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s the size of networked systems grows, it becomes
increasingly difficult to extract the right informa-
tion from them. Networked systems and even net-
works themselves need constant monitoring and

probing for the purposes of management, particularly for fault
diagnosis and performance evaluation. For instance, network
monitoring entails the collection of traffic information used
for a variety of performance management activities such as
capacity planning, bottleneck and congestion identification,
quality of service monitoring for services based on service
level agreements, and so on. A key aspect is that the collec-
tion of traffic information should be supported in a timely
manner so that reaction to performance problems is possible;
in addition, monitoring traffic should ideally have a minimal
impact on the managed network.

In order to determine whether existing monitoring systems
can satisfy the requirements imposed by future “networked” sys-
tems, we need to first identify these requirements. An important
difference between current and future networking is that in the
former case topology is considered relatively static, while this
becomes an unsafe assumption for future networks. New models
of dynamic networks are contrasting with the situation in which
the network topology was mainly modified as a result of careful
planning. Examples in which logical topology layering can be
dynamically constructed in real time are the following:
• Dynamically reconfigurable networks
• Active networks
• Dynamic virtual private networks (VPNs)
• Mobile and survivable networks
• Reconfigurable cellular networks

Another important feature of future networks is scale. The
tremendous success of the Internet has made possible and
even encouraged the realization of systems characterized by
very large scale, and high levels of distribution and dynamics.
“Network-centric” approaches such as Sun’s Jini architecture
envisage large numbers of comparatively simple devices (cel-
lular phones, televisions, thermostats) all accessible through
the network. Management systems in the future will need to
keep track of these devices and determine which are present,
which are functioning correctly, and so on.

The third key factor is the appearance of increasingly com-
plex services and applications that rely on heterogeneous inte-
grated fixed and mobile networks. The variety of such
applications and services along with the possibility of access-
ing them from virtually any location makes it extremely diffi-
cult to anticipate the type and distribution of network traffic.
This in turn implies that network traffic and potential conges-
tion may appear anywhere.

Because of their scale and dynamics, future networked sys-
tems (as well as applications and services) will be very difficult
to manage and control unless efficient means of monitoring
them become available. Monitoring systems will need to effi-
ciently gather network and system state on a large scale in
order to feed back information to management and control
applications.

In this article we argue that the conventional approach to
network monitoring, based on either management protocols or
distributed object technologies, cannot fully satisfy the require-
ments of future networked systems explained above. Intuitive-
ly, in order to monitor large-scale dynamic systems we need a
distributed monitoring model that adapts to the monitored
system. After discussing the limitations of monitoring models
in the Simple Network Management Protocol (SNMP),
telecommunications management networks (TMN), and dis-
tributed object approaches such as the Common Object
Request Broker Architecture (CORBA) and Java Remote
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Method Invocation (Java-RMI), we discuss the potential of
employing mobile agents (MAs) in future network monitoring
systems. An MA is essentially an autonomous object contain-
ing the logic to perform a given task and possibly migrate
under its own control from node to node in a network [1].

The idea of employing MAs for applications such as dis-
tributed information retrieval, performance monitoring, and
remote data filtering or aggregation has been extensively
reported in the literature; an interested reader may, for
instance, refer to the state-of-the-art review presented in [2].
However, most commonly, in the context of management, MAs
are not exploited to the full potential of their capabilities. The
majority of examples presented use MAs simply as a mecha-
nism to realize dynamic programmability of remote elements
according to the management by delegation (MbD) concept [3].

MbD may be realized with agents bound to single-hop mobil-
ity; the agents move from the managing node to remote man-
aged nodes, and then stay put. What is not commonly exploited
in management is the agent multiple-hop capability where
agents may move several times as they adapt to changing cir-
cumstances. While single-hop mobility can provide increased
flexibility and scalability in the context of relatively static net-
worked systems, it is the multiple-hop capability offered by
MAs that needs to be exploited to meet the requirements of
future networked systems (i.e., large scale and dynamics). In
this article we support this argument through an example MA-
based system that exploits full code mobility to realize a scal-
able and adaptable distributed monitoring model.

Given our proposal to use MAs as area monitoring stations,
a distributed algorithm is required to compute the agent loca-
tions, initially offline and then at runtime. During the execu-
tion of the monitoring task, agents will need to sense their
environment and take actions in order to adapt to changing
conditions and, by doing so, maintain location optimality.
Optimality in this case concerns the minimization of network
traffic incurred by the agent-based monitoring system and of
latency in collecting the necessary information.

Our algorithm relies on agents learning about the network
topology through node routing table information accessed
through standard management interfaces. The monitoring sys-
tem is initially deployed through a clone and send process
starting at the centralized network-wide station. The same
algorithm is also used by the agents to adapt to network
changes through migration. Key features of this algorithm are

its distributed nature (i.e., each agent carries and runs the
algorithm) and low computational complexity. We use simula-
tions to assess the scalability of our approach, and the ability
to adapt to network congestion and faults.

Network Monitoring Techniques
Static Centralized Monitoring
In this case there is a single monitoring station with which all
monitored systems communicate directly. The monitoring sta-
tion is in charge of collecting, aggregating, and processing raw
network data (Fig. 1a).

The static centralized model is widely used to manage rela-
tively static small-scale networks (i.e., private networks) using
SNMP. The model has been criticized for its limited respon-
siveness and accuracy, and lack of scalability. The concentra-
tion of management intelligence in a single point results in
processing and communication bottlenecks, limiting the num-
ber of elements that can be monitored and the rate at which
information can be gathered. Furthermore, SNMP favors a
polling approach which limits the ability to track problems in
a timely manner while requiring management traffic even if
no significant change has occurred. 

To overcome the shortcomings of polling, the alternative
technique of event reporting may be used. With event report-
ing the monitored systems take the initiative to inform the
manager according to predetermined rules set up by the man-
ager. Event reports are conceptually generated within the
monitored systems, either periodically or when a particular
condition is reached. Periodic reporting provides the manager
with status information, typically in a summarized fashion, and
it is more efficient than requesting the same information via
polling. On the other hand, alarm reporting is useful for
detecting problems as soon as they occur. The problem with
alarm reporting is that the types of alarms need to be thought
out in advance, standardized, and supported by vendors.
Event reporting requires an increased level of intelligence in
the monitored systems.

Typical systems employ both polling and event reporting,
although in practice telecommunications management systems
rely more on event reporting, and private network SNMP-
based management systems use mostly polling. For simplicity
in the remainder of this article we will assume that monitoring
tasks are implemented with the polling mechanism.

� Figure 1. Network monitoring models: a) static centralized monitoring; b) static decentralized (hierarchical or based on distributed
objects) monitoring; c) dynamic (i.e., programmable or active) decentralized monitoring with MAs.
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Static Decentralized Monitoring
One way to pursue increased performance and scalability is to
adopt a hierarchical management architecture, which uses
multiple systems with one system acting as a main monitoring
station and the others working as area monitors (Fig. 1b).
Hierarchical monitoring is used in the TMN. In the context of
SNMP, simple monitoring and statistical probes can be intro-
duced using RMON, which is equivalent to an area monitor
that collects monitoring information about a number of ele-
ments within a subnetwork. More recently, other forms of
decentralization based on distributed object technologies such
as CORBA and Java-RMI have become popular in manage-
ment. An extensive review of management paradigms and
technologies can be found in [4].

The common denominator of the above approaches is the
adoption of simple, predefined functionality that can result
only in a limited level of decentralization of management
intelligence. Monitoring functionality that can actually be
decentralized is restrained to operations such as low-level fil-
tering of monitoring data, generation of alarms on the basis of
simple conditions, and collection of rudimentary statistical
information. In addition, these decentralized area monitors
operate in predefined network locations, which means that
they cannot easily adapt to network changes. Therefore, con-
ventional static decentralized schemes, despite coping with the
scalability problem to a certain extent, inherit the other prob-
lems of centralized management and cannot easily cope with
frequently changing dynamic environments.

Programmable Decentralized Monitoring
What is needed is a mechanism to dynamically deploy new
management logic when and where needed without having to
predefine that logic. With distributed object technologies, the
management logic can only be modified through software
reinstallation.

The first proposal to support remote programmability was
introduced by Yemini et al. with their MbD framework (see
[3], although the original paper was published in 1991). MbD
also represents one of the first concrete attempts to make use
of mobile code in network management, signaling a paradigm
shift from static to dynamic management. The basic underly-
ing principle is that new management functions can be dynam-
ically introduced to a managed node as required. The manager
uses the MbD protocol to push new code down to the man-
aged node; management routines are executed locally rather
than centrally at the management station. Therefore, this is a
mechanism to decentralize management processing and repro-
gram managed node capability.

When MbD was first proposed Java did not exist, and the
idea of pushing executable code on the fly presented several
hurdles. Managed nodes were relatively simple in terms of
processing power, and there was no uniformity in processing
environments. It is the increase in processing power and the
advent of Java that have made the MbD paradigm a viable
solution. Java’s object serialization makes it easy to migrate
code, while Java-RMI provides for simple communication
between distributed objects. The single-hop mobility mecha-
nism envisioned by MbD, despite being extremely useful as a
mechanism for flexible and dynamic remote programmability,
is still a relatively static mechanism since it is only used to
deploy management logic at startup time. The decisions of
when and where to deploy management logic are still made
by a centralized management station based on a static net-
work view. Because the MA is conceived as a dynamically
deployable piece of code (single-hop mobility) rather than
free to roam the network (multiple-hop migration), full code
mobility is not exploited to provide runtime adaptation.

Therefore, the single-hop mobility mechanism does not fully
satisfy the requirement of large-scale highly dynamic net-
worked systems. 

Active Distributed Monitoring
The possible advantages of using agent mobility for network
management have been discussed extensively in the agent
community and are reviewed in [2]. Some of these advantages
are reduced network traffic, and increased responsiveness and
robustness.

The question addressed in this article is how to exploit
agent multiple-hop mobility to build a distributed monitoring
system that reconfigures itself as the status of the monitored
system changes (Fig. 1c). Reconfigurability is an essential
requirement if the status of the monitored system is dynamic
and transient. We have seen that with distributed objects and
single-hop mobility we can only realize a relatively static mon-
itoring system that may or may not be optimized on the basis
of the initial status of the monitored system. As the latter
evolves, the distributed monitoring logic may have to be relo-
cated in order to maintain optimality; when MAs are used as
adaptive area monitors, their optimal locations depend on the
status of the network, which may vary considerably in highly
dynamic environments.

In the rest of the article we present an example of an
agent system that realizes active distributed monitoring. The
system is decentralized because the monitored system is parti-
tioned and separate agents are dynamically assigned to dis-
joint partitions. Network partitioning is computed in a
distributed fashion by the agent system. Finally, because
agents are capable of sensing the network status and migrat-
ing at runtime to maintain location optimality, the system is
active or adaptive. Such a system exploits not only multiple-
hop mobility but also agent autonomy (each agent contains
the logic to independently decide when and where to migrate)
and agent cloning, the ability of an agent to create and dis-
patch copies of itself.

Effective Location of Area Monitors
The agent location problem consists of two phases. Initially,
we need to determine the appropriate number of agents for a
given monitoring problem and compute the location of each
of those agents. Subsequently, upon agent deployment the
agent system needs to be able to self-regulate in order to
adapt to changing conditions. This is achieved by triggering
agent migration in a controlled fashion to avoid instability due
to continuous agent migration.

The problem of computing the optimal number and location
of area monitors is analogous to the optimal placement of p
servers in a large network, which has been studied since the
early ’70s. This belongs to the class of p-center and p-median
problems, both NP-complete when striving for optimality [5].
Approximate polynomial algorithms have been proposed, but
none of them suits the requirement of our agent system. Pro-
posed algorithms are centralized, requiring the network dis-
tance matrix at the main monitoring station. While this is less
of a problem in offline calculations for medium to long-term
optimal locations, it becomes an important problem for active
distributed solutions in which optimal locations need to be
(re)calculated by the agents themselves. In this case, the moni-
toring station should retain an up-to-date version of the whole
network topology, which obviously is an unrealistic requirement
for large-scale dynamic networked systems.

In the system proposed herein, the location of area moni-
tors is neither fixed nor predetermined at design time. Area
monitors are realized with MAs, simple autonomous soft-
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ware entities that, having access to network routing informa-
tion, can adapt and roam through the network. The dis-
tributed monitoring system is deployed by progressively
partitioning the network and populating each partition with
monitoring agents.

We assume the existence of an agent system supporting
mobility and cloning. Agents are assumed to have access to
routing information obtainable from network routers through
standard network management interfaces. For simplicity, we
also assume that MA hosts (i.e., locations in which MAs are
able to run) are evenly distributed within the network. This, in
other terms, means that for each router there is always an
MA host that is located relatively close to it and, for each
LAN, the number of MA hosts is proportional to the number
of monitored objects (MOs) that need to be monitored in that
LAN. Under these assumptions, the MA distribution tree
(i.e., the set of routes used for MA deployment) does not dif-
fer significantly from the routing tree rooted at the monitor-
ing station. Without loss of generality, we envisage a scenario
in which routers can act as MA hosts during MA deployment.
In such case, the MA distribution tree would actually coincide
with the routing tree.

Agent Deployment
The conventional approach to partitioning the monitored sys-
tem on the basis of its topological and dynamic features is
clearly not viable in the case of very-large-scale dynamic sys-
tems. The task of collecting a real-time snapshot of the topolo-
gy and traffic profile of a large-scale rapidly changing networked
system is indeed ambitious. The basic underlying idea used to
solve the agent location problem is to exploit information that
is readily available in the system rather than trying to derive a
new network distance matrix. This is why our monitoring sys-
tem relies solely on routing information, which is maintained by
routing protocols. The precise nature and quality of this infor-
mation will depend on the routing protocol in use. Sophistica-
ted routing protocols such as Open Shortest Path First (OSPF)
can maintain information using multiple distance metrics
(delay, throughput, etc.). Simple routing protocols such as RIP,
however, use only a hop-count metric. Our objective is to
design a deployment algorithm that will optimize agent location
with respect to whatever metric information is available. How-
ever, it is clear that performance of our system, in absolute
terms, will be affected by the quality of this information.

A flow chart of the proposed agent deployment algorithm

� Figure 2. Agent configuration algorithms: a) agent deployment; b) agent self-relocation.
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is depicted in Fig. 2a. The algorithm is illustrated through a
simple example for the network depicted in Fig. 3a. For the
sake of simplicity, we assume that the list of MOs consists of
all the network nodes. The basic phases of the agent location
process are depicted in Fig. 4. The algorithm deploys the area
monitors (or MAs) during the network partitioning process
through a “clone and send” process starting at the main moni-
toring station. The number and location of MAs is computed
by subsequently comparing the monitoring task parameters
with routing information extracted from network routers.

The monitoring task, including the list of MOs as well as
the operations to be performed on them, is delegated to a
first MA (Fig. 4a). This MA starts executing the algorithm of
Fig. 2a, which is distributed in nature; that is, each subse-
quently cloned MA will execute the same algorithm (only the
input configuration parameters will differ). Starting from the
monitoring station, the initial MA builds an estimate of the
total monitoring cost on the basis of the individual cost or dis-
tance field of the local routing table (i.e., for each element of
the MO list, its routing cost will be added to the total estimat-
ed monitoring cost). Having estimated the total cost for per-
forming the task from its current location, the MA will then
consider alternative configurations using partial costs attached
to the neighbor nodes. Not all neighbor nodes need to be dis-
covered: only those nodes that are next hops for the MOs tar-
geted by the MA are candidate MA hosts. They will be
discovered, again, through the local routing table; that is, they
are identified by next-hop addresses of those entries whose
destination field contains one of the targeted MOs. The partial
cost attributed to a neighbor node is found by adding the indi-
vidual costs (extracted from the table) of those MOs that are
targeted by the MA and reached through the node. At this
point, a simple heuristic function is used to decide the number
of new agents to be cloned and their initial location (among
the neighbor nodes). This function estimates the need to send
or clone an MA to a neighbor (i) on the bases of the total
number of MOs targeted by the agent (|MO|), the number of
MOs reached through the node (|MOi|), the total cost (Ct),
and the partial cost (Ci). The cloning threshold value (Th)
impacts the final number of MAs. In our system, Th has been
tuned in order to achieve a percentage number of MAs on the
order of 5–10 percent of the total number of network nodes.
The probability of an agent being sent to a given neighbor (i)
has been computed using the following formula:

In our example, the root agent (sitting at location 0) esti-
mates that probabilities P1 and P2 associated with neighbors 1

and 2, respectively, are sufficiently high to justify sending an
agent to node 1 and another to node 2 (Fig. 4b). P3 is rela-
tively low (only one node is monitored through node 3).
Therefore, the network is partitioned in two portions; two
agents are needed: one agent is available already, one extra
agent is cloned; and the list of MOs of each agent is reset in
order to reflect the new network partitioning. Finally, the
agents are deployed to their new location (Fig. 4c) and each
of the two agents independently continues the clone and send
process. The agent sitting at node 1 is now ready to start mon-
itoring its subpartition since P4–P7 are relatively small. In con-
trast, the agent sitting at location 2 decides to produce a
further subpartition and clones a new agent; P8 is above
threshold (Fig. 4d). The decomposition/cloning/migration pro-
cess continues in a similar way (Fig. 4e), leading to the final
configuration of Fig. 4f. Figure 3b depicts the agent location
within the network (we can observe that the monitoring path,
i.e., the agent-to-monitored nodes communication path, does
not necessarily coincide with the agent deployment path).

It should be noted that the use of cloning results in mini-
mal agent deployment traffic around the monitoring station.
In fact, only two agents leave the station, although the result-
ing number of agents is three. The cloning algorithm is exe-
cuted in a distributed fashion (on nodes 1, 2, and 8). Finally,
the processing is performed in parallel among nodes at the
same levels (1 and 2). This algorithm is computed dynamically
in the sense that the final agent location depends critically on
the network status detected at deployment. Clearly, the effec-
tiveness of the heuristic function in placing MAs is affected by
the quality of the routing tables whose values are sensitive to
the routing protocols operating in the network (independent
of the agent system).

Keeping Pace with System Dynamics
Upon initial agent deployment, the system still needs to be
able to adapt to changing network conditions. For instance,
node failures, link congestion, and mobile computing result in
rapidly changing logical topologies. Conventionally, dynamic
routing protocols react to such changes by appropriately
manipulating the relevant routing tables in order to bypass
problematic portions of the network. The impact of such an
approach on a static monitoring system will be that its moni-
toring packets will be rerouted through generally longer paths,
causing both traffic and response time to deteriorate.

With the proposed adaptive monitoring system, upon deploy-
ment each agent keeps sensing the network by periodically
accessing the local routing tables and reconsidering its location.
The flow chart of Fig. 2b depicts the agent self-relocation pro-
cess. The underlying principles are very similar to those used at
deployment time. However, to avoid uncontrolled agent prolif-
eration, agents adapt through relocation but do not adopt
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� Figure 3. a) Sample network topology; b) final agent location; c) example adaptation through agent migration, following a link failure.

a)

Monitoring
station

Key

11

10

8

9

10

63

5

2 1

13

14

4

7

Nodes with agents

Other nodes

Nodes previously hosting agents

Network links

Broken link

Monitoring path

0

0

b)

11

12

8

9 3

5

1

13

14

0

c)

11

12

8

9

10

63

5

2 1

13

0

10

2

6

4

7 14

4

7



IEEE Network • May/June 200212

cloning. The parameters of the heuristic function are slightly
different. One parameter is the table read up period, P (i.e. the
interval between two successive accesses to the local routing
table). At each interval, the agent will recompute the total cost
associated with its MO list and the gradient cost, DCt, with
respect to the previews interval. A second parameter is the
threshold, Th1, applied to DCt, which initiates the migration
decision process. Partial costs are then computed for the neigh-
bors, similar to the deployment phase, and the node with maxi-
mum deployment probability is identified. A second threshold,
Th2, is applied to that node in order to make a final decision on
whether or not to trigger migration.

A simple example illustrating agent self-regulation in
response to a link failure is depicted in Fig. 3c. In this case,
following a loss of connectivity between nodes 8 and 13, a new
(longer) monitoring path is established between nodes 8 and
13. As a result, the central node for the system partition com-
prising nodes {8, 11, 12, 13, and 14} becomes node 14. Hence,
the agent originally located in node 8 will relocate to node 14,
bringing the system back to optimality.

Evaluation Methodology
The proposed agent-based monitoring system has been evalu-
ated from different viewpoints: scalability, optimality, and
adaptability. The complete analysis was detailed in the Ph.D.
thesis of one of the authors [6]; in this article we report the
most significant findings.

Scalability essentially concerns two aspects. The first

regards the evaluation of the computational complexity of the
agent deployment process and estimation of its associated
timescale. This aspect has been assessed through mathemati-
cal analysis. The other aspect concerns the actual perfor-
mance of the system at steady state (i.e., in the initial agent
deployment phase). Performance in terms of incurred moni-
toring traffic and response time has been assessed against vari-
ous scalability factors: network size (number of nodes and
network diameter), monitoring polling rate, and number of
MAs to number of MOs ratio. Steady state scalability has been
assessed through simulation. The location algorithm has been
run for a set of realistic network topologies composed of
routers, links, and hosts. These have been generated using the
GT-ITM topology generator following a well established
methodology by Calvert and Zegura [7, 8]. In particular, tran-
sit-stub topologies resembling Internet topology and with a
range of 16–100 nodes have been generated in order to assess
the sensitivity of the location algorithm to network size.

In order to simulate IP network and protocol behavior we
have adopted the NS-2 simulator from the University of Cali-
fornia at Berkeley/Lawrence Berkeley National Laboratory [9]
and extended it with MA capabilities. Agent migration and
cloning have been implemented along with the actual agent
location algorithm, which is incorporated in each agent. This
algorithm has been configured to minimize the total incurred
monitoring traffic.

After quantifying the scalability of our system in terms of
traffic and response time, we have conducted comparative
simulations between our agent deployment algorithm and the

� Figure 4. Example agent deployment process (agent deployment path).
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Lagrangian location algorithm [5]. The latter
is not a viable solution (it does not scale)
since it relies on the network distance matrix
being made available at the centralized sta-
tion. It is used merely because it leads to
provably near-optimal agent configurations.
Those configurations have been used as a ref-
erence point for the assessment of the dis-
tance of our system from optimality. We also
generated the agent location randomly to
emulate an unoptimized agent distribution.

Finally, we studied the reconfigurability of
our agent system by simulating various condi-
tions in which link failures led to increased
traffic and response time. We deployed the
agent system before the failures, then gener-
ated link failures at random locations,
assessed the costs associated with agent migra-
tion, and finally measured traffic and response
time after reconfiguration.

System Assessment
Agent Deployment Timescale
Rather than delving into the details of the
mathematical analysis reported in [6] we shall
try, instead, to draw conclusions on the agent
deployment timescales following a more intu-
itive approach. If we look again at the exam-
ple deployment process depicted in Fig. 4 we
can see that, because agent deployment happens together with
network partitioning, the system does not need to collect and
process any network status information. Agents base their
decision on information solely contained in the local routing
tables. On the other hand, agent cloning and migration intro-
duce significant overhead on the order of seconds [10]. Thus, if
we assume that the processing power available at each agent
site is sufficient to process the local routing table in a matter
of milliseconds, we can conclude that the bottleneck of the sys-
tem will be localized at the cloning/migration process. Finally,
agents running at the same level of the distribution tree (e.g.,
agents sitting at nodes 1 and 2 in Fig. 4c) execute independent
of each other and in separate physical locations (i.e., in paral-
lel). Therefore, under the above assumptions agent deploy-
ment time increases linearly with the number of levels of the
distribution tree; that is, the timescale of the deployment pro-
cess is on the order of R s, whereby R is the network radius.
For the example of Fig. 4 the deployment time is on the order
of 2 s: 1 s to deploy the first two agents (Fig. 4c) plus 1 s to
deploy the third agent from node 2 to node 8 (Fig. 4e).

Steady-State Performance
The performance comparison between the agent system and its
centralized counterpart (i.e., a centralized static monitoring
system) was aimed at quantifying the performance delta rather
than proving the superiority of the former solution (expectedly,
agents lead to reduced traffic and response time due to their
intrinsic distributed nature). Because the simulations were con-
ducted with lightly loaded networks, it was possible to grasp
the effect on performance of various scalability factors. Both
traffic and response time increased linearly with polling rate,
number of MOs, and network diameter up to a certain break-
ing point (i.e., the point at which the network could not sustain
the monitoring traffic). Under the simulated conditions, the
agent solution led to an average 50 percent reduction in over-
all traffic and 30 percent reduction in response time. Due to
their distributed nature, agents proved to be extremely effi-

cient at dragging traffic away from the centralized network-
wide monitoring station; the traffic incurred around the moni-
toring station by the agent system was negligible.

Another important scalability factor is the maximum polling
rate sustainable by the network (this is related to the accuracy
and timeliness achievable by a polling-based monitoring sys-
tem). The agent system could sustain polling rates on the
order of 200 percent larger than its centralized counterpart.

Finally, we assessed the sensitivity of the system to the
number of MAs (keeping all other parameters unchanged).
This time the performance curves exhibited nonlinear behav-
ior. Both traffic and response time decreased significantly
when the number of MAs to number of MOs ratio was small-
er than 0.15. However, for larger fractions the performance
improvement was negligible, showing that increasing the num-
ber of MAs is advantageous only up to a certain point. Beyond
that point agent deployment overheads predominate.

Distance from Optimality
The distance from optimality of the proposed location algo-
rithm can be evaluated by observing the plots of Fig. 5, where p
is the number of MAs and N is the number of network nodes.
The total hop distance is directly related to the total steady-
state monitoring traffic. It can be observed that the proposed
location algorithm leads to traffic values that are always smaller
than those that would be achieved with the Lagrangian algo-
rithm, which is provably near optimal [5]. Hence, our agent-
based algorithm is near optimal too. In particular, a percentage
improvement in the range of 0–3 percent was measured.

The fact that the total hop distance achieved by placing the
agents in a random fashion is very far from our near optimal
solution (38–48 percent difference for p/N < 0.1) provides
another good justification for the adoption of the agent-based
approach. The percentage reduction in traffic with respect to
centralized polling (p/N = 0) is also significant. For instance,
for p/N = 0.1 the reduction in traffic will be greater than 30
percent and will increase monotonically with p/N.

� Figure 5. Distance from near optimality.
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Finally, the fact that the three curves tend to converge for large
values of p/N is not unexpected since when p/N = 1 the number
of agents equals the number of nodes. Hence, each of the three
location algorithms will equally succeed in placing the agent even-
ly. The plot that reports the maximum weighted distance (directly
related to response time) for the three location algorithms is qual-
itatively analogous to the previous one. However, in this case the
agent location curve, although very close to the near optimal one,
does not exhibit any inferior value. In particular, the distance
from near optimality is 0–5 percent for p/N < 0.1. This result was
expected since the simulated agent location algorithm was config-
ured to minimize traffic, not response time.

Agent Migration
Adaptation through migration can be demonstrated through a
simple link failure scenario. Steady-state performance is mea-
sured before the failure; then sufficient time is allowed for the
system to adapt in terms of routing table manipulation (by the
relevant protocol layers) and subsequent agent migration.
Finally, performance is measured again as soon as the new
steady state is reached. Figure 6 depicts those two performance
states in terms of traffic and response time for different system
configurations; that is, for a range of agents comprised between
0 (centralized monitoring system) to a maximum of 34. With
the centralized polling solution (p = 0), most request and
response packets are rerouted through longer paths after fail-
ures (we simulated various scenarios with two failures on aver-
age). Consequently, both traffic and response time increase
significantly; they almost doubled in our scenario. On the con-
trary, with the agent system the performance degradation at
steady state is on the order of 5–10 percent only.

Concluding Remarks
In this article we present our progress toward the design of a
self-regulating distributed monitoring system based on MAs.
First, we address the common question, “What is the real
benefit of using MAs for monitoring?” Having designed and
extensively simulated an adaptable monitoring system strictly
based on key MA features — multiple-hop code mobility,
cloning, reactiveness, and autonomy — we have demonstrated,
through simulation, the viability as well as the benefits of such
an approach. While scalability can be pursued with distributed
object technologies, it is with MAs that we can address the
combined requirements of scalability and adaptability.

An unexpected lesson came from the study of the optimality
of the agent system. Because the heuristic function was

designed with simplicity and computational efficiency in mind,
the authors were not expecting to find out that agent deploy-
ment would be near optimal with respect to traffic. It would
be interesting to investigate whether with simple modifications
to the heuristic function it will be possible to achieve near
optimality with respect to response time. Another important
outcome of the simulations regards adaptability. Again the
authors did not anticipate the degree of adaptability achieved
through agent self-relocation. An interesting investigation
avenue may be to consider increasing the intelligence of MAs
and their heuristics to stretch adaptability even further. One
possibility is to investigate agent proactiveness as a means to
anticipate problems rather than just react to them.

A significant open problem is that of stability. Agent reloca-
tion should be governed by principles analogous to those of
classic control theory in order to avoid instability, oscillation, or
slow response to problematic conditions. If agent migration is
supported by general-purpose MA platforms, its relatively high
migration overheads also give an indication of the timescales
over which adaptation might be effective. The agent system will
be able to react to changes within timescales larger than 1 s
since typical agent migration times are on the order of 1 s.

Clearly the simulation-based study presented in this article
is just one step toward the practical application of MAs to
network and system management. Its main aim was to pro-
vide quantitative results that may motivate and encourage
further work in this area. In addition to being pursued from a
theoretical viewpoint, the proposed agent work may be
applied to a number of domains. The system has been
designed in order to meet the monitoring and control require-
ments of large-scale highly dynamic networked systems. The
key benefit of scalability makes it suited to real-time monitor-
ing. By populating the system with a suitable number of
agents it is, in fact, possible to provide upper bounds on
response time (the more agents deployed, the smaller their
“catching” area). The authors are currently investigating
active monitoring in the context of next-generation service
management. MOs include not only heterogeneous mobile
terminals and their local resources, but also advanced ser-
vices. The number of such MOs is potentially very large, and
their location is difficult to anticipate: terminals are free to
roam and services may be implemented with MAs. In con-
texts such as this, the application of active monitoring is
expected to prove particularly beneficial. However, it is
through the experience gained with future practical imple-
mentation that further benefits and shortcomings of active
monitoring will be unveiled.

� Figure 6. Self-adaptation through agent migration.
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