
I. Introduction

The concept of mobile ad hoc networks (MANETs) has
recently received significant attention due to the increasing
popularity of tetherless computing and the rapid growth of
wireless networking. In ad hoc networks, mobile nodes are
free to move randomly and organize themselves arbitrarily;
thus, the network’s wireless topology may change rapidly and
unpredictably. An ad hoc network typically operates in a stan-
dalone fashion but may also be connected to an infrastructure-
based network through a gateway, e.g. a WLAN access point,
a cellular network base station, etc. Conventional wireless net-
works require as prerequisite some form of fixed network
infrastructure and centralized administration for their opera-

tion. In contrast, since MANETs are self-creating, self-orga-
nizing and self-administrating, mobile nodes are responsible
for dynamically discovering other nodes they can communi-
cate with. This dynamic network formation that encompasses
heterogeneous devices greatly benefits from the ability to
rapidly create, deploy and manage services and protocols in
response to user demands.

The dynamic deployment of services and protocols in het-
erogeneous MANETs has not been adequately addressed in
the literature. This is partly due to the fact that MANET
applications have so far been envisioned mostly for emergency
and military situations with pre-existing functionality. Howev-
er, future MANETs may support a variety of applications in
different environments and should allow for the dynamic tai-
loring of capabilities according to arising needs, possibly in a
dynamic fashion based on contextual information. For exam-
ple there are many potential solutions for ad hoc networks
regarding routing protocols, quality of service (QoS) enhance-
ments, etc., that typically depend on the characteristics of the
particular ad hoc network, e.g. topology volatility, characteris-
tics of radio links, node capabilities, etc. Given the multitude
of potential solutions, programmability is of paramount
importance to allow mobile nodes to be enhanced on the fly
with the required capabilities in the ad hoc environment. In
addition, application servers may migrate to more powerful
devices that have the required processing capacity while less
powerful devices may outsource computing tasks. Programma-
bility is possible through recent advances in distributed sys-
tems technologies and transportable “execute-anywhere”
software. In this paper we present a novel programmable plat-
form approach that can support cooperation, adaptability and
alignment with respect to the required basic capabilities and
additional services of the participating nodes in a secure man-
ner. This cooperation and switching to a different mode of
operation may be triggered dynamically, allowing a degree of
self-management to be achieved.

A key aspect of MANETs is the possibility to adapt to
their environment through context awareness for many coop-
eration and coordination scenarios. Context-information may
be used to trigger network changes according to predefined
rules, leading to dynamic and, to an extent, autonomic deci-
sion-making. The sheer amount of context information neces-
sary for relevant adaptation places an important burden on
the network, given that potentially large amounts of data from
diverse sources need be managed. This requires an infra-
structure for sensing, collecting, summarizing and making con-
text information available [12]. The proposed framework
incorporates such functionality [22] but in this paper we con-
centrate mostly on the programmable platform aspects for
node capability alignment, including an exemplary case-study
of dynamic switching between a proactive and a reactive rout-
ing protocol. The work presented here enhances and extends
our initial work on programmability in ad hoc networks pre-
sented in [18]. The work in this paper includes extended
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ment it is difficult to dynamically deploy services and protocols
without a common understanding among the participating
nodes and their capabilities. A deployment/provisioning
framework must cope with the high-level of device hetero-
geneity, degree of mobility, and should also take into account
the potentially limited device resources. This paper presents a
context-based programmable framework for dynamic
service/protocol deployment that allows the nodes of a mobile
ad hoc network to download and safely activate required ser-
vice/protocol software dynamically. Downloading and activa-
tion can be triggered through preconditions evaluated
according to available contextual information. This strategy
leads to the alignment of the nodes’ capabilities so that com-
mon services and protocols can be deployed even if they are
not available at every node. In addition, dynamic context-driv-
en deployment may lead to a degree of network self-optimiza-
tion. We present the programmable framework and
functionality and evaluate its various aspects through testbed
experimentation, simulation and analytical modeling. The
results demonstrate good performance with respect to the sup-
ported functionality.
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testbed experimentation with mobile nodes of diverse hard-
ware/software platforms and capabilities and also analytical
modeling of the proposed plugin distribution scheme. Extend-
ed simulations have also been performed.

The rest of the paper is organized as follows. We present
related work on programmability and dynamic service deploy-
ment. The proposed platform functionality and architecture
are described, also discussing relevant design issues. We pre-
sent and evaluate an application case study for the proposed
platform while we then evaluate the proposed approach, first
through testbed experimentation and then through analytical
modeling and simulation. Finally, we conclude the paper and
present directions for future work.

II. Related Work
The dynamic nature of MANETs and the relevant variable
conditions raise the need for runtime reconfiguration and
node capability alignment. Programmability is a means to
achieve this alignment and is essential in a MANET given the
multitude of potential solutions for routing, quality of service
and other protocol or application services. There exist various
approaches to achieve programmability. The Active Networks
approach advocates the dynamic deployment of new services
by introducing “active packets” that carry logic as well as data.
Code carried by active control packets is evaluated in routers
[4] and this approach has also been used for active routing in
MANETs [5]. The Smart Packets project [14] used active
packets to improve the performance of large networks by del-
egating management decisions closer to the managed nodes.

Programmability is also possible through the provision of
suitable management interfaces for modeling communication
hardware/software in switches and routers; such interfaces
allow code to be uploaded to network nodes and activated in
a controllable fashion. This approach was first adopted in the
Xbind framework, targeting the quick and flexible introduc-
tion of new telecommunication services in programmable net-
work infrastructures [8]. Xbind has given rise to the IEEE
P1520 initiative for Programmable Network Interfaces [9].
The Mobiware approach relied on Xbind, modifying and
extending it for programmable cellular networks [10]. Mobile
agents may be also used in full mobility scenarios, carrying
code and state to manipulate different network nodes, or in a
constrained mobility mode [6], which can be seen as a flexible
approach for “management by delegation” [7]; in the latter
case, code is uploaded and executed in network nodes through
“elastic management agents,” augmenting the node’s function-
ality.

Relevant work related to MANETs includes middleware-
based solutions for network programmability and dynamic ser-
vice provisioning. The SensorWare framework [15] is
middleware based on active networking principles that sup-
ports the programmable management of sensor nodes through
lightweight, mobile control scripts. [19] defines a service effi-
ciency parameter to characterize dynamic service deployment
in MANETs; this work addresses the important issue of
dynamic service deployment/termination in mobile nodes so
that better service coverage is obtained at a minimal control
cost.

It should be mentioned that while there exists research
work on network programmability, there has been no previous
attempt to apply it to ad hoc networks in the manner pro-
posed here, i.e. not limited to a specific application domain.
We should also mention that there exists work on hybrid and
adaptive routing strategies similar to the one we propose in
our experimental case study [23, 24]. The proposed hybrid
routing approaches have not been implemented and deployed
in real-world MANET environments, so there are still open
questions regarding their applicability. We distinguish our-

selves from this work by providing a generic framework that
can cater for any protocol/service deployment in a MANET
and not just routing protocol switching. We do not claim to
have provided a novel routing scheme for MANETs; the spe-
cific case study simply motivates the framework’s operation.
The latter is not restricted to dynamic routing strategies as it
is the case in related work limited to a specific application
domain, but allows for dynamic strategies of diverse nature to
be deployed in MANETs in a generic fashion.

III. Programmable Ad Hoc Framework:
Functionality and Architecture

The programmable platform we propose uses a lightweight
approach through loadable plugins that can be installed in
nodes to extend or alter their capabilities. Examples of such
plugins include new routing protocols, extensions to existing
ones or any other service/protocol that might be required.
Plugins essentially form the system’s functionality. A plugin is
a piece of Java or C++ code with well-defined interfaces as
required by the platform infrastructure; in its simplest form it
may even be a script with configuration commands to be used
in delegated configuration scenarios. In order to decide on a
particular plugin instance for a given scenario, a plugin elec-
tion takes place utilizing current context information. This
involves advertisements beforehand by every Mobile Node
(MN) about the plugins it owns. The elected plugin is then
distributed throughout the MANET in a peer-to-peer fashion,
using flooding initiated from the nodes that have it. Following
its installation, it is activated in all the nodes. The rest of this
section discusses design issues of the proposed framework and
presents initial reasoning behind some of the design choices.
Security is of major importance to MANETs, especially given
the nature of our programmable platform approach. We pre-
sent briefly relevant mitigation techniques but a detailed anal-
ysis and evaluation lies outside the scope of this paper. 

The proposed framework can support any type of
service/protocol deployment, assuming services or protocols
are realized as plugins executed in user space. However, as
detailed in Section IV that describes the application scenario,
the work presented aims at network-level services, dynamical-
ly deploying and switching MANET routing protocols on the
fly.

A. Hierarchical vs. Distributed Management
A key consideration in MANETs is the organizational model
to be deployed. In order to cope with potentially large scale, a
common practice is to organize the MANET into clusters,
each managed by an elected local leader or Cluster Head
(CH). Assuming a hierarchical approach, CHs then cooperate
and either elect a global leader or Network Head (NH) [1] or
a set of CHs that collectively undertake the role of NH. The
NH or the set of CHs that undertake the NH role take key
management decisions, such as triggering and coordinating
plugin distribution and activation. The election process for the
CHs and the NH guarantees reliability by also electing backup
nodes that can assume the roles of these entities in case a
node departs the network or fails for unforeseen reasons. The
CH election process is re-instantiated upon the occurrence of
significant topological changes.

This hybrid hierarchical approach that we have adopted for
our design (hybrid in the case when many CHs cooperate to
take collective decisions) is similar to that of routing proto-
cols, e.g. OSPF, and scales well, limiting interactions within a
cluster or among cluster heads. It also allows operation in a
controlled distributed fashion, when decisions are not taken
by a single NH, but through cooperation and “voting” among
the CHs. A diametrically different approach is a fully dis-
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tributed one, in which all the mobile nodes have “equal
rights” and determine collectively any management decisions.
This approach requires more complex cooperation protocols
and does not scale for large networks.

The CHs/NH election process is based on contextual infor-
mation such as location, capabilities (processing power, mem-
ory, battery life, node mobility etc.), expected residence time
in the current location/cluster and user privileges. These are
collected from sensors embedded in the mobile nodes. For
example, the CH/NH needs to be a relatively central node in
the cluster or network respectively while there is no point in
electing a CH with high probability to move away from its
current location soon. In addition, the candidate CH nodes
should be “thick” in terms of capabilities. There exists a lot of
work in the literature on cluster formation and CH/NH elec-
tion and we have also proposed relevant algorithms. Stable
cluster formation is important, hence the CH election heuris-
tic can be similar to the one we proposed in [1] for longer-
term large-scale MANETs or similar to the one we proposed
in [2] for more spontaneous MANETs. In [1] and [2] we com-
pared our CH election heuristic to other similar approaches,
and showed that our heuristics result in more stable clusters.
In short, the CH/NH election procedure is based on building
a stable connected dominating set of the MANET underlying
graph. For details on the reliability and resilience of this pro-
cess and relevant performance analysis we refer the reader to
[25].

B. Platform Communication and Components
We identify two fundamental entities in our programmable
platform architecture, the CH and the Terminode modules
depicted in Fig. 1. The NH acts as a head for the set of cluster
heads in the MANET, so its role is similar to that of a higher-
level CH. We have currently only implemented the hierarchi-
cal model among CHs in which the NH takes all management
decisions but we also plan to investigate a collaborative peer-
to-peer model among CHs in the future. Depending on the
status of a mobile node, its functionality can switch among
Terminode at the lowest level of the hierarchy, CH a level

above and NH as a top-level cluster head.
The CH module is responsible for the man-

agement of the programmable Terminodes
regarding plugin election and distribution, as
well as (re-) configuration. The key components
of the CH module are:
• Plugin Election: it is responsible for the ini-

tiation and coordination of the election pro-
cess. It receives the plugin advertisements
from the nodes containing the characteristics
of the plugins they hold, elects one and
informs the nodes about the elected plugin.
A necessary requirement for a plugin to be
elected is that versions for every available
node platform exist.

• Plugin Distribution: this component man-
ages the distribution of the elected plugin to
the nodes. The distribution is performed
using a controlled flooding scheme, in which
a node is first queried to examine if it already
has the plugin and if it can support its execu-
tion, given the heterogeneity of mobile nodes
in terms of hardware/software. This compo-
nent takes also care of plugin activation.

• Plugin Configuration: this component han-
dles the (re-) configuration of plugins that
have already been deployed on the MANET.

• Context Management: this component man-
ages context information gathered from
nodes. The latter send aggregated context

information to the CH, so that the CH/NH can identify the
need for configuration changes, for example the relative
mobility of nodes within a cluster in our working case study
presented in section IV.
The Terminode module deals with the collection /aggrega-

tion of local context information at a node (e.g. tracking node
mobility) and handles the management of the loadable plugins
locally through advertisement, storage, distribution, installa-
tion and configuration. The specific components of the Ter-
minode module include:
• Plugin Repository (PR): this stores actual plugins and their

properties. The plugin properties are advertised to the
CH/NH and include the plugin execution platform and
functional requirements for its operation.

• Plugin Management: it provides all the necessary operations
to access the repository and retrieve/update plugins and
their properties. It is responsible for advertising the avail-
able plugins to the CH/NH Plugin Election component
when asked and waits for requests from the CH to dis-
tribute a plugin to its neighbors. Plugin installation, execu-
tion, (re-)configuration and termination are also amongst
its responsibilities.

• Context Management: it handles the sensing, collection,
modeling of context information locally at the MN and pre-
processes/aggregates this information in order to send it to
the respective CH. Aggregation results in reduced traffic
and context processing at the CH. Monitoring aspects of
context gathering and dissemination are not considered in
this paper since the emphasis is on the dynamic, pro-
grammable framework, but we have presented relevant
work in [22].
The platform components communicate using XML-RPC.

We discuss the choice of XML-RPC along with other imple-
mentation decisions later.

C. System Operation
We describe here the complete system operation, from elec-
tion triggering to plugin activation, assuming a network of one
cluster for simplicity. The CH is responsible for the plugin

FIGURE 1. Interactions between platform components within a cluster.
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election process. Based on the aggregated context from Ter-
minodes and predefined rules, the CH decides when to trigger
the election process. It does this through the Plugin Election
component and decides on the type of the plugin currently
required by the MANET, e.g. the requirement to switch to a
reactive routing protocol.

The Plugin Election component contacts the cluster Ter-
minodes for advertisements of candidate plugins. Each node
performs a lookup in its repository for suitable plugins that
satisfy the CH requirements, e.g. reactive routing protocols,
and replies to the CH with the characteristics of the retrieved
plugins. The CH Plugin Election component executes the
election process and decides on the most suitable plugin,
based on the current context. It should be noted here that the
set of candidate plugins is pruned so as to include only those
that are either executable in all available node platforms (e.g.,
Java-based plugins), or those that are platform specific (e.g.
C/C++-based) but an implementation for each configuration
exists in the MANET. The main reason for this is to avert a
situation where the selected plugin cannot run on every avail-
able node platform and thus node alignment is compromised.

Following the actual plugin election, the CH contacts Ter-
minodes that already own the elected plugin and instructs
them to distribute it to their neighbors. Plugin distribution is
carried out in a peer-to-peer flooding fashion, with the “own-
ing” nodes passing the plugin to their adjacent nodes, and so
on. Prior to any plugin exchange, each node probes its peers
to find out if they have already acquired the plugin and subse-
quently avoid unnecessary transmissions. This probing also
guarantees that the correct plugin version is distributed — this
aspect is important for platform-specific plugins. For the actu-
al transmission, a Terminode contacts its adjacent Terminode
(through their Plugin Management components) and passes
all the characteristics of the elected plugin, followed by the
plugin itself.

When a new plugin has been successfully installed, the
Terminode Plugin Management component sends a relevant
notification to the CH. At this point, the plugin is installed
and available to be activated. The CH Plugin Election compo-
nent, after receiving installation notifications from all Termin-
odes, disseminates an activation message across the cluster to
instruct the member nodes to start executing the elected plug-
in. Each Terminode then picks up the plugin from its reposi-
tory and executes it in user space. This ensures “weak”
synchronization of plugin activation amongst all Terminodes
and also node alignment, since activation occurs only when
confirmation of successful installation of the plugin by all Ter-
minodes has been received. In case of error, the process is re-
started e.g. to take into account significant topological
changes that might have taken place. Failsafe mechanisms
presented in section III-F, have been considered in order to
ensure correct operation.

D. Loadable Plugins
Plugins can be loaded, activated, re-configured and removed
dynamically. The plugins are essentially loadable objects or
modules with well-defined interfaces that allow their con-
trolled execution in the surrounding platform environment. A
plugin can be any type of platform-independent executable
object, e.g. Java-based, or platform-dependent, e.g. C/C++-
based. Our platform supports both but platform-dependent
C/C++ plugins can only be executed on the hardware/soft-
ware platform combination for which they were compiled. It is
obvious that the Java plugins are more generic, extensible and
platform independent; on the other hand, platform-dependent
C/C++ plugins are important for services and protocols for
which performance is crucial. Programmable plugins are load-
ed and activated in user space as general purpose processes.
Plugins as operating system kernel extensions are both diffi-

cult to engineer and also exhibit inherent security/instability
problems. Plugins expose two programmable interfaces for the
purpose of configuration and monitoring. The first interface is
used to configure and alter aspects of the plugin functionality
at run-time. On the other hand, through the monitoring inter-
face plugins can provide information regarding their status
and various useful statistics on their operation. Due to the
dynamic nature of plugin installation and activation, security
is of paramount importance to ensure uncompromised opera-
tion and MANET stability. We briefly examine security impli-
cations and mitigation techniques later.

E. Plugin Election
The NH is responsible for the election process and the identi-
fication of the need for configuration changes. From the col-
lected context information and predefined policy rules, it
realizes what type of configuration change is needed. Details
on the context-driven policy-based MANET management
architecture are outside the scope of this paper (we refer the
reader to [25]), which focuses on the programmable platform
aspects. It should be also noted that relevant input triggering
a configuration change is also possible by a human manager
interacting with the NH node, e.g. for emergency and military
scenarios. Having decided on the necessary configuration
change, the NH queries the nodes regarding available plugins
of the specified type. The nodes respond accordingly and the
NH builds a list of the available plugins of that type that exist
in the MANET. It then elects one plugin among the candidate
ones and asks for it to be deployed throughout the network
for the required changes to take effect.

The election process utilizes Equation 1 and considers plu-
gin properties. Based on the latter, the candidate plugin set is
pruned so as to only include plugins that can operate in all
nodes as explained. The election process uses selection crite-
ria associated with plugin technical details. These criteria are
assigned a unique identifier and have comparable values.
Examples of such criteria we consider in our design include
the CPU cycles required, the run-time memory and the plugin
storage size. Each criterion is assigned a weight based on its
importance in the election and its values are “normalized” in
a common-ground range for comparability between different
plugin/platform combinations. The weights are adaptive and
can be varied based on context information, e.g. the scarcity
of resources. The values of the weights are uniformly initial-
ized for all nodes of the MANET and only the NH is respon-
sible for their alteration.

(1)

where: i ∈ [1, n] refers to the election criterion, Ai is the crite-
rion’s value i for plugin x (range normalized to [1, 10]), wi ∈
[0, 1], Σwi = 1 and Ai ∈ [0, 10], ∀i ∈ [1, n].

Let’s consider an example. Based on context information,
the decision to deploy a reactive routing protocol is reached.
Assume there exist three implementations of such protocols in
the MANET: a cross-platform implementation of AODV and
DSR and a platform-specific implementation of TORA; these
three form the set of possible plugins. The TORA plugin is
“pruned” because it is platform-specific. The choice between
AODV and DSR depends on the value of f(x) in equation 1.
The criteria used are the storage size (A1) and required run-
time memory (A2), with weights 0.3 and 0.7 respectively. The
plugin for which f yields the smallest value will be used, given
that it will be conceptually the most lightweight. The existence
of relevant criteria in f and the relevant weights can also be
adaptive as already mentioned.
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F. Security and Reliability
The necessity to cater for security and reliability in our frame-
work is evident. We can identify a number of potential prob-
lems that may arise. While a full scale mitigation strategy of
relevant issues could form the core of a standalone paper, we
briefly present the considerations we have taken into account
to tackle security issues. We do not claim that the proposed
measures constitute a complete solution for the various prob-
lems. They provide though our platform with sufficient
robustness and ensure correct functionality under unstable
conditions.

The distribution of plugins, i.e. executable code, among the
nodes of the ad hoc network is a major security concern. An
attacker could exploit this functionality and introduce mali-
cious plugins, compromising the correct operation of nodes.
This threat can be generalized to the assignment of the CH
and NH roles. If an attacker were to compromise the CH/NH
or masquerade itself as one of those then the operation of the
network could be thwarted. We manage these security impli-
cations with a strategy based on establishing trust among net-
work nodes, as proposed in [27]. When such relationships
have been established then issues such as malicious nodes or
fake CHs/NH can be avoided. Trust relationships can be
established during the clustering process as suggested in [28].
In parallel, we employ a distributed security model on the ad
hoc network, as proposed in [26]. This is based on principles
of threshold cryptography and in short refers to a distributed,
resilient public key scheme. Plugin distribution is then per-
formed, only when proper authentication of the plugin owner
has been established. The plugin itself is being digitally signed
by its owner, hindering thus compromise of integrity and pre-
venting malicious code to be activated on nodes. The only
code that is installed has originated from trusted nodes. We
have not yet implemented these security measures in our plat-
form but this is a priority for our future research and develop-
ment work.

The main concern regarding reliability in our design refers
to the instability of the ad hoc network itself. Node movement
can lead to cases where capability alignment cannot occur,
because some nodes have moved in or out of communication
range and thus the conditions that triggered the need for con-
figuration changes have changed. Our platform is dynamic
and adaptive, monitoring node context and cluster topological
information constantly. This implies that changes in the ad
hoc network formation are identified and thus the member-
ship and context information is always up-to-date. In the case
of node movements affecting the functionality of the platform
while capability alignment is being employed, the reliability of
the system is guaranteed with the use of failsafe mechanisms.
By this we mean that an operation is not completed until
acknowledgment by the majority of the participating nodes is
received by the CH/NH — the majority threshold is adaptable
and depends on the overall network mobility ratio. If for any
reason the deployment of a new plugin fails then the MANET
nodes roll-back to the last known working configuration. In
the case of nodes departing, the CH/NH keeps track of the
nodes that did not align themselves to the capabilities of the
majority (through the clustering process) and if they rejoin the
ad hoc network, in the next monitoring cycle they are explicit-
ly instructed to configure themselves accordingly. If new
nodes appear in-between configuration changes, then their
capabilities will be aligned accordingly in the next monitoring
cycle.

IV. Application Case-Study
Although the proposed platform can support service and pro-
tocol deployment at any level, we present here an example
application scenario that addresses network-level protocol

deployment. The use of a complicated scenario like this is by
itself a novelty of our work, since to our knowledge there has
been no similar experimentation effort in a real testbed. In
this case, based on the current context, a routing decision is
made to dynamically deploy and switch to a new MANET
routing protocol on the fly. The NH decides based on context
information whether the current routing protocol should be
changed for more efficient operation of the whole network.
Although the term context is broad in concept, here we use as
context information the mobility of nodes in terms of their
relative velocity. Based on this information, the NH checks
whether the current routing protocol needs to be switched
from reactive to proactive and vice-versa. Once the decision is
made, the specific protocol — among the available routing
protocol implementations — is selected through the plugin
election process described earlier.

The primary goal of any ad hoc network routing protocol is
correct and efficient route establishment between a pair of
nodes so that packets are delivered in a timely manner. Route
construction should be performed with a minimum of over-
head in terms of bandwidth consumption. Many different pro-
tocols have been proposed to solve the MANET multihop
routing problem, each based on different assumptions. There
exist mainly two different categories of relevant protocols:
proactive and reactive (or on on-demand). The proactive ad
hoc routing approach is similar to some extent to routing
schemes for fixed networks and does not take into account the
frequency with which routes are required. It relies on an
underlying routing table update mechanism that involves the
constant propagation of routing information throughout the
network so that routes are always available. This is not the
case, however, in reactive routing protocols, in which a route
to a new destination is only established when the need arises
to communicate with it; this obviously introduces latency.

Hence, different routing protocols provide optimal perfor-
mance under different operating conditions. In the case of a
MANET in which the nodes are relatively stationary and the
topology changes rather infrequently, the proactive routing
approach is more cost-effective in terms of routing overhead,
and leads to improved performance in terms of the latency
involved to transmit packets and the packet delivery ratio. On
the other hand, when the mobility patterns of nodes are
unpredictable and the network topology is very fluid, the reac-
tive approach may lead to better performance. Hence, it
would be advantageous to change the routing strategy depend-
ing on the mobility of the nodes. In our system mobile nodes
can switch between the OLSR (Optimized Link State Rout-
ing) [20] and the AODV (Ad Hoc on Demand Distance Vec-
tor) routing protocol [11]. OLSR is a proactive routing
scheme while AODV is an on-demand routing one. When the
NH determines that the relative velocity of the nodes of the
network exceeds a certain threshold, it triggers protocol
switching from a proactive to a reactive approach and vice
versa. Every node monitors its own mobility with respect to its
adjacent nodes and relevant summarized information is
passed to the CH and subsequently to the NH that makes the
decision. The exact aspects of context management, dissemi-
nation and the policy rules governing this switching are out-
side the scope of this paper, please refer to [22] for further
details. The comparison we provide simply serves as a motiva-
tion for the viability of our approach and does not imply the
introduction of a novel routing scheme.

Before proceeding in presenting a comprehensive evalua-
tion analysis of our proposed generic framework for the
deployment of services in MANETs, we deem necessary to
assess the performance gain regarding the specific case study.
We use GloMoSim simulations as the tool for our analysis
and we attempt to evaluate the gain in network performance
when using our proposed adaptive routing strategy in compar-
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ison to using a static one, in terms of control cost, packet
delivery ratio for each data packet delivered and average end-
to-end delay for each application-level packet. The packet
delivery ratio is defined as the total number of data packets
delivered to respective destinations divided by the total num-
ber of packets generated in the network. 

We considered 100 nodes contained in 9 clusters, each with
a dimension of 200×200 m2 within the terrain area of 600×600
m2. Traffic was generated using random CBR connections
with a payload size of 512 bytes. At any point in time the total
number of CBR source-destination pairs is kept constant
(actually 40), and each session lasts for a time period that is
uniformly distributed between 20 and 40 seconds. Each sce-
nario was executed for 300 simulated seconds.

Since in MANETs communications often take place within
smaller teams that tend to coordinate their movements, the
group mobility model is a reasonable assumption in many
application scenarios. If we assume that node
mobility is completely unpredictable, it is impos-
sible to address the issue of group division and
the decision regarding protocol switching. For
this purpose we developed a new group mobility
model based on the classical random-waypoint
model. In this model, we have two mobility pat-
terns for the mobile nodes (i.e. uniform and ran-
dom) and respectively two mobility periods.
During the uniform mobility period (UMP), the
relative velocity of any node with respect to any
other node in the network takes a constant value.
On the other hand, during the random mobility
period (RMP), the relative velocity of each node
with respect to each other is random. During this
period (RMP), the random-waypoint mobility
model governs the mobility pattern of each node,
and hence this results in varying cluster member-
ship of nodes. The RMP and UMP occur inter-
changeably at the same time for all the network
nodes. The time period for both UMP and RMP
is based on an exponential distribution with a
mean value varied during each run of simulations
as described later. The need for this new group
mobility model was due to our desire to simulate
context conditions that trigger protocol switching.

The NH will decide whether to trigger routing
protocol switching based on the relative mobility

patterns of nodes. When the relative velocity of
the nodes with respect to their CHs tends to be
almost constant (i.e. during UMP), the NH will
make the decision to switch to a proactive rout-
ing approach, i.e. OLSR. On the other hand,
when the relative velocity of the mobile nodes
takes random values, the NH will attempt to
switch to a reactive routing approach, i.e.
AODV. We compared the performance
improvement of our approach, where the rout-
ing protocol switches between AODV and
OLSR in an adaptive, context-driven, dynamic
fashion, with an approach where the routing
protocol is static.

With Figure 2 we attempt to assess the effect
of the mean value of the UMP on the normal-
ized throughput (packet delivery ratio) per con-
trol cost under different traffic scenarios. In
this process, the UMP mean is increased from
50 to 250 seconds, while the RMP mean takes a
constant value of 100 seconds. As it was previ-
ously explained, the proactive routing approach
involves constant propagation of routing table
information, whereas this is not the case with

the reactive routing one. As a result, the proactive approach
incurs substantial amount of routing-related control cost in
comparison to the reactive approach. As it can be seen from
Figure 2, the packet delivery ratio per control cost incurred is
lower for OLSR in comparison to AODV. As it is expected,
the performance of our scheme lies in-between the perfor-
mance of AODV and OLSR.

Figure 3 depicts the average end-to-end delay each appli-
cation packet experiences as a function of increasing UMP
under different traffic scenarios. This is, however, measured
for successfully received packets only, and hence it does not
reflect the actual delay; for instance, when all the packets
between a given source-destination pair are dropped due to
the inability of the routing protocol to find routes, the end-to-
end delay appears to be zero. From Figure 3 it becomes clear
that the delay improves with OLSR when the UMP increases.
The delay of AODV appears to be poor when compared to

FIGURE 2. Delivery ratio per control cost incurred vs. increasing UMP.

FIGURE 3. Average end-to-end delay of a successfully received packet vs. increas-
ing UMP.
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OLSR as the UMP increases. Since in our scheme, the rout-
ing protocol switching between AODV and OLSR depends on
the mobility patterns, the delay lies in-between those of
AODV and OLSR, as expected. The efficiency of OLSR in
comparison to AODV was expected, since being a table-driv-
en routing protocol means that active routes are maintained
for every destination. In the reactive approach, the route has
to be established on-demand, resulting in increased delay. Our
scheme utilizes both reactive and proactive principles and thus
its performance lies in-between that of AODV and OLSR.

Figure 4 depicts the overall control cost incurred as a
result of the employed routing strategy. The table-driven
OLSR yields significant control traffic, which is even higher
when mobility increases, i.e. when UMP is small. On the other
hand, the reactive AODV builds routes on-demand and thus
the control overhead is relatively small. Our hybrid strategy
outperforms OLSR and incurs control traffic almost compara-
ble to that of AODV.

It is evident from the simulation analysis that no routing
strategy is a panacea for all routing cases in MANETs, since
different approaches have their own benefits and drawbacks.
Our hybrid scheme achieves satisfactory results
under varying conditions. While OLSR exhibits
much less delay than AODV and the exact oppo-
site is the case as far as control cost is concerned,
our scheme is considered as a viable alternative
and performs in between these two approaches in
all cases. This is demonstrated in the graphs pre-
sented above. The obvious advantage and merit
of our approach is that it is generic and can lead
to optimized hybrid strategies for various applica-
tion scenarios and not only for a particular appli-
cation as in [23]. The routing protocol case study
presented only serves as a proof-of-concept of the
platform’s operation and motivates its usefulness:
it is not meant as a novel, more efficient routing
strategy, as this would require a much more com-
prehensive study.

V. Platform Evaluation
For purposes of validation and experimentation

we have implemented the proposed pro-
grammable platform and deployed it in our
experimental testbed. After discussing the rele-
vant implementation details, we present the
results obtained when testing and validating our
implementation in the testbed. This section
concludes with simulation results and analytical
modeling, examining the efficiency and scalabil-
ity of our approach. It should be noted that the
three different techniques we used to evaluate
the platform consider the same set of metrics
i.e. control traffic overhead and convergence
time, each one thus validating the other.
Testbed experimentation proves the viability of
our platform in a real-world operational envi-
ronment. On the other hand, scalability cannot
be addressed through experimentation due to
the fact that one cannot expect a testbed of
hundreds of nodes. The need for simulation
analysis is thus evident. Analytical modeling is
used to mathematically model the performance
of our platform and to validate the results
obtained from testbed experimentation and
also simulation. We therefore consider our
approach comprehensive and holistic since it
provides an overall evaluation of our platform
through a variety of assessment techniques.

A. Testbed Configuration and Platform Implementation
To test the platform’s performance and efficiency and also to
examine its operation in a real environment, we deployed it in
our experimental MANET testbed that comprises 4 PDAs
and 2 laptops. Table 1 summarizes the configuration of the
testbed. The testbed is a 6-hop MANET and is considered a
relatively reliable environment. Relevant results on fundamen-
tal parameters can also be used as input to the simulations
and the analytical modeling so that results can be extrapolated
and general conclusions can be drawn. The performance met-
rics we measured were the overall control cost incurred by our
design and the convergence time for a full system cycle as
described in section III-C.

The communication between mobile nodes uses the
lightweight XML-RPC protocol [13]. XML-RPC is a subset of
the Simple Object Access Protocol (SOAP) with only basic
functionality supported. It allows software running on differ-
ent operating systems and hardware architectures to commu-
nicate through remote procedure calls (RPCs). XML-RPC
uses the HTTP protocol as transport and XML encodings for

FIGURE 4. Control cost incurred vs. increasing UMP.

TABLE 1. Experimental testbed configuration.

Platform Configuration Attribute Description

PDA

Processor 400 MHz Intel XScale

Memory 48 MB ROM, 128 MB RAM

Operating System Familiar Linux 2.4.19

Wireless interfaces Integrated wireless LAN 802.11b

Laptop

Processor 1,7 GHz Intel Centrino

Memory 512 MB RAM

Operating System Debian Linux 2.6.3

Wireless interfaces Integrated wireless LAN 802.11b
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the RPC protocol itself. We chose an XML-based approach
because we also use XML to represent contextual data col-
lected by mobile nodes. We could have possibly chosen other
distributed object technologies such as CORBA, or even full-
fledged Web Services, but these technologies necessitate
object interface/service endpoint advertisement and discovery
functionality. In a volatile environment such as a MANET,
discovery functionality adds one more level of complexity. In
addition, the simple, static interfaces of our programmable
platform and relevant interactions can be modeled by message
passing through RPCs. Given our performance evaluation of
XML and other management technologies [3], we believe that
XML-RPC provides a useful blend of functionality and per-
formance.

Trivial FTP (TFTP) [16] was used for the distribution of
the plugins. It is less complex than FTP and has no user
authentication, being mostly targeted to software-driven auto-
mated software download/upload. This saves both time and
traffic in a trusted environment as the one we assume in our
case, where trust relationships among nodes will be estab-
lished. TFTP also uses only one connection, contrary to FTP
that requires two connections for control and data traffic.

The platform is implemented using the Java 2 Micro Edi-
tion (J2ME) [17]. This version requires a small memory foot-
print, while at the same time it is optimized for the processing
power and I/O capabilities of small mobile devices. We chose
to use Java because of its ubiquity and platform indepen-
dence. The use of Java requires nodes to have a Java Runtime
Environment (JRE) installed. Although this is relatively mem-
ory-hungry, our hands-on experience confirms that even the
resource-constrained PDAs can comfortably support its execu-
tion.

B. Testbed Experimentation
Our experimental testbed was used to test and evaluate the
programmable platform in a real ad hoc network environ-
ment. The scenario implemented was that of the dynamic
routing protocol change according to node mobility context
information. As described earlier, nodes monitor their own
mobility and report this to the CH/NH, which is responsible
for identifying the need to potentially switch to a different
routing strategy. The two routing protocols we used (reactive
AODV-UU and proactive OLSR) are realized as C-based
user space daemons. Practical problems encountered during
the experiments included wireless link interference given that
the wireless interfaces were deployed in a confined space.

These interferences did not influence the experiment results
but necessitated numerous executions of the experiments. In
addition, since testing various network topologies was neces-
sary, we used a MAC address filter tool to emulate broken
links or unreachable destinations due to node mobility.

We experimented with many different topologies, routing
protocols and other plugins to evaluate the platform’s opera-
tion. In the following subsections, we present experimental
results regarding the routing protocol switch scenario for dif-
ferent but representative network topologies, such as star and
line/bus, but also for full random mobility scenarios. The star
topology models a centralized approach, with the CH/NH
conveniently located in the center, having a 1-hop distance
from all other nodes. The line topology is the one that per-
forms worse since it models a sparse MANET with 5-hop
diameter. For the full mobility scenarios, bearing in mind the
practical problems arising from physically moving around our
experimental testbed, we decided to use a custom-made emu-
lator to imitate actual movements. Our emulator is based on
the principles in [21], is realized in Java so as to be easily inte-
grated in our platform and makes nodes appear as moving
around with links breaking and being re-established, using the
aforementioned MAC address filter tool. The nodes are mov-
ing based on the mobility model described previously.

We have also implemented context gathering, processing
and dissemination, although we do not describe relevant
aspects here. In this scenario however, getting mobility infor-
mation requires sensors such as accelerometers, GPS support,
etc. For practical reasons we used emulated versions of these
sensors. Relevant emulated mobility information is passed to
the CH/NH to decide upon routing protocol switching. In this
work we are mostly interested to assess the performance of
our approach and platform in terms of plugin distribution and
activation. For further details on our work on context-related
issues, please refer to [22]. We should finally mention that the
results were produced through a number of identical experi-
ments and mean values are presented.

For comparison with the results presented next, we also
measured the convergence time and management traffic for
the ideal situation in which all nodes have both plugins, i.e.
AODV and OLSR. In this situation plugin distribution is not
required and this leads to minimized latency and control over-
head that represents an ideal lower bound. These experiments
were performed for a random topology and the convergence
time was 10.82 seconds and the management traffic 48523
bytes on average.

1) Star Topology — The star topology deployed in our testbed
is depicted in Figure 5. Laptop A was chosen as the center of
the star and the CH/NH. Note that given the fact that the
actual network is relatively small in terms of number of nodes
and geographical area covered, it comprises a single cluster.
The plugin to be elected and distributed (the C-based OLSR
routing daemon) exists initially in two nodes, namely A and C.
These two versions are different, reflecting platform-specific
implementations. 

The size of the plugin is 98.1 Kbytes for the PDA version
and 454 Kbytes for the laptop one and is distributed to node
B from node A and to nodes D, E, F from node C. All the
traffic is routed through node A, which is the CH. The results
taken from measurements for the complete system execution
are shown in Table 2. The overall convergence time for the
complete routing protocol deployment process (including an
average time of ~4 seconds to initialize the new routing pro-
tocol) in the considered network topology is 25.43 seconds.
This relatively long latency is attributed to the following two
reasons: i) in the topology considered, only two nodes have
initially the plugin, and two different versions need to be dis-
seminated, ii) the size of the routing protocol plugin, which is

FIGURE 5. Star topology.
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relatively big. These facts together with the underlying DCF-
based IEEE 802.11 MAC lead to increased contention with an
increase in binary exponential backoff, which in turn increases
the convergence time. The PDA version of the plugin is trans-
ferred over 6 hops in total and the laptop plugin over 1 hop.
The routing related traffic includes mainly “HELLO” mes-
sages used to ascertain route validity and was measured to be
7736 bytes. The overall control traffic overhead (41742 bytes)
can be divided into CH-related traffic and non CH-related
traffic. The CH traffic (8661 bytes) refers to the election-relat-
ed traffic (request for advertisements and advertisement of
plugins), the triggering of the distribution to the plugin own-
ers, the requests and replies to locate plugin owners of a par-
ticular platform and the plugin installation confirmation by
the nodes. The non-CH traffic (33081 bytes) includes trans-
missions incurred for requesting the plugin advertisement, the
querying of neighboring nodes to check for the presence and
the distribution and activation of the plugin. The plugin distri-
bution traffic, caused by the TFTP file transfers was measured
to be 1064880 bytes overall. This significant traffic is justified
if one considers the size of the distributed plugin and the
number of hops it is required to traverse (6 hops in total for
the PDA plugin and 1 hop for the laptop one).

2) Line (bus) Topology — The line (bus) topology deployed in
our testbed is depicted in Figure 6, with a laptop (A) chosen
to be the CH/NH. The purpose of this experiment is to assess
the operation of our platform in a relatively large-scale real
MANETs, where distances between any node pairs tend to be
high. The longest path in this experiment consists of five hops,
which in MANETs is a relatively long distance. The plugin to
be elected and distributed exists initially in two nodes, namely
A and C. Note that the CH is located at the “edge” of the line
topology, and the PDA with plugin one hop from the end, so
that the plugin dissemination distances are as high as possible.
The experimentation parameters remain the same as in the
previous test cases. The results as measured during multiple
executions of the scenario are presented in Table 3.

The time required for a complete system convergence was
measured to be 31.74 seconds. The increase in time compared
to the previous scenario is reasonable considering the signifi-

cant increase in network diameter. This is also the reason for
the increased routing related traffic (14332 bytes), since
longer routes must be maintained. The control traffic has also
increased (83145 bytes) since the CH is located at the network
edge and the non-CH traffic also increased, considering the
increased distance among nodes. The TFTP traffic is again
significant but is mostly attributed to the large laptop plugin
being transmitted over two links, while the PDA plugin is
transmitted over 4 links.

3) Full Random Mobility Scenarios — Full random mobility
scenarios were also considered by exploiting our custom built
MANET emulator. We created a multitude of mobility trace
files, based on the mobility model described in section IV, and
subsequently experimented with our platform. Nodes A and C
were always selected as the routing plugin owners, their posi-
tioning though was obviously not always the same. The mea-
surements displayed in Table 4 represent average values
gathered under various topology and mobility scenarios. The
benefit of the emulation is that we exploit real MANET char-
acteristics and evaluate our platform under various mobility
scenarios. In our experiments, we emulated mobility based on
scenarios in which we varied the terrain size from 100×100m
to 200x200m since we only had 6 nodes and larger terrains
would lead to continuous breaks of communication links. The
relative node velocity was varied from 5 m/s to 20 m/s.

The first observation is that in these cases the convergence
time is smaller than the previous static cases (22.57 to 28.07
seconds). The reason for this is that due to the limited terrain
size and the fact that the range of wireless transmissions is
100m, there is increased connectivity between the nodes. Link
and connectivity changes and disruptions caused by increasing
node velocity yield a relative increase in traffic measurements
(42092 to 55259 bytes) and convergence time. The routing
traffic is considerably bigger in the case of the larger terrain
size since more link breaks cause increased number of
requests for route reconstruction. The TFTP traffic in the
100×100 terrain size scenario is much less than in any other
case, since under these conditions all nodes are connected via
direct links to each other and so the plugin acquisition is
immediate. Our platform is robust enough to cater for link
breaks by assuming a threshold value for the number of nodes
that need to be present in order to complete the operation, as
previously described.

The extensive testbed experimentation presented and dis-
cussed above first validates that our proposed framework
operates properly in a real MANET environment. It also illus-
trates that our framework does not cause significant overhead
in terms both of control traffic and convergence time. The
maximum control traffic observed was 83145 bytes, which is
distributed among 6 nodes that communicate in the worst case
through 2Mb/s wireless links; this control overhead is deemed
acceptable. Convergence time was measured to be 24 seconds
on average. This time might seem significant but one needs to
take into account that the particular experiments distribute a

FIGURE 6. Line (bus) topology.

TABLE 2. Star topology experimental results.

Metric Value

Time convergence 25.43 sec

Routing traffic 7736 bytes

Control overhead 41742 bytes

TFTP traffic 1064880 bytes
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454 Kbyte plugin across many hops. In addition, an average
time of 4 seconds is necessary to initiate the new routing pro-
tocol and this is part of the convergence time, which is overall
considered as satisfactory.

C. Simulation Analysis
The testbed experimentation validated the operation of our
platform in a real-world scenario of a small-scale MANET.
On the other hand, the objective of the simulation is to vali-
date testbed experimentation but also to investigate the actual
performance of our programmable framework in a large-scale
MANET. Performance is analyzed in similar manner as
before i.e. in terms of control traffic overhead and overall
convergence time

We performed our simulations using GloMoSim in which
we implemented the associativity-based CH/NH election
heuristic [2] — note that in the testbed experiments we hard-
assigned the CH/NH role — and the dynamic routing protocol
switching, including plugin election and dissemination. The
transmission range of each node is set to 100m, and the link
capacity is considered to be 2 Mb/s (worst-case scenario). As
described earlier, each CH/NH switches between reactive (i.e.
AODV) and proactive (i.e. OLSR) routing strategies based on
context information. In our simulations the context-driven
need for routing protocol switching is derived based on the
node mobility patterns. Group mobility is derived from indi-
vidual node mobility patterns, using the same settings, i.e.
mobility traces, as those used for testbed experimentation.
Plugin switching latency is set to be 4 seconds as
measured on average in the testbed experiments.

For the first stage of our simulation analysis
that was presented in more detail in [18], we
attempt to investigate the performance of our
framework in terms of the average control traffic
incurred per node and the convergence time
required for the complete plugin deployment and
activation. In order to assess the effect of increas-
ing network size on the clustering and plugin
election and distribution schemes, the terrain-
area is also increased with an increase in the
number of nodes, so that the average node densi-
ty is kept constant. The number of nodes in this
case is varied from 5, 20, 45, 80 and 125. The ter-
rain-area size is varied so that the average node
degree remains the same and accordingly 200×200
m2, 400×400 m2, 600×600 m2, 800×800 m2 and
1000×1000 m2 are selected for each scenario
(each cluster has a dimension of 200×200 m2).

Figure 7 shows the average control traffic per
node because of both clustering and pro-
grammable platform interactions; this is shown as
a function of increasing number of nodes. The
clustering-related control traffic of CH/NH elec-
tion process is actually the traffic involved due to
HELLO packet transmissions, and the control

traffic associated with our programmable framework is the
total traffic involved for the entire plugin deployment process
as described in section III-C (excluding plugin distribution
traffic). It can be inferred from Figure 7 that the average con-
trol traffic does not depend on the increasing node count, and
hence both the clustering and plugin distribution schemes are
scalable. The initial peak in the plugin-related control traffic
is attributed to the small number of nodes, which leads to fre-
quent connectivity losses in the designated terrain area.

It is evident that the control overhead measured through
simulation is in the same range (approximately 6* 9100 =
54600 bytes) as the overhead measured during testbed experi-
mentation, validating thus our approach.

Figure 8 depicts the average convergence time per node
for complete plugin deployment as a function of increasing
number of nodes. The convergence time is actually the time
the plugin process takes from the point when a Terminode
receives the plugin election trigger message from the CH until
it finally receives the plugin activation message. It is evident
from Figure 8 that the convergence time increases almost lin-
early with the node count. This was expected as we assume
that the number of plugin owner nodes also increases propor-
tionally with network size. Although these nodes are randomly
distributed, in our simulation scenarios they appear to be rea-
sonably well distributed as the network grows in size, avoiding
“empty” areas, hence the almost linear convergence time with
the number of nodes.

If we consider a population of 6 nodes as it was the case in
testbed experiments, the overall convergence time measured
through simulations is similar to that observed in the testbed.
The average convergence time per node is around 4.5 seconds
(first point in the graph of Figure 8) and the overall conver-
gence time is 6*4.5=27 seconds, which is very similar to the
one measured in the testbed experiments (see terrain size
200x200 on Table 4); this further validates our approach.

D. Analytical Modeling
Testbed experimentation assessed the performance of our
platform in a real environment and more importantly provid-
ed concrete proof that it can provide the desired functionality,
imposing a relatively small control overhead and achieving
acceptable convergence times, in the order of 4 seconds per
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TABLE 3. Line topology experiment results

Metric Value

Time convergence 31.74 sec

Routing traffic 14332 bytes

Control overhead 83145 bytes

TFTP traffic 1530924 bytes

TABLE 4. Full random mobility experiment results.

Metric Value

Node relative velocity 5 m/s 10 m/s 20 m/s

(Terrain size: 100 × 100)

Time convergence (sec) 22.57 23.14 23.81

Routing traffic (bytes) 7523 7645 7701

Control overhead (bytes) 42092 42816 43902

TFTP traffic (bytes) 901145 902123 902556

(Terrain size: 200 × 200)

Time convergence (sec) 27 27.43 28.07

Routing traffic (bytes) 10209 12788 13342

Control overhead (bytes) 50512 52813 55259

TFTP traffic (bytes) 1101232 1104776 1105098
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node for a network of 6 nodes i.e. ~24 seconds in total. Simu-
lation experiments proved the scalability of our approach in
large-scale MANETs and validated the results obtained from
the practical experiments. In this section we attempt to model
analytically the efficiency of plugin distribution in our plat-
form and, based on this, validate our testbed experimentation
and simulation results. In order to perform this probabilistic
efficiency analysis, we define a set of evaluation metrics:
• Average and Overall Control Overhead (ACO and OCO):

control traffic of exchanged messages for alignment to be
achieved

• Average number of hops to acquire plugin (K
—

)
• Probability of a node acquiring the plugin in K

—
hops (PAC-

CESS)
• Probability of all nodes eventually acquiring the plugin in K

—

hops (PALIGNMENT)
The general case allowing for full connectivity among all

nodes is extremely difficult to address given the space limita-
tions of this paper. For simplicity, yet without loss of generali-
ty, we make certain assumptions in order to reduce the
problem complexity. In the absence of any power-
control mechanism, the number of neighbors
needed to maintain connectivity in the considered
MANET has been proven to be Θ(log N) [21].
We assume this number of neighbors, so connec-
tivity is not an issue in our analysis. We also
assume that all nodes are of the same platform,
so different plugin versions are not considered.

Let N be the number of nodes in the MANET.
Multihop communication can occur in KMAX
hops at maximum. The maximum hop count is
N–1 in the extreme case that all nodes form a
fully linear topology. We acknowledge that the
maximum hop count is also restricted by the TTL
values of IP and that of the routing protocol; for
the purpose of our analysis though we consider
that these TTL values can be set to the conceptu-
al maximum of N–1. At a particular time t, the
MANET nodes that possess the elected plugin
are NP(t), NP(t) ≤ N. By Nbi(x) or, by simply Nbi,
we denote the set of neighbor nodes to node x
that are i hops away. It is obvious that when i =
0, Nb0 = 1.

We denote as pi(x) or simply pi the probability
of a node to acquire the requested plugin in i

hops and no less. We make the plausible
assumption that plugin owners are uniformly
distributed throughout the network. This means
that the number of plugin owners in the i neigh-
borhood of a node is (Nbi * Np)/N. Under this
assumption, every node has an equal probabili-
ty of being a plugin owner. In this respect the
probability of a node having the plugin itself,
defined as p0, is

The probability of a node not having the
plugin is 1 – p0. The probability p1 of a node
acquiring the plugin in its 1-hop neighborhood,
assuming the node itself is not a plugin owner,
is given by the following equation that com-
bines these two events, namely the node not
having the plugin and at least one of its 1-hop
neighbors having it:

Based on the previous equations, the probability of a node
acquiring the desired plugin from a node in its K neighbor-
hood is pK and this is actually the PACCESS metric we defined
earlier when the number of hops is averaged. This is the com-
bined probability of finding the plugin in at least one of the K
hops neighbors and not having found it up to the K – 1 hop
neighborhood:

The first part of the formula denotes the probability of no
other node in less than K hops having the plugin. The second
part of the formula refers to the probability of at least one
node in the K hop neighborhood being a plugin owner.

A useful metric is the average number of hops required by
a node to successfully acquire the plugin. We denote as K

—

this average hop count of finding a plugin owner and it can be

p p pK
Nb K Nb NbK K= − − −( )+ + + −( ) * ( )1 1 10

1
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p p p Nb
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FIGURE 8. Average per node convergence time for the plugin deployment process
vs. increasing node count.

FIGURE 7. Average control traffic per node (clustering and plugin deployment) vs.
increasing node count.
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easily seen that.

This formula denotes that the average hop count is given
from the sum of all possible hop counts (up to the maximum
of N – 1) multiplied by the probability to have a plugin owner
at that hop count. This is averaged over the number of nodes
in the MANET that do not have the plugin.

Based on the average hop count (K
—

) a node requires to get
the plugin, we can calculate the average number of messages
that need to be sent over the MANET for a node to acquire
the plugin in K

—
hops. Assuming the overhead M of messages

exchanged per hop as constant, the average control overhead
is ACO = K

—
* M, hence the overall control overhead for all

nodes of the MANET is given by:

OCO = ACO * (N – Np) = K
—

* M * (N – Np)

The probability that a node will find a plugin owner in K
—

hops and thus obtain the required plugin is PACCESS. Based
on the previous formulae, this probability is given by the fol-
lowing equation:

The combined probability for every node to acquire the
plugin in an average distance of K

—
hops, which we call PALIGN-

MENT as it reflects full network alignment, is given by

All previous calculations assumed a uniform distribution of
plugin owners throughout the MANET. It could be possible
to cater for other distributions, but this would complicate the
presented analysis. In short, in this case the probability of plu-
gin distribution in a 1-hop neighborhood would be defined in
accordance to the selected distribution and the analysis would
have to adhere to the new definition, starting from p0.

We described the operation of our platform earlier. Based
on this description, we attempt to calculate the average con-
trol overhead per hop imposed by our platform (defined pre-
viously as M) during a full cycle of system operation. If we
disregard the CH-related traffic that involves plugin election,
then the traffic generated per hop is derived from the follow-
ing series of XML-RPC calls. A Terminode floods the adver-
tisement of its plugins (advertisePlugin call, measured in the
testbed to be 1211 bytes on average), then queries the neigh-
bors on whether they own the plugin and waits for their reply
(hasPlugin call and reply with approximate traffic of 2*1098
bytes). The Terminode then invokes the receivePlugin call to
handle receiving and installation of the plugin (1211 bytes)
and finally handles the activatePlugin call that deals with local
plugin activation and informs the CH of the successful align-
ment (1152 bytes). The CH-related traffic involves the request
for plugin election (approximately 1084 bytes), the request to
the elected plugin owner to distribute the plugin (on average
1095 bytes) and the confirmation of plugin activation (524
bytes). Thus the overall number of bytes on average is M =
8473 bytes.

Having defined the average per hop overhead imposed by
our framework, we can calculate the Overall Control Over-

head for various node populations given the formula we
derived previously. For the testbed experiments we have N =
6, NP = 2 and consequently the average number of neighbors
of a node is logN = 2.5. Using these values the average hop
count for our testbed experiments is ~1.5 as it can be calcu-
lated from the corresponding formula. We do not provide rel-
evant calculation details due to space limitations.
Consequently, the analytically derived formula gives overall
control overhead OCO=1.5*8473*(6–2) = 50838 bytes. This
value is very similar to the values measured both through
testbed experimentation (see terrain size 200 × 200 on Table
4) and simulation (9100*6 = ~54600 bytes — first point in
the graph of Fig. 7), validating thus further our approach.

VI. Conclusions and Future Work
In this paper we presented a programmable middleware
framework that can align the capabilities of the nodes of a
MANET through the use of loadable plugins. Relevant align-
ment can be initiated either by explicit human user decisions,
or in an adaptive dynamic manner based on context informa-
tion. This achieves the alignment of capabilities in a heteroge-
neous environment such as a MANET and can be used to
dynamically deploy protocols that may result in a more opti-
mal MANET operation, as shown by our application scenario.
It can also be used to deploy application servers at selected
nodes so that most other nodes have relatively close access to
them.

The platform has been implemented and evaluated in our
experimental testbed, allowing us to get a better understand-
ing of its operation in actual deployment scenarios. Although
the proposed platform can support service and protocol
deployment at any level, we presented an example scenario
that addresses adaptive and dynamic network-level protocol
deployment. This distinguishes our work from the majority of
related work that focuses on application-level service deploy-
ment and provides evidence regarding the platform efficiency
in supporting various configurations and applicability scenar-
ios. In our application scenario, node mobility is measured
and aggregated, characterizing the whole network as either
highly volatile or relatively static. A decision is made accord-
ingly to deploy and switch to a new, more suitable, MANET
routing protocol on the fly when a particular network mobility
threshold is crossed.

Our testbed experiments validated the correct platform
operation and exhibited relatively good convergence times
given that a relatively large size plugin was distributed i.e. a
new routing protocol daemon. Although we chose dynamic
routing protocol deployment in our initial case study, more
complex services can be deployed using our framework. The
cross-layer operation of our approach, in which application
level context information and programmable infrastructure
result in different network layer configuration and operation,
demonstrates its usefulness, extensibility and strength.

Our experimental results have been assessed through
testbed experimentation, simulation and analytical modeling,
each assessment technique validating the others. This both
ensured the reliability of our evaluation and also validated the
correct operation of our platform according to its design spec-
ifications.

We have adopted a hierarchical management approach,
with CHs administering clusters and one of them nominated
as NH, administering the whole network. The approach could
be centralized, with the NH taking all decisions, or partly dis-
tributed, with management decisions reached through collabo-
ration among the CHs or a selected set of CHs.

Aspects we plan to work on include the following: evalua-
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tion of the context-management infrastructure which we have
designed and implemented [22] but did not consider here in
detail; security for distributing plugins in the ad hoc network
and enabling trust among nodes; a peer-to-peer paradigm for
collective decision making among CHs that belong to a
MANET dominating set; and a policy-based model for the
autonomic triggering of management decisions based on both
predefined and on-the-fly introduced policies.
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