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XML-BASED NETWORK MANAGEMENT

INTRODUCTION

Management research and standardization start-
ed in the mid-1980s, but after almost 20 years
there is no widely adopted framework and tech-
nology that satisfies the needs of network, sys-
tem, service, and application management. Initial
technologies such as open systems interconnec-
tion (OSI) systems management and Simple
Network Management Protocol (SNMP) were
based on the manager-agent model. In the early
to mid-1990s, general distributed object tech-
nologies, most notably the Common Object
Request Broker Architecture (CORBA),
emerged, spurring a lot of research and stan-
dardization activity regarding their use for man-
agement. These technologies are based on the
principles of the open distributed processing
model.

All these management technologies found
their niche markets: OSI systems management
for network management in telecommunication
environments; CORBA for service management
in telecommunication as well as some IP envi-

ronments; and SNMP for network and system
management in IP environments. SNMP, though,
has fundamental limitations [1], which has led to
initiatives for either SNMP-like technologies
(e.g. COPS-PR) as well as Extensible Markup
Language (XML)-based approaches, such as
Juniper’s JUNO-Script. Technologies based on
XML are considered particularly attractive since
XML-based management data can easily be inte-
grated with other applications.

Recently, Web services has emerged as a
promising XML-based technology for standard-
izing e-service interfaces. However, careful
examination shows Web services to be very simi-
lar to distributed object technologies, so poten-
tially it could be used for management. In this
article we survey first the key characteristics of
OSI systems management, SNMP, and CORBA.
We then examine Web services, showing its simi-
larities to CORBA, and subsequently explain
how distributed object technologies can be used
for management. We then evaluate the perfor-
mance of SNMP, CORBA, and Web services
using a representative example from network
management that involves management informa-
tion about TCP and its connections. We finally
present a summary and draw our conclusions.

PROTOCOL-BASED
MANAGEMENT FRAMEWORKS

THE MANAGER-AGENT MODEL
The manager-agent model defines the principles
of operation for protocol-based management
frameworks [2]. Managed resources are modeled
through managed objects (MOs), which encapsu-
late the underlying resource and offer an abstract
access interface. Any managed network/service
element or distributed application should expose
a “cluster” of managed objects modeling its
resources across a management interface provid-
ed by an agent. The interface is formally defined
through specification of the available managed
object types or classes and the management
access service/protocol. Manager applications
access managed objects across interfaces for
implementing management policies. A manage-
ment application may act in both agent and
manager roles; this is the case for peer-to-peer
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management interactions or hierarchical man-
agement environments.

An agent is a software entity that administers
managed objects, responds to management
requests, and disseminates spontaneous events
through the management protocol. It uses an
implementation-specific mechanism to access the
managed objects and, given its collective view of
the relevant cluster, can provide sophisticated
object access facilities for bulk data transfer or
selective information retrieval. In addition, it can
evaluate event notifications at the source and
only send them to interested managers according
to predefined, potentially sophisticated, criteria.
The management protocol supports access of
multiple attributes from multiple objects through
one request. The manager-agent model projects
a communication framework in which standard-
ization affects only the way in which manage-
ment information is modeled and carried across
systems, deliberately leaving aspects of their
internal structure unspecified. This may result in
highly optimized implementations given that
there are no internal application programming
interfaces (APIs) to be adhered to. The model is
depicted in Fig. 1.

OSI SYSTEMS MANAGEMENT
OSI systems management (OSI-SM) was the
first management technology to be standardized;
in fact, the manager-agent model was devised in
its context [2]. It is a sophisticated and powerful
technology, but also complicated and expensive
to deploy, so it has only found use in telecom-
munication environments. It was the technology
behind the telecommunications management
network (TMN) Q/X interfaces, but even in
those environments it is gradually being phased
out in favor of CORBA. Still, it is accepted as
the most powerful technology thus far to support
features that should be essential in any manage-
ment framework, so it is worth examining.

OSI-SM uses a fully object-oriented informa-
tion model supporting inheritance. Managed
object classes are specified in the Guidelines for
the Definition of Managed Objects (GDMO)
abstract language. Key deviations from object-ori-
ented concepts are the runtime specialization of
an MO instance through conditional packages and
the fact that imperative commands are modeled
through a generic method called an action with a
single parameter and result, which may result in
awkward parameter modeling. Telecommunica-
tion information models were initially specified in
GDMO, although there is a push today toward
technology-neutral information specification in the
Unified Modeling Language (UML), with reverse
engineering of existing models.

The Common Management Information Ser-
vice/Protocol (CMIS/P) supports Get, Set,
Action, Create, Delete, and Event primitives.
Information access is powerful, supporting both
bulk retrieval through scoping and selected
retrieval through scoping and filtering. Since
MOs are organized in a management informa-
tion tree based on containment relationships,
scoping works by selecting a number of subtree
objects while filtering further eliminates selec-
tion by applying a predicate on attribute values.
Connection-oriented reliable transport is used,

which means that arbitrarily large amounts of
bulk data may be retrieved in one go. Concerted
configuration changes through a series of Set
operations are supported through the OSI trans-
action processing facility, which “brackets” these
requests and guarantees atomicity (i.e., all to
succeed or none performed). Finally, the event
framework is sophisticated, allowing managers to
create their event discriminators with filtering on
the event type, time, and the actual notification
information.

Throughout the rest of this article, we will be
using as our example management information
that models a transport protocol, in particular,
TCP. The latter is typically modeled as a single-
instance class while its connections are modeled
through another class, with connection instances
“contained” in the protocol instance. Attributes
of these classes have read-only properties. Proto-
col information could be accessed directly
through Get given that its name is known (static
MO), while connection information can be
accessed through Get to the protocol object with
“first-level” scoping; filtering could be also used
to retrieve connections with particular proper-
ties. TCP and connections modeled in GDMO
can be found in RFC 1214.

SIMPLE NETWORK MANAGEMENT PROTOCOL
By SNMP [3] we effectively refer to the Internet
management framework. The latter was con-
ceived as a simplification of OSI-SM to be used
with simpler IP devices. Its simplicity contribut-
ed substantially to its success, and it is widely
supported by IP network devices. While OSI-SM
requires managed devices to be relatively com-
plex due to information model complexity, reli-
able transport, and event-based operation,
SNMP designers have opted for a very simple
information model, unreliable transport, and
mostly polling-based operation. These decisions
leave managed devices simple and have con-
tributed substantially to its success and wide
deployment. On the other hand, they shift com-
plexity to network management centers (NMCs)
and result in heavy management traffic, limiting
the extent to which sophisticated management
functionality can be deployed.

The SNMP information model is very simple,
with scalar variables (of integer or string type)
used to model managed entities. SNMP objects

� Figure 1. The manager-agent model.
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are formally specified in a language known as
Structure of Management Information (SMI).
Although we talk of objects in SNMP, they are
effectively equivalent to object attributes in
other frameworks. There is no inheritance and
the only operations allowed on them are read
and write. These objects can be either single- or
multiple-instanced, the latter for tables consist-
ing of a series of rows. Table rows are the only
composite objects that can be created and delet-
ed. This very simple variable-based rather than
object-oriented approach may result in signifi-
cant awkwardness and complexity when trying to
model complex real entities. There is no infor-
mation reuse through inheritance, while complex
data types and imperative methods can only be
modeled indirectly.

SNMP provides Get, Set, and Event opera-
tions. Single-instanced objects are accessed
through Get; table objects are accessed through
two variations of Get, GetNext, and GetBulk.
SNMP objects in an agent are ordered in a lin-
ear fashion given the naming architecture, with
table objects having as next the objects of the
next row. GetNext and GetBulk exploit this
structure, with GetNext requesting the first next
of a series of objects (typically a table row) and
GetBulk requesting N next objects. With Get-
Next, a table of R rows can be accessed through
R + 1 serial requests. These can be reduced with
GetBulk, but it is difficult to estimate N properly
so as not to “overshoot” past the end of the
table and at the same time minimize the required
transfers. Given that SNMP uses by default
UDP transport (TCP mapping as in RFC 3430 is
not widely used), a response to Get, GetNext, or
GetBulk should typically fit in a single packet to
avoid IP-level fragmentation that increases the
probability of SNMP packet loss; this reduces
effectiveness for bulk transfers. There is also no
selective retrieval similar to CMIS filtering. The
event framework allows managers to declare
interest in particular event types but without fil-
tering. In addition, for historical reasons man-
agement stations do not rely on events, which in
SNMPv1 were sent through unreliable traps,
despite the fact that subsequent versions have
included reliable inform-requests; as a result,
management stations deploy a mostly polling-
based regime.

But a fundamental limitation of SNMP is that
it does not support coordinated Sets to move
from configuration A to B in a consistent man-
ner through a transaction processing facility. In
fact, even simple Set commands can be problem-
atic with SNMP; as a result, SNMP has been
used mostly for monitoring rather than intrusive
management. COPS Provisioning (COPS-PR)
was conceived as an approach similar to SNMP
that could support concerted configuration
changes, but it did not maintain compatibility;
nor did it fix other important shortcomings (e.g.,
the rudimentary information model), so it did
not succeed.

A transport protocol is modeled in SNMP as
a group of scalar value objects, with each such
“object” having an individual name, while con-
nections are modeled through a table row of
such objects. Protocol information can be
accessed through Get, while connection informa-

tion can be accessed through GetNext or Get-
Bulk. The TCP protocol and connection model-
ing can be found in RFC 2012.

DISTRIBUTED OBJECT TECHNOLOGIES

OPEN DISTRIBUTED PROCESSING
International Organization for Standardization/
International Telecommunication Union —
Telecommunication Standardization Sector
(ISO/ITU-T) open distributed processing (ODP)
[4] is a general framework for specifying and
building distributed systems, while the Object
Management Group’s (OMG’s) CORBA can be
seen as its pragmatic counterpart. ODP came
about in response to the recognition that
although ITU-T and Internet Engineering Task
Force (IETF) protocol-based solutions addressed
the problem of heterogeneous system intercon-
nection, the proliferation of application-layer
standards and distributed applications meant
that application intercommunication needed to
be addressed as well. This was further fueled by
the convergence of the information technology
and communication sectors, and the resulting
demand for standardized APIs between dis-
tributed application components and underlying
platforms. Hence, the target for ODP is to facili-
tate distribution and interoperability, but also to
achieve software portability.

ODP projects a client-server model, with dis-
tributed applications composed of objects inter-
acting solely by accessing each other’s interfaces.
The underlying ODP platform (or ORB in
CORBA) provides a number of transparencies,
such as access, location, replication, failure, and
resource. Clients access server objects through
interface references, obtained through access to
well-known special servers such as name servers
and traders. A name server keeps a name space
with interface references “advertised” by server
objects, while clients could resolve names to
interface references. Traders, on the other hand,
keep interface references together with object
“properties” (i.e., attributes with static values),
and may also search the administered object
space to evaluate assertions on dynamic attribute
values. Clients may search for an interface refer-
ence through a predicate on properties and
attribute values of the sought object. Finally,
there is an underlying protocol for interoperabil-
ity hidden inside the platform, with objects “sit-
ting” on the platform through a standardized
API. The ODP model is depicted on Fig. 2.

THE COMMON OBJECT
REQUEST BROKER ARCHITECTURE

While there are distributed object technologies
such as Microsoft’s DCOM and Sun’s J2EE,
OMG’s CORBA [5] is certainly the representa-
tive one, being collectively specified so that it
constitutes a real-world approach to an ODP-
inspired solution. While manager-agent
approaches such as SNMP and OSI-SM are
communications frameworks, CORBA targets a
programmatic interface between objects and the
underlying ORB. Choices made by ITU-T/IETF
on one side and OMG on the other reflect their
different preoccupations: management commu-
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nications for the former and distributed software
systems for the latter.

CORBA uses a fully object-oriented informa-
tion model supporting inheritance. Objects are
effectively defined through their interfaces, which
are specified in the Interface Definition Lan-
guage (IDL). Methods with any argument and
result parameters are possible, providing full flex-
ibility as befits a distributed systems technology.
Attributes with read or read-write properties may
be also defined, which effectively results in
<attr>_get and <attr>_set methods being gener-
ated. This in fact implies that, in the default case,
attributes are accessed individually through a
remote method call, which can be very expensive.

CORBA specifies a general remote call pro-
tocol, the General Inter-Operability Protocol
(GIOP), which simply defines request, response
and error packets carrying the parameters and
results of operations. Its most common mapping
is over TCP/IP, known as the Internet IOP
(IIOP), providing reliable transport but with
connection management hidden by the ORB.
Objects are typically accessed through their
interface methods, one in each remote call, with
no support for bulk transfer or selected retrieval.
There is, however, support for atomic transac-
tions through the transaction service. Clients
access server objects through stub images in their
local address space, which hides the complexities
of distributed operation and allows non-network
programmers to develop distributed applications.
Access can be static, through precompiled IDL
stubs, or dynamic, through the Dynamic Invoca-
tion Interface (DII). Interoperable references
(IORs) of interfaces may be obtained through
the naming or trading service. Finally, events are
disseminated through the event server that
allows clients to specify the type of events they
want to receive.

A transport protocol is typically modeled as a
single-instance interface with connections mod-
eled as a multiple-instance interface in CORBA
IDL. Both interfaces contain attributes with
read-only properties, which result in individual
get methods for accessing them. The transport
protocol advertises its name to the name server
through which clients may obtain its interface
reference. The transport protocol interface
includes also a method that returns the interface
references of current connections, which is used
by clients to obtain these interfaces and then
access connection information — this is common
modeling practice in CORBA for dynamic multi-
ple-instance objects/interfaces. The specification
of the TCP IDL interface with additional meth-
ods to support bulk data retrieval, as discussed
later, is shown on Fig. 3.

WEB SERVICES
Web services [6] is an emerging Internet-orient-
ed technology that has strong analogies to
CORBA. It is developed and standardized by
the World Wide Web Consortium (W3C) so that
Web-based e-services expose standard interfaces
and are accessed in an open interoperable man-
ner. Web services aims to put structure in Web
content and associated services so that the latter
are accessible by distributed applications.

Service interfaces are specified in the Web
Services Description Language (WSDL), which
constitutes a general XML-based framework for
the description of services as communication
endpoints capable of exchanging messages. It
describes the service location through a Uniform
Resource Identifier (URI), supported opera-
tions, and messages to be exchanged. Service
inheritance is also supported. WSDL does not
mandate a specific communication protocol but
can support different protocol bindings; despite
this, the default binding is usually Simple Object
Access Protocol (SOAP, see below). WSDL can
be considered as broadly equivalent to CORBA
IDL. In this context, URIs are broadly equiva-
lent to CORBA IORs. SOAP is a stateless pro-
tocol with XML-based encoding. It can support
request/response/error remote call interactions
and is broadly equivalent to CORBA GIOP
when used that way. The default SOAP mapping
on HTTP/TCP/IP can be considered equivalent
to CORBA IIOP.

Service specification and interface discovery
are supported through Universal Description,
Discovery, and Integration (UDDI). This pro-
vides a mechanism for service providers to adver-
tise (i.e., register) services with it in a standard
form so that service consumers query services of
interest and discover their location. UDDI is
itself implemented as a well-known Web service
in terms of interface and location. When used
for service specification discovery, it is broadly
equivalent to the CORBA Interface Repository;
when used for interface location discovery, it is
broadly equivalent to the CORBA Naming and
Trading services.

It should be obvious from the above compari-
son that Web services can be used as a distribut-
ed object technology. Some key differences from
CORBA are the following. In CORBA, the
default client-server coupling is tight, with the
client having precompiled knowledge of the serv-
er’s interface, which supports compile time type-
checking. Web service technology was initially
conceived as message-oriented, with loose cou-
pling between clients and servers through XML
parsing and runtime checking only, similar to the
CORBA DII. On the other hand, most Web ser-
vices platforms support static coupling through
stubs, albeit through proprietary mappings.
CORBA supports standard language mappings

� Figure 2. The ODP/ORB model.
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for languages (C++, C, Java, etc.), while Web
services, being an Internet technology, addresses
only the interoperability through WSDL and the
protocol (e.g., SOAP/HTTP). Finally, CORBA
offers sophisticated services such as naming/trad-
ing, event/notification, and transaction, security.

Given the analogy of Web services and
CORBA, a transport protocol and its connec-
tions can be modeled in a similar fashion. The
transport protocol is modeled as a service inter-
face, with request/response messages for reading
each of its attributes. Its interface endpoint, the
URI, is advertised to the UDDI from which it
can be retrieved by clients. Transport connec-
tions are modeled through another service inter-
face, with similar request/response messages for
reading relevant information. The interface end-
points can be obtained through request/response
messages associated with the transport protocol.
The specification of the TCP WSDL interface
with additional methods to support bulk data
retrieval, as discussed later, is shown on Fig. 4.

DISTRIBUTED OBJECT TECHNOLOGIES
USED FOR MANAGEMENT

The use of distributed object technologies for
network, service, and application management
was a subject of intense research in the mid to
late 1990s. It is now widely accepted that dis-
tributed objects are naturally suited to service
and application management: service manage-
ment involves mostly business process reengi-
neering and automation, for which technologies
like CORBA or J2EE are well suited; in addi-
tion, distributed applications are typically real-
ized using distributed object technologies, so it
makes sense to use the same technology to man-
age them. On the other hand, network and sys-
tem management have relatively different
requirements: large amounts of information
need to be accessed, some of it real-time in
nature, while concerted configuration changes
must be supported across devices. So fundamen-
tal requirements of network management are

support for flexible information retrieval, both in
bulk but also selectively; support for fine-grained
event notifications through selective criteria; and
support for transactions that involve many oper-
ations to one or more devices.

The popularity of CORBA led the Tele-Man-
agement Forum (TMF) and OMG to set up the
Joint Inter Domain Management (JIDM) task
force that produced a static mapping (i.e., speci-
fication translation) between SNMP SMI/OSI-
SM GDMO and CORBA IDL, and a dynamic
mapping (i.e., interaction translation) to support
generic gateways. The modeling of the transport
protocol and its connections presented above in
CORBA IDL and WSDL follows the spirit of
the JIDM suggestions [7].

Given these developments, CORBA has start-
ed to be used for network management in
telecommunication environments, with ITU-T
GDMO specifications translated to IDL. But the
use of CORBA, and distributed object technolo-
gies in general, presents the following problems.
First, there is no support for bulk or selective
data transfer; in fact, a remote method invoca-
tion per attribute is required in the default case,
which can be prohibitively expensive. Second, a
scalability problem may arise in making vast
amounts of dynamic entities such as connections
separate objects with their interfaces.

Because of these limitations, common prac-
tice for the use of CORBA for network manage-
ment is to follow a semantic rather than
JIDM-like syntactic translation of GDMO to
IDL. Commonly accessed attributes of an object
class are grouped together through an additional
method that returns them, which alleviates the
requirement of using separate per-attribute
methods. In addition, dynamic entities such as
connections are not modeled through separate
objects/interfaces. Instead, a method that returns
all of them as a “list of records” is added to the
associated protocol interface. If such entities are
static (e.g., semi-permanent crossconnections
created and deleted through management), addi-
tional methods to create and delete them, or
better to add and remove them from the current

� Figure 3. The TCP managed object interface in IDL.

typedef struct TcpConnCounters_t {
long activeOpens;
long passiveOpens;
long attemptFails;
long estabResets;
long currEstab;
Time_t currTime;

} TcpConnCounters;

//…

interface i_tcp {
TcpStaticAttrs getStaticAttrs(); //tcpRtoAlgorithm, tcpRtoMin, tcpRtoMax
TcpConnCounters getConnCounters(); //tcpActiveOpens, tcpPassiveOpens, …
TcpPacketCounters getPacketCounters(); //tcpInSegs, tcpOutSegs, tcpRetransSegs

long getCurrEstab();
// …

IntRefList getConnRefs();
TcpConnList getCurrConnInfo();

};
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list, are added. This modeling approach supports
bulk data transfer for multiple-instanced objects
in a predefined manner, relying on the fact that
connection-oriented reliable transfer is used by
relevant technologies. In addition, it does not
require an excessive amount of objects/interfaces
to be present in network devices.

The use of Web services for network manage-
ment presents exactly the same problems and
issues as the use of CORBA, with the additional
problem that there is not yet an event notifica-
tion framework. The latter may change in the
future, but even if it does not, it is fairly easy to
specify and support event discriminator-like ser-
vice interfaces per network device, allowing
managers to select the types of events they want
to receive, in a similar fashion to SNMP and
OSI-SM (without full filtering). The problems of
bulk data transfer and scalability can be poten-
tially addressed as described above, but it
remains to consider aspects pertinent to Web
services (XML encoding overhead, etc.).

For our evaluation we will also use the TCP
protocol and connections, which we have used as
an example throughout this article. Based on the
principles of semantic SNMP SMI to CORBA
IDL and Web services WSDL mapping, the TCP
protocol interface will have the following addi-
tional methods to per-attribute get methods:
• A method to retrieve all the static attributes

(tcpRtoAlgorithm, tcpRtoMin, tcpRtoMax
and tcpMaxConn) that are typically
retrieved once

• A method to retrieve all the dynamic
attributes related to connection activity
(tcpActiveOpens, tcpPassiveOpens, tcpAt-

temptFails, tcpEstabResets and tcpCurrEstab)
• A method to retrieve packet counters which

are typically retrieved periodically (tcpIn-
Segs, tcpOutSegs and tcpRetransSegs)

• A method to retrieve the information for all
the TCP connections as a list of records

The specification of those TCP methods in IDL
and WSDL was shown in Figs. 3 and 4, respec-
tively.

EVALUATION
We have already implicitly evaluated the suitabil-
ity of Web services for management, having com-
pared them to distributed object technologies
and presented the current trends in using the
latter in ways that help circumvent their inherent
drawbacks. We are now going to evaluate Web
services in terms of usability and performance in
comparison to SNMP and CORBA. We have
had extensive experience with both SNMP and
CORBA in the past, and recently started experi-
menting with Web Services, seeing them as an
alternative to CORBA. A key advantage of Web
services is the use of XML, which can also be
used to structure and pass data between applica-
tions. Consequently, an XML-based manage-
ment approach may result in economies of scale.

We experimented with three different Web
services implementations, two general-purpose
ones (Systinet’s WASP, Apache Axis) and an
optimized one that may also be used for small
devices (gSOAP). We implemented small dis-
tributed applications. Given that Web services
are effectively a standardized communication
framework, all these platforms use different

� Figure 4. The TCP managed object service port in WSDL.

<wsdl:types>
<xsd:complexType name=”TcpConnCounters”>
<xsd:sequence>
<xsd:element name=”activeOpens” maxOccurs=”1” minOccurs=”1” type=”xsd:int”/>
… <!— passiveOpens, attemptFails, estabResets —>
<xsd:element name=”currEstab” maxOccurs=”1” minOccurs=”1” type=”xsd:int”/>

</xsd:sequence>
</xsd:complexType>
… <!— TcpStaticAttrs, TcpPacketCounters, TcpConnAttrs, … —>

</wsdl:types>
<wsdl:message name=’i_tcp_getConnCounters_Request’/>
<wsdl:message name=’i_tcp_getConnCounters_Response’>

<wsdl:part name=’response’ element=’ns0:TcpConnCounters’/>
</wsdl:message>
… <!— i_tcp_getStaticAttrs_Request, i_tcp_getStaticAttrs_Response, … —>
<wsdl:operation name=’getConnCounters’>

<wsdl:input message=’tns:i_tcp_getConnCounters_Request’/>
<wsdl:output message=’tns:i_tcp_getConnCounters_Response’/>

</wsdl:operation>
… <!— getStaticAttrs, getPacketCounters, … —>
<wsdl:binding name=’i_tcp’ type=’tns:i_tcp’>

<wsdl:operation name=’getConnCounters’>
… <!— SOAP bindings —>

</wsdl:operation>
… <!— getStaticAttrs, getPacketCounters, … —>

</wsdl:binding>
<wsdl:service name=’i_tcp’>

<wsdl:port name=’i_tcp’ binding=’tns:i_tcp’>
<soap:address location=’urn:service-uri’/>

</wsdl:port>
</wsdl:service>
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APIs. Apache is not user-friendly, supporting
only a message-based SOAP API. On the other
hand, both WASP and gSOAP are user-friendly,
supporting a CORBA-like stub-based framework
that hides SOAP completely and is quite easy to
use. With the stub-based approach, usability is
very good, similar to CORBA and certainly bet-
ter than SNMP. There is no code portability, but
the software abstractions in WASP and gSOAP
are not dissimilar. On the other hand, since
there are no dictated APIs, compact implemen-
tations are potentially possible.

In order to assess performance, a potential
worry in Web services given the XML-based
encodings and associated parsing, we implement-
ed the TCP protocol managed object in CORBA
and also used an existing SNMP agent imple-
mentation to do performance comparisons. We
only wanted to assess the management infra-
structure overhead and to be able to repeat
experiments, so the TCP managed object had
hard-wired nonchanging values for its attributes,
including the values of TCP connection
attributes; the total number of TCP connections
was set to 40. We had to modify an existing
SNMP agent in order to do this, while we imple-
mented from scratch the CORBA and Web ser-
vices versions.

The SNMP TCP managed object specifica-
tion was as in the TCP managed information
base (MIB) of RFC 2012. The CORBA and
Web services specifications were as shown on
Figs. 3 and 4, with an additional method return-
ing all the dynamic attributes, connection- and
packet-related (eight in total). For the TCP con-
nections, we used two modeling approaches: a
TCP method returning all the connections as in
Figs. 3 and 4; and separate IDL and WSDL
objects for each TCP connection, with a TCP
object method returning the CORBA IORs and
Web services URIs. The latter is a 1-to-1 map-
ping from SNMP SMI to IDL/WSDL; we did
that in order to also evaluate the overheads of
the approach.

The precise experimental environment was as
follows. We used the Orbacus CORBA platform
[8], WASP Web services platform [9], and NET-
SNMP [10] and AdventNet SNMP platforms.
We chose WASP and not gSOAP because we
wanted to compare it against Orbacus, which is a
general-purpose rather than small-device-target-
ed CORBA implementation. We also imple-
mented everything in both C/C++ and Java in
order to assess the performance difference the
programming language makes, apart from the
SNMP agent that was implemented only in C.
Both Orbacus and Systinet support both C++
and Java. For the SNMP agent part we modified
the NET-SNMP v. 5.0.1 agent implemented in
C; for the manager part we used the NET-SNMP
API for C and the AdventNet API for Java.
Security features for SNMP and CORBA
remained switched off. We used GNU C/C++
2.95 and the Java 2 Special Edition JDK 1.3.1
versions on Linux RedHat 7.3. The managing-
managed systems were placed in two different
Pentium III Celeron 1 GHz Linux PCs with 256
Mbbytes of RAM, connected in “back-to-back”
mode through a dedicated 100 Mb/s Ethernet.

We performed the following experiments. We

measured the response times and traffic for a
method returning a single attribute and one
returning all eight dynamic attributes of the TCP
protocol object, which are typical operations on
single-instance objects in management environ-
ments; we mark them 1attr/method and
Nattrs/method in the figures. We also measured
the response times and traffic for retrieving all
the TCP connections (40 in total), a typical oper-
ation on multiple-instance objects in management
environments. This was done in two ways: both
through a single IDL/WSDL method of the TCP
protocol object returning all the connection infor-
mation and GetBulk in SNMP; and through sepa-
rate TCP connection interfaces/endpoints in
IDL/WSDL, with a method returning the
attributes of a connection, and GetNext in SNMP.
We mark these two approaches as NMOs/method
and 1MO/method in the figures. Note that the
naming server/UDDI must be used to obtain the
IOR/URI of the TCP protocol object in
CORBA/Web services, but we did not consider
this time in the measurements since this is typical-
ly done only once. The response time measure-
ments were done for both C++ and Java.

The response time measurements are shown
in Fig. 5, the bar chart for C++ and the table
for both C++ and Java. In all the experiments,
the Java response times were roughly twice those
of C++. This makes the case for the use of
C/C++ at least for the managed system part,
which is common practice in management sys-
tems today. The managing system could be
implemented in Java if its operation is not time-
critical, but C++ results in half the Java execu-
tion time and probably even less for
computationally intensive management logic. In
the discussion below, we consider the C++ case
when we refer to particular figures.

The response time for getting N = 8 attributes
through one IIOP/SOAP method or one SNMP
Get is only 12 percent bigger than the time to get
one attribute for SNMP/IIOP but 48 percent big-
ger for SOAP. The excess time for getting a num-
ber of attributes is a linear function of the time
required for encoding/decoding, and it appears
that the Web services XML encoding/decoding is
roughly four times that of SNMP and CORBA
for scalar types. This was expected and is not pro-
hibitively expensive for situations like this where
eight attributes are retrieved in 3.7 ms as opposed
to 2.5 ms for one attribute.

We look now at the time to retrieve the TCP
connections, first through one method in IIOP/
SOAP and SNMP GetBulk, and then through
multiple methods on separate objects in IIOP/
SOAP and through SNMP GetNext; these are
shown on the right part of the charts in Fig. 5.
For each row we retrieved all the objects (five in
total), although given the naming principle for
TCP connection table objects retrieving only the
tcpConnState object would suffice: the naming
suffix is formed from the values of the source
and destination addresses and port values, so
these can be obtained implicitly. Although this is
the case for the TCP connection table, it is not
the case for other tables, and we wanted our
measurements to be representative of general
table retrieval with a number of objects. In addi-
tion, we tailored carefully the SNMP GetBulk
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maximum repetitions so that the response did fit
in an IP packet encapsulated in a single Ethernet
frame (in order to avoid fragmentation). As a
result, four successive GetBulk operations were
required to retrieve a table with 40 connections,
retrieving again all five objects of each row.

The first thing to remark is that IIOP appears
very efficient when a single method is used,
resulting in relatively small additional time for
40 connections with five attributes each, in com-
parison to a single attribute (2.5 compared to 1.5
ms)! We were surprised by that result and
checked carefully its statistical validity, but it
seems to be true, testifying to the efficiency of
CORBA IIOP encodings. The SOAP response
time is an order of magnitude higher in this case
(25 ms), which implies that XML encodings can
be quite expensive for complex types. Since
SNMP needs four successive GetBulk operations
to retrieve the 40-row table, its overall response
time is more than double that of IIOP (6 ms).

When multiple IIOP/SOAP methods and
GetNext requests are used, the overall retrieval
time increases substantially. SNMP is quite effi-
cient in this case, retrieving the connection table
through 41 GetNext operations in 37 ms; the
41st operation does not yield useful results but is
necessary to “discover” the end of the table.
IIOP/SOAP also need 41 operations, the first to
retrieve the IORs/URIs of the connection
objects. The IIOP time is 4 ms for the IORs and
45 ms for the connections, 49 ms in total, while
the SOAP time is 6 ms for the URIs and 94 for
the connections, 100 ms in total: twice the IIOP
time and two-and-a-half times the SNMP time.
Note that this mode of operation with one inter-
face/service port per connection object is not
really appropriate in management environments;
we simply used it to quantify its overheads,
which are quite high in terms of retrieval time.

Figure 6 shows the management traffic over-
head. In terms of traffic, SNMP appears efficient
for retrieving a single attribute, but in more
plausible scenarios when multiple attributes or a
whole table are retrieved, IIOP performs much
better. For retrieving the 40 TCP connections
with one method, IIOP needs 2252 bytes, while
SNMP with four GetBulk requests/responses
results in 8160 bytes in total. It should be noted,
though, that if only the tcpConnState object had
been retrieved as explained, this value would be
much smaller; it is actually 1306 bytes since a
single GetBulk operation is enough. Web ser-
vices are far more expensive because of the
XML encodings. Retrieving the dynamic TCP
attributes through a single method incurs rough-
ly five times as much traffic as SNMP and 6.5
times as much as IIOP. Retrieving the 40 TCP
connections through one method incurs roughly
2.2 times as much traffic as SNMP GetBulk and
eight times as much as IIOP. Finally, retrieving
the TCP connections through separate IDL/
WSDL objects results in large amounts of traffic
for IIOP and prohibitively large amounts of traf-
fic for SOAP. IIOP needs 9936 bytes for the 40
requests, but another 14,221 bytes for retrieving
the IORs of the connection objects (i.e., approx.
24 kbytes in total). SOAP needs 76,765 bytes for
the 40 requests and another 4585 bytes for
retrieving the URIs, approximately  81 kbytes in

total! As was also the case with retrieval times,
traffic overhead is too high for modeling connec-
tions as separate IDL/WSDL objects.

SUMMARY AND CONCLUSIONS
A number of management technologies have
emerged over the last 15 years, but none of them
satisfies all the requirements of management
environments. At one end of the spectrum, OSI
SM has been the most powerful technology, but
is complicated and expensive, and relies on OSI
protocols that have gone out of fashion. It was
used in telecommunication environments but is
gradually being phased out in favor of CORBA.
On the other end of the spectrum, SNMP has
been a very simple framework that became wide-
ly deployed in IP environments but fell victim to
its own simplicity: its information modeling
capabilities are rudimentary, it does not support
bulk data retrieval and event-based management
well, and, most important, it does not support
configuration management well due to its lack of
transaction capabilities.

Distributed object technologies, and CORBA
in particular, have a number of advantages but
were designed with distributed systems in mind,
lacking support for bulk data retrieval; they also
suffer from potential scalability problems for
large managed object populations. They can be
used for management, but this requires special
modeling to support predefined bulk transfer
through special methods and avoid modeling
large populations of dynamic objects through
separate objects/interfaces. These problems of

� Figure 5. Response time measurements.
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distributed object technologies and the ways
around them through special modeling became
evident from the performance evaluation in the
previous section.

Web services can be seen as a distributed
object technology; in fact, platform providers
have been taking a CORBA-like approach with
stub objects, which reinforces this view. Its use
for network and systems management presents
the same problems as CORBA, so exactly the
same solutions can be adopted. Its usability is
similar to CORBA due to the stub-based APIs
and arguably better than SNMP. On the other
hand, there is no security and notification sup-
port at present, which means this technology is
not yet ready to be used for network manage-
ment. The initial performance evaluation is
encouraging but also highlights some expected
problems. Information retrieval times are
approximately twice those of CORBA, but the
key problem is the amount of management traf-
fic incurred due to the XML-based encodings,
which can be up to eight times that of CORBA.
This can be reduced through compression at the
expense of slower retrieval times. The footprint
of managed systems is also relatively large, but
smaller than CORBA.

In summary, Web services is a promising
technology but, being XML-based, has more
overheads than SNMP and CORBA. On the
other hand, being XML-based is also its biggest
attraction, due to potential easy integration with
other applications. Approaches such as OASIS
Web Services Distributed Management (WSDM)
and the Web Services Management Framework
(WSMF) are already looking at the use of Web
services as a management framework. In the
next few years, research and commercial devel-
opments will determine if Web services are

widely adopted and used in network and service
management environments.
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� Figure 6. Management traffic measurements.
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