of a public key: Generated by hashing a public key whose private counterpart is used to sign the content
object. In this case, the content object includes a signature, which can be used to verify the name-to-content
binding of an object. The content publisher who owns the private key typically generates the signature.

The properties of distributed trust (i.e. decentralisation), security (e.g. binding between names to object), and usability
(i.e. a system with human-readable names) are non-trivial to achieve simultaneously, as also conjectured by Zooko’s

trilemma [209], which states that naming systems can only have two of the following three properties: human-readability,

security, and decentralisation.
Among these three properties, some are contradictory. For instance, security is at odds with human-readability

because secure, self-certifying names are not human-readable due to the hash function applied. Similarly, the intrinsic
binding between a human-readable name and its content (producer) is weak, and verification of this binding through a
centralised trusted party contradicts decentralisation. Another desirable property is persistence (i.e. names should not
change when location, content or ownership changes). Ideally, a minor update to web content should not produce a
completely different name. This, however, can be at odds with the security property, because self-certifying names lead
to modifications in the names of mutable (i.e. dynamic) content upon updates to content (i.e. hash of the content) or
ownership (hash of the public key).

As decentralised web content uses hash-based addressing, they satisfy only the decentralisation and security
properties, which are discussed further in Section 6. Decentralised name-registries have the potential to “square”
Manuscript submitted to ACM
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Zooko’s trilemma; that is, achieving usability while maintaining security and decentralisation. This is done by mapping
human-readable, canonical names to CIDs in a decentralised manner using a blockchain, as discussed in Section 5.

3.3 Incentivising Participation

One of the core foundations of the decentralised web is the distribution of trust. Rather than relying on a single root
of trust, the responsibility of system upkeep is delegated to a network of nodes, who share their resources for the
protocol. As these nodes are required to spend resources for network upkeep, there needs to be incentives, financially
or otherwise, in order to keep them performing the work and keeping them honest. This can be seen as an overlapping
component of all the decentralised web components, and therefore, we now discuss resource sharing and particularly
incentivisation as essential components and refer to these in our later sections.

Although early P2P networks survived on the basis of resource sharing based on altruism [191], they eventually
failed to reach their full potential, partially due to the absence of incentives [119]. Recently, financial incentives powered
by blockchains have been implemented and studied extensively.

Blockchains are secure, immutable shared ledgers that allow for value transfer in a network without a trusted third
party. Blockchains are especially useful in decentralised web architectures due to their ability to incentivise users to
participate and contribute to a network by paying them rewards, using tools such as smart contracts [35] and off-chain
micropayment channels [75]. Blockchains allow trust to be exercised given that at least a certain percentage of the
participants are honest (e.g. more than 50%); that is, they execute the blockchain consensus protocol correctly.

However, blockchains can only ensure a fair exchange of reward for work if the resource contributors can produce
verifiable proofs of resource consumption towards getting useful work (e.g. for up-keeping) done. For example, a node
can prove that bandwidth [69], computation [66, 224], or storage [27] resources were actually provided, and a subset of
the participants in the system can collectively verify these proofs as part of a consensus protocol [23], which can then
trigger automatic rewarding of contributors for their valid proofs. Proving useful work done is not always plausible, for
instance, for continuous services that take place for a period of time. When such proofs are unavailable, beneficiaries
may issue periodic payments (e.g. using off-chain channels) to contributors (at the end of fixed or increasing time
intervals) as long as the provided service is satisfactory. However, if the counter-party is malicious, it could lead to a
loss of revenue for at least one interval, and the absence of penalties for malicious behaviour may encourage more
nodes to behave undesirably.

A well-known way to counteract malicious actions when a fair exchange is unavailable is using reputation systems.
Centralised reputation systems have been explored thoroughly for online retail [91]. More recent research [24, 53, 96]
specifically focuses on decentralised reputation systems targeted to work with blockchains [25]. These works aim
to incentivise honest collaboration between peers, as malicious behaviour results in a deduction of reputation. The
deduction in reputation, in turn, leads to lower rewards in the future, either directly [102] or indirectly due to a loss of
future revenue.

Anothermethodwhich can be used to achieve fair exchange and thereby facilitate resource sharing in the decentralised
web scenarios is using Trusted Execution Environments (TEE), which are secure computation enclaves to be used in
various use-cases. Specifically, in the case of computation outsourcing, using an enclave can maintain privacy and
correctness while greatly improving performance compared to smart contracts. A number of works use TEE’s in
combination with smart contracts to achieve distributed computation [6, 40, 49, 101, 225].

In a decentralised system, any participant can create and control an identity without the involvement of a trusted
third party. This makes it possible for malicious nodes to simultaneously use multiple identities as part of a Sybil attack.
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By generating multiple Sybil identities (that pose as real users), malicious parties can trick a fair exchange mechanism
into issuing undeserved rewards, for instance, by bypassing a reputation system or inflating the amount of actual
resources consumed by the node. To prevent such attacks, proofs of resource consumption must be Sybil-resistant. In
addition, researchers have proposed reputation systems that can identify Sybil nodes through mechanisms such as
voting [137] and social network analysis [223]. These mechanisms identify outlier nodes as Sybils in the presence of an
honest majority, e.g., by taking the absence of a node’s connections to other honest nodes in a social network as a sign
of Sybil behaviour.

In the next sections, we go through the components of content retrieval on the decentralised web.

4 SEARCH ENGINE

Curating Indexing Ranking Incentive Advertisement Decentralised Network
Function Location Search Content

Presearch [155] Crawling - - Gateway Server Y Y Y N Ethereum
Yacy [217] Voluntary Distributed Combined Local N N Y N Hybrid P2P

Crawling By Document
Brave [173] Crawling Centralised - Centralised - Y N Y -
Nebulas [146] Crawling Centralised NebulasRank Centralised N N N Y -
The Graph [159] Token Subgraph - - Y N Y Y Ethereum

Signaling At Indexer

Table 4. Overview of decentralised search engine industry projects.

In this section, we first discuss how current search engines work and identify a number of their characteristic
components. After describing the centralised components of current search engines, we introduce several decentralised
search engine architectures. We then analyse these based on how they incorporate the key components. Specifically,
we discuss how they differ in terms of curating, indexing, ranking, and incentives.

4.1 Overview of Centralised Search Engines

Currently, when a user looks for content on the web, they often start by submitting a query to a centralised search
engine consisting of one or more keywords. Proactively, the search engine has curated content to add to an index
by crawling the web. Keywords are then extracted from the content and added to an inverted index, which maps
keywords to the web pages where they can be found.

Upon receiving queries, the inverted index is used to compile a list of pages which might be relevant to the users.
These results are then ranked using a ranking algorithm and returned to the users. The centralised search engines
control what ranking mechanism (e.g. PageRank [33]) is used and are not always transparent about the specifics.
Furthermore, ranking is generally personalised, which may lead to filter bubbles [151].

To incorporate a healthy business model, most centralised search engines monetise their services by adding adver-
tisements through keyword auctions in search results, which allows the service to be freely accessible for users [42].
While the network infrastructure might be distributed, the control, management, security, and policy are centralised,
thus introducing a single point of failure that may also lead to cascade failures. As these network tasks are managed
centrally, they do not require incentives for participation. However, in a decentralised model, services likely need to
leverage alternative business models and incentives for economic feasibility.
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4.1.1 Key Challenges. There are still a number of key challenges surrounding decentralised search engines. Foremost
among these challenges is the establishment of true decentralisation, where curation, indexing, ranking, and incentive
mechanisms operate without reliance on trusted entities. Moreover, privacy and security concerns remain important
topics of attention in order to protect user data while maintaining search efficiency, robustness, and scalability. These
challenges are further highlighted in Section 4.7.

Type Addressing Location Name Registry

Blockchain Data Block Hash Blockchain Blockchain
Name-Registry

Decentralised
Storage Data Content Hash Decentralised File

System
Blockchain

Name-Registry
Traditional Web Data IP Web Servers DNS

Table 5. Classification of decentralised web content.

4.2 Implementations

We can generally classify decentralised search engines by their degree of decentralisation. The content which is being
searched can also be classified similarly. We refer to centralised data as ’traditional’ web content that is hosted on web
servers. On the other hand, decentralised data encompasses content stored using decentralised file storage (see Section
6) and blockchains. Table 5 provides an overview of these content types. Using this, we can distinguish between three
different decentralised search types: centralised search on decentralised data, decentralised search on centralised data, and
decentralised search on decentralised data.

We use these classifications to analyse early-stage implementations, as well as several proposals in the research
literature, which generally have a narrow but detailed focus. Table 4 overviews notable industry projects and summarises
how they approach the various search components. Table 6, on the other hand, presents an overview of research
proposals, focusing specifically on decentralised search mechanisms on decentralised storage networks. We have
divided research from industry works because the former generally focus on one or a few aspects of search rather than
presenting complete systems, and therefore, they have been analysed using different properties. As these projects are
generally narrow in focus, we will now discuss their main properties, only referring to them occasionally in the rest of
the analysis, as they do not present full and operational systems.

4.2.1 P2P Search Engines. The idea of decentralised search engines was first conceived by P2P search engines to
improve the privacy, security, and performance of search on the web and P2P storage networks. A number of initially
distributed search engines relied on unstructured P2P networks [205], which offered high resilience to peer churn
and good performance in retrieving popular items [157]. Some projects focused on improving the performance of
unstructured search using techniques such as replication [39, 122, 183] and random walks [39, 122].

Another method of realising distributed search engines leveraged structured overlays, specifically DHTs [62, 134,
170, 219]. This allows for more reliable performance guarantees and better efficiency, especially when retrieving less
popular items. A number of these focused on performance optimisations such as incorporating Bloom filters [120, 164]
and caching [65, 164], as well as efficient routing using ant-like behaviour [189]. Some of these used popularity scores
to determine the number of indexers per file [65] or ranking of results [120].

In order to optimise performance, a hybrid of structured and unstructured networks was used. For example, Yacy
[217] structures all peers in a DHT, without implementing DHT routing. Another approach [118] locates rare items
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using a structured overlay, while popular items are located using flooding, leading to better performance and lower
overhead.

These early search engines, however, often lacked additional security measures and incentives for useful work, which
are needed due to the absence of a trusted third party [85]. This ultimately led to their loss in popularity. The rest of
this section focuses on recent initiatives which are able to query novel decentralised file systems (see Section 6) or
blockchains.

4.2.2 Centralised Search on Decentralised Data. There are a number of centralised search engines that can query
decentralised data. Recent works often focus on allowing users to fetch content using CIDs [173]. However, keyword
search is also possible [87], where the central entity sniffs the structured [81] or unstructured network [19] to discover
new content to add to the index.

Rather than creating search engines for decentralised file systems, some works have aimed to make centralised [146]
and decentralised [185] search infrastructures for blockchain and smart contract data. While the projects above rely on
centralisation, they will likely play an important role in adopting the decentralised web.

4.2.3 Decentralised Search on Centralised Data. Another class of search engines are those that are decentralised but
search the traditional web. These offer much better privacy guarantees than centralised engines but are unsuitable for
the decentralised web, as they currently do not support indexing content on blockchains or decentralised file systems.

As mentioned above, P2P search engines lacked incentives to add robustness and security to the system. Recent
decentralised search engines often leverage a blockchain to add financial rewards, thereby making the network more
secure and robust. For example, Presearch [155] rewards users for participating in upkeep functions such as crawling
and indexing. Instead of centralised methods of issuing and distributing rewards, smart contracts may be used for
decentralised incentive governance [201]. Smart contracts can also be used for reaching consensus on indexing and
ranking, as is done by Raza et al. [162] to create a framework for privacy-preserving, decentralised search.

Index Storage Ranking Performance
Optimisation Security Features Privacy Features Governance

SIVA [97] IPFS DHT - Bloom Filter & Caching - - -

Li et al. [109] Kanban Cloud - Decoupled State
and Computation

Verifiable Search, TEE,
Decoupled Verification

Message Equalising,
TEE

Zichichi et al. [230] Hypercube DHT - Routing using Hypercube - - DAO
Zhu et al. [229] B+ Tree / Hashmap - Index Storage Methods Version Control - -
Wang and Wu [197] IPFS DHT Network Metrics - - - -

Table 6. Overview of research proposals for decentralised search mechanisms on decentralised storage networks.

4.2.4 Decentralised Search on Decentralised Data. We finally discuss decentralised search engines which operate on
decentralised data, as these are the only suitable ones for a fully decentralised web. However, at the time of writing and
to the best of our knowledge there are no implemented projects which entirely achieve this. A number of projects
[11, 81, 82, 95] focus on decentralised crawling and indexing of decentralised storage and blockchain data. Most notably,
The Graph [159] is a decentralised indexing protocol for blockchain data, which itself is built on top of a blockchain.

Besides these industry projects, a number of research works have proposed a decentralised keyword-search mecha-
nism for decentralised storage networks like IPFS [26] (see Section 6). As these projects are generally narrow in focus,
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we will now discuss their main properties, only referring to them occasionally in the rest of the analysis as they do not
present full and operational systems.

Li et al. [109] proposed DeSearch, which is a search engine for decentralised services, decoupling state from
computation by using a centralised Cloud to store the index with high data availability, while maintenance of the
index uses decentralised workers executing verifiable tasks (e.g. indexing, query processing). The verifiability property
ensures that any third party (e.g. consumers of search results) can confirm that any task involved in the search process
(carried out by an untrusted worker) is performed properly. This property is crucial in a decentralised setting where
any worker can misbehave.

A number of works present systems which are fully decentralised (i.e. they also store the index over a P2P network).
SIVA [97] builds a decentralised index for IPFS and stores it on the IPFS network using the native DHT. To increase
performance, caching based on the Least Recently Used (LRU) [139] strategy and bloom filters are used. Wang and Wu
[197] also propose to use the IPFS DHT to store the index and rank retrieved results from the index based on network
metrics such as freshness, proximity, resource quantity, and bandwidth.

To increase performance, existing work has proposed storing the index in optimised structures rather than a general-
purpose DHT. For example, Zhu et al. [229] propose decentralised keyword search on decentralised data networks using
B+ Tree and hashmap data structures to store the index. Zichichi et al. [230] propose a hypercube DHT to store index
items, structuring network topology using keywords. Furthermore, existing work proposes delegating governance of
the index to a Decentralised Autonomous Organisation (DAO) [200], which allows peers to make governance decisions
in a decentralised manner, e.g. propose and vote for changes, as well as implement tokens.

Another interesting idea is proposed by Fujita et al.[64], who argues for implementing similarity search on IPFS
based on locality-sensitive hashing (LSH) as an alternative to the prevalent keyword-search mechanisms. In their
system, content hashes are stored on a DHT, although further implementation details and feasibility analysis are an
interesting avenue for future work. Furthermore, it remains unclear if this scheme is sufficient for users who expect to
submit queries consisting of keywords and retrieve a range of relevant information rather than submitting content and
retrieving similar content. Ditto [94] is another initiative which uses LSH to provide search functionality and stores
identifiers on a DHT, irrespective of the underlying content network or addressing scheme.

As we will discuss in Section 4.7, while the above systems seem promising, they are mostly early-stage works and,
therefore, suffer from a number of limitations and require further work. A particularly interesting question is whether
they can truly achieve decentralisation. In the remainder of this section, we examine implemented projects and highlight
how some of these projects uniquely implement the components of a search engine.

4.3 Curating

The curation process defines which content is added to the index. A number of projects take a similar approach to
centralised search engines, which rely on crawling. Yacy is an example of a decentralised crawler, which allows users to
crawl locally, either manually or proactively. Optimisations for decentralised crawlers have also been proposed such as
leveraging the geographic proximity of resources [172]. Most other projects [146, 170, 173] remain reliant on centralised
crawlers.

In order to crawl decentralised storage networks, however, different approaches are needed. To gain insights on peers
and content in structured networks, one may sniff (i.e. intercept) the DHT traffic to discover new peers and CIDs, which
can be fetched to gain insights [81, 87]. A similar approach may be used for unstructured networks, for example, in the
case of the IPFS Bitswap [2] protocol traffic (Section 6.4), which is used to query peers for CIDs, may be monitored [19].
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Another approach besides crawling is curation based on network consensus, as is used in The Graph [159]. Nodes in
the network act as curators and use tokens to signal to indexers what content is valuable. While this might be a viable
approach for on-chain data, it remains to be seen if this approach would work for other content types. This can be
compared to research works which use popularity scores or managers [65] to signal which items should be indexed,
although the latter lack monetary incentives and are therefore more prone to performance problems.

4.4 Indexing

The indexing process in decentralised search engines consists of two main steps. First, metadata is collected from
content to create index entries that map extracted keywords to content identifiers. The second step determines how
and where the index is stored, which is generally based on partitioning by document or by keyword.

Partitioning by document means that the content objects to be indexed are divided among peers who each maintain
a reverse word index for a subset of the content objects, as is often the case in unstructured networks. This is inefficient
when locating rare items, as nodes must flood the network to locate and retrieve the query results. Storing replicas of
popular items can increase the performance in these networks [65], and in general, many distributed search engines
offer a degree of replication, which also adds resilience against Denial-of-Service (DoS) attacks.

Most structured and hybrid engines are based on partitioning by keyword, where each node maintains an index for
the words that appear across different content, generally by mapping to the closest peer in a DHT [129, 176].

Another distinct approach is used in The Graph, where the indexers simultaneously perform the tasks of producing
and storing an index in the form of subgraphs of blockchain data. Users can then directly contact these indexer nodes to
access the indexed data and, in return, issue off-chain conditional micropayments. Other recent search engines manage
the index centrally [146, 155, 173].

In DeSearch [109], decentralised workers index content verifiably through a “witness” process, which runs in the
Trustable Execution Environment (TEE) within each worker. The witness process provides logs of inputs and outputs of
tasks carried out by workers for third parties to verify the causality between the inputs and outputs. The witness logs
are also stored in a verifiable data structure, albeit in a centralised public cloud. Other research works [97, 197] have
proposed to store the index directly on the storage network on which they operate, as well as optimised structured
overlay networks [229, 230].

4.5 Ranking

When a user submits a search query, the relevant entries are fetched from the index, after which the results need to be
ranked based on various metrics to be ordered and returned to the user. There are various ranking algorithms which
may be applied to decentralised search engines. The most well-known is PageRank [33], which scores the importance
of web pages based on the references pointing to and from the pages.

PageRank can be modified to determine the value of an entity on the blockchain, as done in NebulasRank [146]. This
work uses transaction graphs to infer an entity’s liquidity, propagation, and interoperability to determine its value.
Nodes, smart contracts, as well as an entity’s contribution to the network over a time period can be ranked in a similar
fashion to LeaderRank [111].

In centralised search engines, the ranking process generally runs globally. In a decentralised search, clients may
locally select and implement their own ranking policies [179] or combine pre- and post-rankings, where results are
initially ranked based on a number of standard metrics, after which they can be ranked again by the user based on
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local configurations [217]. While most research proposals overlook ranking of results, it has been proposed [197] to use
network metrics such as freshness, proximity, resource quantity, and bandwidth.

Distributed ledgers can also be utilised to reach consensus on ranking, for example using random groups of TOR
(The Onion Router) [55] block nodes and the Practical Byzantine Fault Tolerance (PBFT) algorithm [162].

4.6 Incentives

Centralised search engines can offer free services by monetising advertisements and user data. Most early distributed
engines rely on an altruistic model where users are assumed to participate in the system honestly without the need for
rewards. Recent systems have incorporated incentives using a blockchain. For instance, the revenue collected from
advertisements could be used as a reward for the up-keeping of the system [105]. We now discuss the monetary inflow
and outflow of the system separately to illustrate this decentralised network economics.

4.6.1 Inflow. There are generally three sources of inflow of money in the decentralised search mechanisms. The first is
users paying for a service. For example, this is the case for users querying the indexed data in both The Graph [159] and
DeSearch [109]. This assumes that users are willing to pay for decentralised services instead of using free centralised
options, which may not hold in practice.

The second source of inflow comes from advertisements. Generally, advertisers submit bids to show their adver-
tisements with higher priority for particular keywords on search engines. Centralised engines generally use auctions
to determine which advertisements are shown with higher priority [104, 158], although decentralised advertisement
markets have been proposed as alternatives. An interesting example is keyword staking in Presearch, where the
advertiser who stakes the most tokens on-chain for a particular keyword will be shown. In this case, the inflow is
expected to come from per-click fees. However, currently, this approach retains centralisation as it relies on dedicated
ad servers.

The advertisements shown to users are generally personalised based on data collected from previous search behaviour.
In this scenario, the user loses control over their privacy and must trust the central entity. To alleviate these concerns,
Google had introduced but then later scrapped a proposal named FLOC3, which was to use federated learning [61, 110]
to group users in clusters, without data leaving the user’s device. Although this is argued to be decentralised and privacy
first, it might have led to an advertisement monopoly, as other third-party cookies would have been removed. Several
other research works have investigated decentralised and privacy-preserving methods of personalised advertisements
[18, 76], for example, using blockchains [115, 156, 188].

Finally, in the search protocols built on top of blockchains, there is a third source of inflow. These are newly minted
tokens, which are periodically released to reward for network upkeep [54]. There are also transaction fees that clients
pay to use the underlying blockchain network, which are proportional to the added load placed on the miners. These
fees are often collected directly by miners.

4.6.2 Outflow. The monetary inflow into the search protocols needs to be redistributed and flow out towards involved
parties. In centralised search engines, the revenue generated by advertisements is collected by the centralised operator.
In contrast, decentralised systems may delegate the ad revenue back to the users who watch the ads [173] or to nodes
who assist in network upkeep [105, 155].

3https://www.wired.co.uk/article/google-cookies-floc
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For example, in the Graph, Indexers earn tokens by serving client queries to their indexed subgraphs. Delegators
can decide to stake tokens for a specific indexer, for which they will receive a percentage of their profits. Curators are
incentivised to signal subgraphs honestly, as they can earn a percentage of the query fees.

Similar to other platforms, slashing of tokens [36] may occur when malicious behaviour is detected. This leads to a
penalty deduction of a node’s staked deposit on-chain.

On the other hand, DeSearch [109] rewards both workers for carrying out search-related tasks (e.g. indexing) and
publishers of content using tokens. The reward tokens flow from the consumers of search results all the way to the
publishers of content (that appear in the search results) as in the following chain: consumers → rankers → indexer →
crawlers → publishers. This chain follows the functional dependency between the tasks involved in the search process
and rewards content publishers based on their popularity, as similarly done in decentralised social media platforms [3].

4.7 Open Issues

4.7.1 Reliance on Centralised Infrastructures. As discussed, only a few projects aim to provide a fully decentralised search
on decentralised data, and many still rely on a centralised back-end or gateway servers. For example, DeSearch [112]
uses a hybrid infrastructure consisting of both centralised and decentralised components but with built-in accountability
(verifiability), achieving some of the desirable properties of decentralisation with good overall performance. On the
other hand, while being more decentralised, storing the index directly on storage networks like IPFS introduces new
challenges. Because the index should be a mutable object that is frequently updated, storing it on an immutable storage
solution is difficult. One can use a naming layer (i.e. an indirection) to alleviate the problem of mutable data, for example
using name-registries. However, there still remain a number of issues such as the management of private keys. In
Section 5, this is discussed further.

We conclude that building a truly decentralised search engine is non-trivial, and therefore a feasibility analysis is
required. Specifically, the question: "are industry or research projects actually able to provide true decentralisation? " needs
to be answered. Particularly, the process of curating content to be indexed, maintaining and partitioning the distributed
index, and ranking in a decentralised fashion need to be explored further. The difficulty here also applies to designing a
system that simultaneously encompasses all of these. Alternative search workflows such as those based on similarity
search [64, 94] seem promising in achieving higher degrees of decentralisation, but these and other workflows should
be investigated further. On top of this, while privacy improvements are desirable, they should not come with significant
performance degradation, and thus, this trade-off should be analysed.

4.7.2 Complete Systems. The area of decentralised search engines has relatively been investigated less than other
decentralised web infrastructures, and this is reflected in the fact that most systems are not complete in coverage of
all search steps users expect. For example, the industry projects covered generally have a specific niche in terms of
decentralised web networks, data types, or applications. They also are not as sophisticated in implementation as some
research works, which have a much narrow focus.

While most research works have proposed some performance optimisations, few have looked past the structuring
and storing of the index and routing of queries. For example, how results are ranked after fetching them from the
index has been barely explored in these works. Furthermore, how governance using incentives can be used to make the
system more secure, robust, efficient, and usable has been largely overlooked.

4.7.3 Analysis of Claims. It is argued in most works, both in industry and research, that a decentralised search will lead
to better privacy and security, but this has not been shown in practice, as new attacks may arise in a new infrastructure.
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Therefore, we believe security analyses to be vital. Security is partially dependent on the crypto-economic incentives
and mechanism design, which has not been considered in detail in most works, specifically in industry. Similarly, there
is the issue of trust, as not all operations can be mediated through the blockchain. Here, reputation systems could play
an important role.

5 NAME REGISTRY

Scope Ownership Off-Chain Registry Resolution Allow Network
Storage Fee Subdomains

Namecoin [92] TLD Permanent N Flat Fee Local N Bitcoin
BNS [175] Root zone TLD Y TLD Local Y Bitcoin

Dependent Dependent
Handshake [78] Root zone Permanent N Auction Local Y Handshake
ENS [171] TLDs Lease N Length Based Local Y Ethereum
NXT [44] TLD Permanent N Flat Fee Local / Server N NXT
Emercoin [60] TLDs Lease N Length Based Local / Server N Emercoin
CNS [58] TLD Permanent N Premium / Regular Local Y Ethereum

Table 7. Overview of decentralised name-registry projects.

In this section, we first give an overview of the name-registry currently used on the web: the DNS. While the DNS is
physically distributed, it is controlled and managed by a centralised entity. Then, we describe two important aspects of
name-registry systems, namely registration and resolution. Finally, we present a number of decentralised name-registries
and DNS alternatives and analyse how they differ in these aspects.

5.1 Overview of the DNS

The DNS is the default name-registry system used in the current web, and one of its uses is to maintain name records,
which map domain names (e.g. hostnames in URLs) to locations (i.e. IP addresses). The DNS servers use these records to
respond to user queries.

The domain namespace is hierarchical: at the root of the hierarchy are the top-level domains (TLDs) such as .edu
and .com. These TLDs extend to subdomains such as acme.edu, which in turn can extend arbitrarily to sub-domains
such as mail.acme.edu. The DNS namespace consists of portions called zones, each managed by a specific organisation
or administration. The DNS records for each zone are permanently stored on an authoritative DNS server (under the
control of the zone’s administration) that has the authority to respond to DNS queries for its zone(s) [136].

An authoritative DNS server for a zone (e.g. acme.edu) can delegate its authority over the subdomains (e.g. mail.acme.edu)
to other servers. The result is a hierarchy of distributed DNS servers across the globe, each responsible for a portion
of the hierarchical domain namespace. The hierarchy of servers starts from the root name servers that hold “pointer”
(i.e. NS) records, mapping each TLD zone to its corresponding authoritative DNS servers. Similarly, each authoritative
server for a zone maintains a list of authoritative servers of its delegated subdomains.

The resolution of a hostname starts with a user contacting its local DNS server. If the local server has not previously
cached the result, it returns either a root name server or an authoritative name server for one of the zones that are part
of the queried domain name. If a server is not able to resolve the name, it returns the authoritative name server for the
next subdomain using its NS record.
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The root zones (i.e. TLD names) are centrally controlled by the Internet Corporation for Assigned Names and
Numbers (ICANN), which delegates the administrative responsibility of each zone to a single manager, such as an
organisation or government, who in turn runs authoritative servers for the zone and can allocate (e.g. sell) subdomains
(and delegate the control over that zone) to others. Domain names under TLDs are registered with a registrar or
reseller who is accredited by ICANN and certified by the registries.

Centralisation in DNS refers to ICANN’s control and management of TLD zones and the root name servers. In
addition to the top-level zones, governments have full power over the DNS servers residing within their territory.
This may lead to censorship (e.g. blocking of wikileaks.org by several countries). Furthermore, there are other known
security issues with the current infrastructure such as DoS attacks [150], DNS hijacking [167], DNS spoofing [177], and
DNS cache poisoning attacks [99]. Existing security extensions, such as DNSSEC [14], have slow adoption [113] due to
large overheads impacting performance and also due to intrinsic reluctance to change already deployed protocols.

5.1.1 Key Challenges. A number of critical challenges remain for decentralised name registries, for example, in the
management of namespaces. Concerns surrounding ownership, pricing, and conflict resolution arise when multiple
entities compete for the same domain. Moreover, their deployment and adoption require practical support and ease of
integration. These challenges are further highlighted in Section 5.5.

5.2 Implementations

We now discuss a number of decentralised name-registry systems from industry and research. Within the context of
the decentralised web, these provide registration and resolution from human-readable names to CIDs. In doing so, they
have the potential to overcome Zooko’s trilemma, as the content names remain secure (due to hashing), human-readable
(due to the name-registry), and also decentralised (as the registry happens on a decentralised network or blockchain).

5.2.1 P2P DNS Alternatives. Decentralisation of the DNS was initially proposed by research in P2P systems, with
various goals in mind. For example, Overlook [184] aimed to improve the scalability and performance of the DNS by
using dynamic replication and a DHT for servers.

Several works also aimed to improve the security of the DNS against various attacks by structuring DNS nodes
in a P2P network, thereby distributing the top-level namespace. This was argued to protect against attacks such as
DoS and both malicious root and TLD servers [4, 77]. However, the added security could present a trade-off, with a
loss of performance [47]. These early P2P initiatives suffered from the limitations of P2P networks, such as the lack of
incentives.

5.2.2 Hybrid Name-Registry. Several hybrid approaches have aimed to provide name-registry improvements over the
current DNS by leveraging a combination of centralised and decentralised infrastructures. For instance, DNSLink4

allows IPFS [26] CIDs to be mapped using DNS txt records to DNS names. This does not overcome Zooko’s trilemma
(see Section 3.2), as it remains reliant on the centralised DNS.

Some works use consortium blockchains to create a decentralised DNS. We also consider these hybrids because
these networks are not entirely open and decentralised. These consortium blockchains generally publish domain name
operations on-chain but store actual domain name data off-chain. Besides singular blockchain implementations [203], a
hierarchical structure of multiple chains may also be used [59, 117]. The rest of this section focuses on solutions to
implementing open blockchain and smart contract-based name-registry systems.
4https://dnslink.io
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5.2.3 Blockchain-based Name-Registry. Several industry and research projects have proposed using blockchains for
name-registry, mapping human-readable names to CIDs in a decentralised manner and claiming that they overcome
Zooko’s trilemma. We first describe projects which use first-order registration—i.e. those that modify the blockchain
state directly using transactions rather than through intermediary smart contracts. While smart contract systems also
modify the blockchain state, they operate at a different level of abstraction and allow for more flexibility and complex
logic. We make the distinction between the two to bring structure and grouping to a large number of works, but also
because smart contract systems can be seen as second-generation blockchain systems.

A generic name-value registration system is implemented by Namecoin [145], offering a naming system with
decentralised governance. Similarly, NXT [44] and Emercoin [60] implement generic name-value storage services on
their native blockchains. Another blockchain-based naming protocol is Handshake [78], which aims to replace the root
zone file and root servers. Rather than targeting to replace the entire DNS infrastructure, this system proposes that the
control of the TLDs is decentralised, allowing an infinite amount of top-level domain names to be created. Therefore,
Handshake is more flexible and customisable compared to other solutions that allow naming operations within the
scope of one or a few TLDs (e.g. .bit for Namecoin). On top of these naming protocols, other systems can be built to
create secondary marketplaces for reselling names and easy participation in name auctions [144], as well as to add
security and accessibility5.

Besides these industry initiatives, several research works [30, 73, 207, 221] have focused on the security vulnerabilities
of the DNS and propose using blockchain solutions to enhance the security of the current infrastructure. Security issues
are partially due to the absence of a method to certify the integrity of information of queried name records. A number
of works have improved this by storing verifiable record hashes on the blockchain [116, 222]. Blockchain-based registry
systems may also be extended to Public-Key Infrastructure (PKI) encryption schemes, which generally suffer from
similar issues due to reliance on centralised certificate authorities [8, 93].

5.2.4 Smart Contract Name-Registry. Decentralised name-registry systems can also be implemented using smart
contracts on top of existing blockchains. The advantage of using smart contracts is that many services can be offered
(i.e. implemented using a smart contract) on the same blockchain. Blockchains that solely implement naming operations
can be less secure as the network is often smaller and may have limited functionality. On the other hand, as there is less
overall traffic, better performance can be expected. Both advantages are expected to converge with sharding [198] and
layer-2 solutions [75].

A number of recent projects use the Ethereum blockchain as the underlying infrastructure [58, 169] and generally
use a set of smart contracts for registration and resolution. Most developed among these is the Ethereum Name Service
(ENS) [171], which is a general name-registry for web3.0 content including cryptocurrency addresses. However, around
98% of currently registered names on ENS seem to identify Ethereum addresses [213]. Stacks [9, 175] also created the
Blockchain Naming System (BNS) on top of their native blockchain using a smart contract, after initially using the
Namecoin blockchain [10].

The industry projects discussed above still have many security vulnerabilities [152], particularly in the areas
of malware, name registration mechanisms and markets, phishing, and immutability. Specifically, looking at name
registration, domain squatting [226] attacks present a big threat. In this attack, malicious users register as many names
as possible at low costs, with the sole purpose of selling them in the future for profit rather than using them for
fraudulent activity based on misdirection or impersonating another source. To illustrate some of these issues, studies

5https://github.com/okTurtles/dnschain

Manuscript submitted to ACM



20 Keizer et al.

have identified that in Namecoin, squatting is a significant problem [92], a single entity controlled over 51 % of the
network [10], and that there are possible domain extortion and phishing schemes [152].

Another aspect often overlooked in the design of decentralised name-registries are incentives. Like the other
components in a decentralised web infrastructure, nodes will need to work collaboratively to keep the system up and
running, for which they expect rewards. In the case of blockchain and smart-contract based solutions, some of the
incentivisation for networking functions is handled by the underlying blockchain and consensus protocol. However, to
mitigate some of the attacks mentioned, malicious behaviour should be discouraged by aligning incentives with honest
behaviour, specifically tailored for the name-registry use case. This has been partially achieved by the registration
mechanism, as we describe in Section 5.3.

In the remainder of this section, we highlight unique aspects of blockchain and smart contract name-registries,
specifically in the areas of registration and resolution. Table 7 gives an overview of key aspects for select projects
described in the previous sections.

5.3 Registration

Ownership, pricing, and control of names are handled differently among projects. Ownership of a namespace can be
permanent [44, 58, 78, 145], in which case the owner has control over the subdomains indefinitely, although there may
be periodic renewals required to ensure liveness at no cost. Conversely, ownership may also be temporary and require
periodic renewal fees to extend the lease period [60, 171], which may deter squatting attacks. Ownership permanence
may also be set differently among namespaces within the same system [175].

Pricing of domains and namespaces also varies across systems (and within the same system [175]). Initially, low flat
fees were the norm for acquiring domains [44, 145]. However, it was shown that in the case of Namecoin, this pricing
model made the system susceptible to squatting. To counter this, a number of projects started charging differently
based on the perceived value of a name [58], for example, based on their length [60, 171]. Another method leverages
Vickrey sealed-bid auctions [192] on-chain to allocate names [78].

All systems allow for reselling domain names on a secondary market, as this is a security feature against squatting.
Some extend this further by allowing the sale of subdomains of a name [58, 78, 171, 175].

5.4 Resolution

The hybrid projects mentioned earlier either rely on servers6, the current infrastructure, or a permissioned chain to
resolve names. On the other hand, for blockchain and smart contract-based solutions, the main difference in resolution
with the DNS is that they directly use the blockchain to resolve names. This can be done locally by running a full
node on the network, using a simplified payment verification (SPV) node [78], relying on browser extensions, or using
servers [44, 60, 145].

When querying the blockchain, the entire naming records could be traversed to find a relevant entry. A faster method
uses a separate resolver (which maintains an “authoritative” record set by the owner) and registry (where the search
starts) smart contracts [58, 171].

6https://www.opennic.org
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5.5 Open Issues

5.5.1 Security. Decentralised name-registries and DNS alternatives are recent developments, especially those built on
top of blockchains. While the initial implementations and results seem promising, more research is needed into how
they hold up in practice, especially in terms of security.

Recent works [92, 152, 213] have exposed some serious security threats and design flaws in early systems. They focus
on specific vulnerabilities such as domain squatting and phishing, but a wider attack vector needs to be analysed and
evaluated before we can claim that they offer better or similar security guarantees as the DNS, and that they are actually
able to “square” Zooko’s trilemma. Furthermore, they rely on trust and performance assumptions of the underlying
blockchain network, which has been shown to be too slow [117] in certain instances. Some projects rely on centralised
servers for name resolution to increase performance, but this adds a layer of centralisation [44, 60, 145].

5.5.2 Namespace Management. Another overlooked aspect is how these systems handle instances where the keys
to alter names are lost, compromised, or revoked (invalidated) for security reasons. It may also be desirable to use a
threshold of public keys instead of just one to verify the identity of owners or publishers for security reasons. Although
P2P literature has attempted to tackle these issues, for example, using social and personal naming systems [63], the
blockchain-based systems have, as far as we know, not identified or addressed these issues.

The prevalence of various financially-motivated attacks (such as domain squatting) is a sign that there is room for
improvement in the decentralised management and governance of namespaces. For example, popular names, especially
those with commercial values (e.g. registered trademarks), require careful management, as they are obvious targets for
such attacks [213]. While decentralised name registries that are governed by smart contracts have developedmechanisms
(e.g. auctions) to manage namespace ownership, more research is needed for building algorithmic mechanisms for robust
namespace governance (possibly together with crypto-economic incentive mechanisms) to deter financially-motivated
attacks on the namespace.

5.5.3 Deployment and Support. In terms of ease and practicality of deployment for decentralised name registries,
several browsers have recently introduced extensions (plug-ins) for ENS support. However, despite the browser support,
a recent study [213] has reported only a few thousand URLs being stored in ENS, while the vast majority (i.e. 98%) of the
names identify blockchain addresses (e.g. addresses of popular cryptocurrency addresses such as crypto exchanges). On
the positive side, unlike NameCoin, which was deemed dysfunctional by a recent measurement study [92], the number
of names registered on the ENS system (including the number of URLs) has been reported to be steadily rising [213].

6 DECENTRALISED FILE SYSTEM

Architecture Hash Decentralised Self-Certifying Human Readable Hierarchical
IPFS [26] Multihash Y Y N N

Swarm [180] bzzhash Y Y N N
BitTorrent [154] - N N Y N
Skynet [193] Skylink Hash∗ Y Y N N
Storj [210] - N N Y Y

Table 8. Comparison of addressing of decentralised web content. ∗ unclear which hashing algorithm is used.
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In this section, we first discuss how content is currently stored on the current web (Section 6.1) and describe a
number of decentralised file system implementations (Section 6.2). Then, we discuss storage (Section 6.3), retrieval
(Section 6.4), addressing (Section 6.5), and incentivisation (Section 6.6) aspects of the decentralised file systems. Finally,
we conclude the section with a list of open problems (Section 6.7).

6.1 Overview of Web Storage

In terms of content storage, the current web ecosystem is dominated by silos of providers residing in centrally-controlled,
public Cloud infrastructures. While these public Clouds provide users with on-demand access to a large pool of shared
resources, they operate with little or no transparency. As a result, concerns over confidential or sensitive data security
can favour the deployment of private Cloud infrastructures, which require large upfront costs.

More importantly, the centralisation in the infrastructures of these silos means that they reside in only a few
locations on the Internet. As a consequence, even simple network failures can lead to the unavailability of these silos,
as experienced by users during recent outages at Amazon Web Services or AWS (which resulted in the loss of access to
a significant portion of the web) and Facebook [48, 182]. While replication of content across silo boundaries would lead
to better performance and availability for users, the lack of incentives prevents such cooperative action among the silos.

Content retrieval from centralised Cloud infrastructures deployed at remote datacenters can experience large
communication latency. To reduce this latency, the emerging edge computing [168] paradigm promises to deploy small-
scale datacenters at locations close to users. However, such small-scale edge infrastructures are mostly appropriate
for small-scale, low-latency applications and are not typically designed for the workload of the web. Instead, a truly
decentralised web can be realised by pooling the vast amount of global user resources and incentivising their proper
usage to achieve scalability and sufficient performance.

Other important actors in content retrieval in the current web are Content Distribution Networks (CDNs), which
provide large-scale retrieval of Quality-of-Service (QoS) sensitive content through on-demand content replication at
distributed caches worldwide. While on-demand replication of content with simple reactive caching policies (such as
LRU) is effective in providing sufficient content retrieval performance, the location-based nature of web references (i.e.
addressing) makes replication and moving of content difficult, as such actions invalidate existing references to the
content. To deal with this problem, CDNs use proprietary name resolution mechanisms that immediately update the
invalid web references to content upon movement or replication. Despite being a distributed infrastructure, CDNs are
centrally-governed systems and charge content producers for distributing their content. This makes content delivery
expensive, especially for small content producers. Finally, to serve content using HTTPS, CDNs need to hold the content
publisher’s private keys, further increasing centralisation and lowering the security of the entire web [86].

Key Challenges. Decentralised file systems encounter several crucial challenges. First, achieving a level of reliability
and performance that matches the centralised counterparts is a major challenge, especially without giving up on
decentralisation. Second, the collaborative nature of these systems (i.e. by pooling the resources of peers, some of
which can be malicious) can lead to privacy and security challenges. Other challenges include the efficient support for
mutable content (e.g. dynamic webpages), ease of accessibility (e.g. by current web users on browsers), and moderation
of content stored on these systems. These challenges are further elaborated in the sections below.

Manuscript submitted to ACM



A Survey on Content Retrieval on the Decentralised Web 23

6.2 Implementations

The ideas behind decentralised storage networks were first developed for P2P networks and initially produced unstruc-
tured networks like Gnutella [165]. While these were able to perform well in fetching popular items, they were not
as successful in quickly retrieving less popular content. Shortly after, a number of projects started leveraging instead
the structured networks, particularly the DHTs, to achieve more reliable performance guarantees. Most prominently
among these was BitTorrent [154]. Over time, it became clear that many of these networks lacked robustness in terms
of reliability and security, partially due to the lack of incentives. Furthermore, BitTorrent’s main use became the
distribution of unlicensed products [127], leading to copyright and legal issues (see Section 6.7).

Recently, novel storage networks have emerged and gained popularity [50], most notably IPFS [26], Sia [193], and
Swarm [180]. These can be built on structured, unstructured, or hybrid networks and use content addressing. While the
principles of these projects are closely related to Information-Centric Networking (ICN) [5, 216]—a content-centric,
network layer paradigm that performs name-based routing using hierarchical content names—these novel projects
work in the application layer.

Content addressing (see Section 3.2) is a natural fit for decentralised file systems targeting a public decentralised web,
as content is distributed over the network with a level of replication, and therefore, any node (or a set of nodes) may be
able to serve a requested file. It would be counter-intuitive to restrict file retrieval to only a single location as is done
in the current web. For storage of private data, however, similar to personal Cloud storage, content addressing is not
always necessary. Such is the case with Storj [210], which also introduces optimisations targeted towards decentralised
Cloud storage and uses satellite nodes which manage parts of the network.

DStore [215] takes another approach to create a distributed outsourced data storage and retrieval scheme. It uses
smart contracts to audit the integrity of the outsourced data, achieving security and efficiency. Liang et al. [114]
designed a storage and repair scheme for fault-tolerant data coding, realising a regeneration code with high precision
and repairability, focusing on blockchain-based networks.

Another distinct project that proposes decentralising storage led by Tim Berners-Lee is called Social Linked Data
(SoLiD) [37]. SoLiD is designed to decouple users’ personal data from the applications that use them and allows users to
set access control policies to maintain the privacy of their data stored in decentralised storage units. However, the users
must trust the decentralised storage units by properly authenticating applications and following their access control
policies. More importantly, the current SoLiD protocols rely on centralised infrastructures such as the PKIs and DNS.

Finally, we mention blockchains as an alternative method of storing data in a decentralised manner. While storing
data on the blockchain can be made secure, it is extremely expensive, as the data is replicated over all peers and thus
distributed with extreme redundancy. In the rest of this section, we focus on recent decentralised file systems on the
application layer with live implementations and analyse their key aspects.

6.3 Storage

Content is initially stored only by its original publisher, who then serves the file, given that the publisher can (and is
willing to) function as a provider of that content. In many decentralised file systems, any peer downloading content by
default becomes a provider for that content unless it configures its software to opt-out from being a provider [26].

Performance and Reliability. Some decentralised file systems allow for nodes to formally publish deals governed
by a blockchain, where one node pledges to store a particular content item [28, 193]. Secondary off-chain markets
have also emerged where providers offer to pin specific files (i.e. permanently make the files available). Some systems
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also introduce coding techniques (e.g. erasure coding) to improve the reliability of content storage (e.g. only a certain
percentage of coded segments of content is sufficient to restore the content) in the presence of churn. Combined with
incentivised pinning of files at multiple locations, coding can further improve the permanence of content stored in
these systems.

In addition to voluntarily storing and providing content, peers in some decentralised file systems [26] have to
participate in the (mandatory) storage of meta-data for content that they do not necessarily provide. In IPFS, the peers
with public IP addresses are involved in the collaborative storage of (and providing) an index (i.e. meta-data) that maps
the CIDs of the available content in the network to the providers of that content. In this system, to serve content, a
content producer must prepare a “provider record” that maps the CID of the content to its network identifier i.e. IP
address and port number, and store this in the DHT (i.e. using a DHT put(key, value) operation where key is the CID
and value is the provider record). In a sense, provider records function as “pointers” to content that are used to resolve
the providers.

The content and meta-data stored on the decentralised file systems are generally publicly accessible; anyone in the
network who knows the content’s identifier (CID) can fetch the corresponding data. This approach causes security and
privacy concerns for storage nodes.

Privacy. Making content provider information publicly accessible in clear text in a DHT is a privacy concern for
nodes storing content and making them accessible. An obvious solution is storing provider records in encrypted form;
however, managing decryption keys for content is an overhead for publishers. A possible workaround is to derive a
decryption key for a CID’s provider records from the CID itself. This way, only the parties that know a CID can decrypt
the provider records for that CID.

Moreover, the act of a provider putting encrypted provider records into the DHT (to be able to serve content for
a given CID) should ideally not disclose to the DHT nodes the CID associated with the record. Otherwise, the DHT
peers can passively observe the providers of the CIDs, even when the records are encrypted. Michel et al. [132, 133]
propose using the hash(CID) as the key to put the provider records for a CID in the DHT instead of using CID as the
key. Using “double-hashing”—a CID is derived from the hash of the content, and therefore, the hash(CID) is considered
double-hashing—technique to use separate identifiers in the DHT can effectively hide the CIDs from the peers during
the DHT operations.

One remaining problem is the possibility of malicious peers putting fake provider records to launch Denial-of-Service
attacks at victim peers whose peer IDs are supplied as providers in the records. Michel et al. [132, 133] propose that a
peer publishing a provider record also signs the record with its private key whose public counterpart is used to derive
the peer’s ID [133]. By including signatures in the records, the clients who can decrypt the provider records can verify
that the CID in the record is provided by the peer who originally signed the record (see [132, 133] for details).

Security. In both MaidSafe [106] and Storj [210], the content is stored in the network in an encrypted form to provide
confidentiality. Also, in both of those systems, content is divided into a sequence of chunks and the individual chunks
are stored on the DHT. In MaidSafe [106], each chunk of content is encrypted with the hash of the previous chunk
in the sequence, and each encrypted chunk is then XORed with the concatenated hashes of the original chunks for
further obfuscation. Together with the encrypted chunks, a publisher must also publish a manifest file (i.e. containing
meta-data) that maps the hash of obfuscated chunks to the hash of the real chunks.
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6.4 Retrieval

Data retrieval using content addressing requires resolving content identifiers (CIDs) to network identifiers or locations
(i.e. IP addresses and port numbers) of peers that can provide the content, i.e. providers. In terms of the underlying
P2P network structure, these systems can use unstructured, structured, or a hybrid of both; the underlying network’s
structure impacts how content is resolved. In the unstructured case of Sia [193], nodes gather hints of the possible
locations through, for example, the blockchain deals, after which a select number of candidate nodes are queried rather
than using a flooding-based search approach to resolve CIDs to their providers. The other projects use modified versions
of the Kademlia [129] DHT for either locating peers [28, 154], or both peers and content [26, 180, 210].

Performance. The hybrid P2P approach in IPFS aims to optimise content retrieval latency using both unstructured
and structured network connections, where the structured connections form a DHT (i.e. Kademlia). As part of the
unstructured network, each node maintains a set of connections with peers discovered through DHT communications
or incoming content requests. A peer uses these connections as part of the Bitswap [2] protocol to send requests for
content directly to other peers. In the Bitswap protocol, nodes send want requests to each other, specifying lists of
requested content CIDs. The want requests do not propagate beyond the directly connected peers. Upon sending a
Bitswap request for content to a set of peers, one or more of them may respond with an acknowledgement of having
the content stored (i.e. cached) locally. The node can then attempt to retrieve the content from all the acknowledging
peers in parallel (e.g. request individual chunks of the content from different peers), similar to downloading content
using BitTorrent [154].

In IPFS, a client looking for a content object first asks its Bitswap peers for that content’s CID. If none of the direct
peers has the requested content locally cached, the node queries the DHT, storing a distributed index that maps CIDs
to the providers of that CID (i.e. provider records). In the Kademlia DHT used by IPFS [26], the provider records for
content with CID 𝑐 are stored at the twenty peers whose peer IDs are “closest” to 𝑐 , where the closeness of IDs and CID
is determined according to the distance metric (i.e. XoR) used in Kademlia DHT. A get() operation on a CID 𝑐 returns
the provider records for 𝑐 from the twenty closest peers to 𝑐 in the DHT.

In IPFS, it is likely for Bitswap requests for popular content (i.e. ones that are stored by many peers) to succeed
and, therefore, retrieval of such content may not require DHT resolution. Because content resolution through a DHT
can be slow (i.e. requires contacting O(log n) peers), Bitswap can significantly reduce the content retrieval latency. At
the same time, the Bitswap protocol also helps reduce the burden on the DHT network, as the distribution of content
requests tends to follow a power-law distribution, i.e. the majority of requests demand the most popular content in
most content networks [70, 124]. However, retrieving unpopular content through the Bitswap protocol is likely to fail,
and this can slightly delay the switch over to the DHT resolution for content, slightly delaying the retrieval for such
content. Therefore, a hybrid system may require optimisations to improve the content retrieval latency by using both
networks simultaneously at the cost of additional overhead.

IPFS facilitates peer-to-peer connections between nodes situated behind Network Address Translation (NAT) devices.
When two peers willing to communicate are behind NAT, IPFS allows them to utilise a third (i.e. relay) peer with a
public IP address to bootstrap their communication. When NAT’ed peers provide content, the IPFS address stored in
their provider records includes the IP address of both the relay peer and the NAT’ed peer’s public IP. These relay nodes
facilitate connections between NAT’ed peers by employing standard hole-punching techniques. Ensuring accessibility
for peers behind NAT is a crucial aspect of decentralised file systems, particularly since contributors typically connect
from homes where NAT’ed connections are to be expected.
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Privacy. In addition to the performance of content retrieval, privacy is another important consideration. Some
systems such as OneSwarm [88] distinguish between trusted (e.g. friends and family) and untrusted peers and introduce
address obscuring techniques to increase the privacy protection of their participants. Ideally, a system should not reveal
which particular content is searched by a given client, providing a form of “reader” privacy. While recent measurement
studies on IPFS demonstrate the ease of monitoring content requests [19–21], using the hash of the cid (double-hashing)
as the search key (Section 6.3) can be effective in hiding the target CID [132]. The double-hashing extension is also
useful to hide CIDs in the Bitswap protocol—when sending want requests for content, the hash of the CID can be used
instead of the CID itself. This way, the Bitswap peers cannot determine which CID a reader wants unless they have the
content stored.

Censorship. Although decentralisation should theoretically make censorship of content difficult, Sridhar et al. [174]
have demonstrated a censorship attack on the DHT resolution of IPFS where Sybil peers are strategically placed on the
DHT to block requests to provider records of a target CID. In particular, when twenty or more Sybils are placed as the
closest peers (i.e. based on the XOR distance metric used by Kademlia) to the target CID, then provider record lookups
can be intercepted (and simply ignored) by these Sybils. The placement of Sybils can be done through brute-force
generation of peer identifiers. The authors propose detection and mitigation mechanisms against this attack in this
work. The detection method examines the distribution of peer IDs among the closest peers to a given CID. It identifies a
potential attack if this distribution significantly differs from the expected distribution of peer IDs, assuming that the
IDs of legitimate (non-Sybil) peers are uniformly distributed throughout the DHT key space. Conversely, to mitigate
the attack, a broader region of the DHT is utilised for storing and retrieving provider records after a peer identifies an
ongoing Sybil attack.

Decentralised file systems are vulnerable to Sybil attacks, which aim to undermine the integrity of the underlying
P2P network. One such attack is the eclipsing attack [80, 83, 126] where Sybils isolate peers by gaining control over
their connections and then manipulate or censor the information exchanged between the isolated peers and the rest of
the network. Eclipse attacks can target unstructured blockchain networks that some decentralised file systems use to
publish storage deals [28] or DHTs that store content metadata, such as provider records, to prevent content retrieval.
Recent research proposes diversifying the connections of peers (e.g. in terms of IP addresses they connect to) to make
such attacks more difficult [100].

6.5 Addressing

As discussed in Section 3.2, addressing content on the decentralised web is not straightforward because many of the
desirable properties cannot be achieved simultaneously. Most recent projects targeting public data, such as web content,
use content-addressed, self-certifying hashes to refer to content [180, 193]. This can be extended to support multiple
hash functions using prefixes, as is done by multihash [26].

A desirable property of naming is that even mutable content objects have persistent names that users can always use
to refer to them. This means that the CIDs of content objects should not change when their attributes (e.g. location, file
contents, or ownership) change. Hash-based names do not provide persistence because the contents of a file determine
its name. This could, however, be achieved with public-key-based names (refer to the types of self-certifying names in
Section 3.2) such as IPNS 7, which allow identifiers to be linked to public keys. This way, a user can update a file by
signing the updated file with their private key, while keeping the name of the file the same.

7https://docs.ipfs.io/concepts/ipns/
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6.6 Incentives

Providing participants incentives for continued and active participation is important for decentralised file systems
to operate in a reliable manner. Early P2P storage networks generally leveraged non-financial incentives, such as
BitTorrent’s tit-for-tat [43], which rewards resources put towards the network by faster downloads in return. Another
example is Samsara [46] which focuses on tit-for-tat behaviour for contributing storage resources, i.e. symmetric storage
relationships between peers. In Samsara, a peer S stores a chunk of data for a peer R in exchange for R storing an
equally-sized storage claim by S. S can periodically verify the existence of the claim through a challenge-response
protocol which prevents R from removing or compressing the claim, and eventually S can request R to store a data
chunk from R, in which case R stores S’s data replacing the claim. However, malicious peers can refuse to store data
later when requested as the claim mechanism can not enforce peers storing claims to replace them with data. Also, the
verification of claims adds significant overheads on the peers.

A number of projects have also started incorporating blockchain-based rewards in their networks. Filecoin [28]
creates an incentive layer on IPFS where nodes create on-chain storage deals. Storage nodes regularly submit proof
that they have been storing unique copies of the data, for which they receive off-chain micropayments. Similarly,
BitTorrent issued a token to add robustness to their platform, while Skynet, a decentralised CDN, leverages the Sia
blockchain. Swarm and Storj issued blockchain tokens as well. Arweave [211] takes another approach towards realising
decentralised storage and uses a blockchain-like linked structure with mining rewards based on pseudo-random previous
blocks linked to the latest state. Therefore, users pay a one-time mining fee for storage, assuming that miners are honest
in keeping and providing their data, which may not hold in practice and lead to poor scalability and performance.

6.7 Open Issues

6.7.1 Role of Centralisation. According to recent studies, decentralised file systems have demonstrated a trend towards
centralisation [21, 206]. Balduf et al. conducted measurements that expose heavy reliance of the IPFS on cloud-based
peers, i.e. nodes hosted in various datacenters [21]. In this study, the authors have shown that almost 80% of peers in the
DHT are cloud-based, and 95% of the content on IPFS has at least one cloud-based provider. While individual cloud-based
peers from various vendors may not raise significant concerns, recent additions of centralised infrastructures in the
IPFS system have emerged, which we discuss below.

Trautwein et al. [186] identified one of the performance bottlenecks as the DHT-based content resolution. Although
DHT-based resolution ensures that provider lookups are completed within no more than log(n) hops, the cumulative
round-trip times to query individual hops can lead to significant delays. Consequently, IPFS has recently integrated
centralised network indexers hosted entirely in the cloud [103]. The indexers collect information about all the content
stored on IPFS and can resolve content in a single RTT, i.e. significantly faster than a DHT-based resolution.

Wei et al. argued that centralised infrastructure can address performance bottlenecks by leveraging operational
data collected from IPFS [206]. While centralisation effectively resolves performance issues, it introduces trade-offs
concerning security, privacy, and censorship risks associated with such centralised infrastructures [206]. Specifically,
such infrastructure may concentrate power in the hands of a few operators, posing a single point of failure and
potentially threatening user privacy and enabling censorship. Additionally, IPFS has introduced HTTP gateways, each
controlled by an operator. These gateways allow browser-based web users to access IPFS content using HTTP without
running an IPFS node. Despite being centralised infrastructures, gateways enhance IPFS accessibility and promote its
adoption.
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To sum up, there are trade-offs to consider when introducing centralised components in a decentralised system.
These trade-offs present open problems to be studied further in future work.

6.7.2 Privacy. We find that the currently deployed decentralised file systems have mostly overlooked privacy so far.
Privacy of both the content retrievers (i.e. readers) and content providers (i.e. writers) in decentralised file systems is an
active area of research. In IPFS, the recently proposed double-hashing technique uses hash(CID) as an identifier for
content during resolution and put operations, as we discuss in Sections 6.3 and 6.4.

Regarding reader privacy, a few other promising approaches (see Section 6.4) aim to hide the content clients are
storing and searching for from other participants. A different approach by Backes et al. [17] involves using threshold
cryptography and quorums to enable DHT routing queries with privacy. Their approach, however, requires significant
overhead to content retrieval. Striking a balance between performance (e.g. ease of content retrieval) and privacy is a
challenging problem that requires more attention.

6.7.3 Dynamic Content. Mutable content presents challenges for content-based naming architectures. Persistence
of CIDs is a desirable property for publishing dynamic content. At the same time, the CIDs must be verifiable. As
discussed in Section 3.2, a possible solution is to use the hash of a public key as the CID to name content (which
contains the signature produced by the corresponding private key). However, naming is not the only issue; the file
system must ideally guarantee that a retrieval operation on a CID returns an up-to-date version of the content and not
an outdated one that is cached by the nodes in the network. One possible workaround is to add version numbers to
names (e.g. as a suffix in systems that support hierarchical naming), but this also comes with problems, such as users
not necessarily knowing the current version of content. We believe the current decentralised file systems still have
room for improvement in supporting mutable content.

6.7.4 Content Moderation. Decentralised file systems can be misused to host phishing websites, illegal content (e.g.
copyrighted content), and even more severe forms of illegal content such as child sexual abuse material. Because
decentralised filesystems such as IPFS are accessible even by browser-based clients, it is necessary to moderate and
remove illegal content on the decentralised file systems.

As the largest contributor to the IPFS open-source implementation, Protocol Labs (PL) centrally maintains a so-called
“bad-bits” list containing hashes of blocklisted content CIDs built primarily on takedown requests that PL receives.
When writing this paper, PL operated an HTTP gateway that blocked requests to those content from the badbits list.
Because Protocol Labs only operates a very small part of the IPFS infrastructure, they make the bad-bits list publicly
available8 for other operators to remove or block that content. However, little is known about the moderation process
involved in preparing the badbits list and whether the list is used for moderation by other operators in the system.

The main challenge with moderation on the decentralised web comes with decentralisation—the file system infrastruc-
ture is controlled by many entities, and such a system ideally requires a decentralised approach to content moderation,
which is a difficult problem. However, there is an opportunity to design a more democratic moderation model compared
to centralised systems, where content moderation may be susceptible to misuse for censorship purposes.

7 RELATEDWORK

To the best of our knowledge, our work is the first to provide a holistic view of the technologies that are useful for content
retrieval on the decentralised web. Although the main focus of this survey is on the recent works, i.e. Blockchain-era
8https://badbits.dwebops.pub/
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technologies related to the decentralised web, we also introduce some of the notable P2P-era research that introduces
the key concepts used by the emerging decentralised content retrieval systems.

In one of the earliest works onweb information retrieval, Kobayashi et al. [98] survey the content retrieval technologies
in the early web, i.e. web1.0, when it was only few years old. In this work, the authors discuss the search engines and
the users’ experience with the early search technologies of that time.

Other surveys have focused on only a subset of the technologies involved in content retrieval in blockchain-era
systems. For example, a recent survey by Daniel et al. [50] discuss decentralised storage networks, but without attention
to the technologies that enable the search and retrieval of content in those storage systems. Li et al. [112] take a different
focus and survey how future data-driven networks can be realised using blockchains as the underlying technology to
enable decentralisation, security, privacy, and resource sharing. However, their focus is mainly on blockchain-based
solutions and does not consider the rest of the decentralised web systems. Similarly, Benisi et al. [29] survey blockchain-
based decentralised storage systems focusing on the consensus protocols used to secure the storage and access to the
data.

Zheng et al. [228] present a comprehensive overview of blockchain technologies, including technical components such
as consensus protocols and potential applications. While certain aspects, such as security and privacy enhancements
and reputation systems, have been mentioned, the global decentralised web use case is not discussed. Neudecker and
Hartenstein [147] describe the network layer aspects of permissionless blockchain networks. While this work focuses
on blockchains, other decentralised web components, such as decentralised file systems, often share network layer
design and concepts. For example, Filecoin and Ethereum have used gossip-based messaging protocols in their network
layers [194].

Earlier work also surveys the P2P-era content distribution research, which we briefly touch upon in this paper. For a
general overview of P2P networks, Keong et al. [121] study and compare network overlay architectures. Closer to our
work, Androutsellis-Theotokis and Spinellis [12] present an early survey and framework for analysing P2P content
distribution technologies. Similarly, Hasan et al. [79] focus on storage techniques within distributed file systems.

Xylomenos et al. [216] present a comprehensive survey of information-centric networking (ICN), which aims to
implement a content-centric network layer replacing the current IP layer. Although the content-centric paradigm (i.e.
fetch content by name) is central to decentralised web technologies, these systems implement content addressing at the
application layer.

A number of surveys focus on popular techniques that distribute Cloud solutions but do not necessarily decentralise
their ownership and governance. Zolfaghari et al. [231] discuss the state-of-the-art solutions and future directions for
CDNs. They also describe how CDNs converge with emerging paradigms like Cloud and edge computing. Ghaznavi et al.
Ghaznavi et al. [67] focus on CDN security challenges and potential solutions. Mach et el. [123] describe the emerging
concept of mobile edge computing and present use cases, integration and standardisation efforts, and technical solutions.
Mao et al. [125] also survey mobile edge computing, focusing on communication aspects. As mentioned before, while
these solutions tackle some issues associated with centralised Cloud and web, they do not focus on decentralised web
technologies.

A number of surveys focus on hybrid solutions that combine distributed storage and computation techniques with
decentralised solutions and governance, such as P2P networks and blockchains. Related to content retrieval, Anjum
et al. [13] survey techniques that complement the centralised content delivery with P2P content retrievals in CDNs.
However, such techniques use a centralised architecture with trusted CDN servers resolving requests to appropriate
peers. Jia et al. [90] also present a survey on collaboration for content delivery, focusing on collaboration techniques in

Manuscript submitted to ACM



30 Keizer et al.

network infrastructures including P2P-CDN, collaborative caching, SDN, ICN and more. Finally, Yang et al. [220] survey
attempts to integrate blockchains with edge computing solutions in the areas of network, computation, and storage.

8 SUMMARY AND CONCLUSION

In this survey, we present a thorough overview and analysis of the content retrieval process on the decentralised web.
After describing how content retrieval is handled on the current web, we identify essential components of the retrieval
process, consisting of search engines, name-registries, and file systems. In each of these areas, we provide an overview
of the state-of-the-art projects and proposals and a comparative analysis with the current centralised model.

The analysis of the decentralised web landscape reveals several critical issues that must be addressed for its successful
realisation. Firstly, emerging search engines for the decentralised web exhibit immaturity, necessitating further research
to develop engines capable of handling realistic workloads with performance comparable to those in the current web.
Notably, promising advancements in search engine technology often compromise decentralisation by introducing
centralised components. Additionally, while name-registries on blockchains have more mature implementations,
they suffer from a lack of critical mass of users, with only a few thousand URLs reported to be stored despite some
browser support. To address this, more research is needed to design algorithmic mechanisms for robust namespace
governance, potentially incorporating crypto-economic incentive mechanisms to deter financially motivated attacks
such as squatting. Among the key components of the decentralised web, file systems exhibit the most maturity with
working implementations and decent adoption. However, there is a notable trend towards centralisation to address
performance, content moderation needs, and reliability challenges. These findings underscore the multifaceted nature
of the challenges facing the decentralised web and highlight the need for more research and innovation to overcome
them.
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