ABSTRACT

In the absence of standards for the TMN F interface, interoperability of workstation applications can be based on'the Q3 interface;
CMIs-capable interpreted scripting languages and associated lightweight string-based protocols can support the rapid
construction of lightweight, portable TMN workstations.

A CMIS-Capable Scripting Lahguagé |
and Associated Lightweight Protocol
for TMIN Applications

('George Pavlou and Thurain Tin, University College London

ver the last couple of years, the telecommunication
management network (TMN) finally seems to be
" coming of age. The underlying open systems interconnection
" (OSI) management framework (X.700) has been almost com-
pleted, while a number of TMN platform products on the
market have reached maturity, blending naturally the object-
oriented aspects of the TMN information architecture with
object-oriented methodologies and environments. As part of
early research in Europe to verify.the TMN concepts, study
~ their applicability, and provide feedback to the relevant Inter-
national Telecommunications Union—Telecommunications
Standards Sector (ITU-T) working groups, a number of col-
laborative research projects specified, designed, implemented,
and demonstrated TMN systems. These efforts spanned from
asynchronous transfer mede (ATM) resource and routing
management to the provision of international leased line ser-
vices with guaranteed quality characteristics, supporting end-
to-end multimedia conferencing teleservices. An aspect of this
research resulted in the OSI Management Information Ser-
vice (OSIMIS) object-oriented platform [1] which provided
early mappings, of the Guidelines for the Definition of Man-
* aged Objects (GDMO) information specifications to C++
through high-level application programming interfaces (APIs)
and paved the way for the sophisticated products that have
recently started to appear on the market.

While C++ has become the lingua franca of TMN object-
oriented development environments, interpreted languages, such
as Tool Command Language (Tcl), Scheme, and recently Java,
provide particularly interesting alternatives for rapid prototyp-
ing. Their usefulness becomes apparent when combined with
widget sets which allow the quick and easy construction of
managing applications with graphical user interfaces (GUIs);
that is, TMN workstations (WSs). Such applications may need
to run on inexpensive desktop and even laptop computers,
and also operate in non-TMN environments such as the Inter-
net, communicating with the TMN gver Transmission Control
Protocol/Internet Protocol (TCP/IP).

Given these requirements, we designed and implemented
extensions to the Tcl language that provide an interpreted
high-level API to the common management information ser-
vice (CMIS). This can be used to quickly prototype simple
managing applications, such as testing scripts, or to implement
combined workstation-operation system (OS) applications

-which communicate with the TMN through Q3 interfaces.
The fact that the proposed CMIS API is string-based, as dic-
tated by the nature of Tcl and similar scripting languages, led
us also to the specification and implementation of an associat-

i

ed lightweight string-based Common Management Informa-

- tion Protocol (CMIP). This maps directly onto the OSI trans-

port service and can be converted to full CMIP through
interworking units. Lightweight CMIP (LCMIP) incurs a mini-
mal protocol stack cost to relevant applications.

This infrastructure has been successfully used to design and
implement WS applications and to provide general
scripting/testing facilities in the aforementioned TMN systems.
This article discusses the relevant issues and describes the work
behind the CMIS-capable Tcl and the associated lightweight CMIP.
The rest of the article has the following structure. Since the
CMIS-capable Tcl mainly addresses the needs of TMN WSs,
we first discuss our WS model; which combines WS function-
ality with an OS in the managing role (WS-OS). We then dis-
cuss, in some detail, issues behind the CMIS-capable Tcl and
the associated lightweight CMIP. We finally give examples of
the applicability of this technology and present our conclu-
sions. The article assumes a familiarity with the TMN archi-
tectural concepts and with OSI management, which constitutes
the base technology for the TMN. It also assumes that the
architectural paradigm for intra-TMN communication is based
on Q3 interfaces, as ithplied by the TMN specifications.

TMN WORKSTATION—OPERATION
. SYSTEM APPLICATIONS

he TMN ‘WS function (WSF) provides the means to inter-

pret management information for the human user [2]. It
communicates such information to OS functions (OSFs)
across the f reference point. The intention behind the latter is
to standardize management information exchanges supporting
WS functionality, enabling open communication between WSs
and OSs through standard F interfaces. Remember here that
a reference point expresses the logical aspect of communica-
tion between two TMN functional blocks and becomes an
interface when the functional blocks become physical blocks
in separate pieces of equipmeént, interconnected across the
data communication network. The convention is that lower-
case letters denote reference points, while upper-case létters
denote interfaces (e.g., g3 and Q3, respectively). '

The first requirements for the F interface were expressed
in ITU-T Recommendation M.3300, “TMN Capabilities Pre-
sented at the F Interface” (1992). The latest version of ITU-T
Recommendation M.3010, “Principles for a Telecommunications
Management Network” (1996) [2], reflects the most recent
views of ITU-T Study Group IV regarding the F interface.

82 0163-6804/96/$05.00 © 1996 IEEE

IEEE Communications Magazine * September 1996

According to [2], the functionality across the f reference point‘

is a superset of the functionality available at q3 reference
points. An example of the data at f in addition to the managed
objects at q3 is display support (e.g., maps), management infor-
mation kept in databases, information on function or command
initiation, help text, and so on. While this is the intention, it is quite
a challenging problem to propose an approach for the f reference
point which is generic enough not to constraint implementations
and also able to cope with the needs of different types of WSFs.

Given the fact that the F interface specification has not yet been
sufficiently addressed, TMN WSs in research projects targeting
pilot TMN systems have followed two models: they either
bundled WS functionality together with operations systems in
a tightly coupled fashion, or defined proprietary F interfaces
with their own protocols and information models. As part of
our TMN developments in RACE projects, we have experi-
mented with both approaches. A particularly important con-
clusion arrived at through this experimentation was that, in
our cases at least, the bulk of information exchanges across
the f reference point could, in fact, be mapped onto exchanges
across q3 reference points. This mapping is not one-to-one,
but the underlying assumption is that most of the information
necessary to support WS functionality could be derived from
management information available in g3 form. In the general
case, of course, and according to the ITU-T view, q3 models
will not be sufficient to support complete TMN WS functionality.

Given the fundamental assumption that f can be derived
from g3, we propose the physical configuration for WS appli-
cations depicted in the lower part of Fig. 1. The upper part
depicts the functional view of interconnection between the
WSF and OSF functional blocks as in M.3010. The main func-
tional component of the WSF is the user interface support
function (UISF), which converts between f messages and dis-
playable objects. At the other end of f, the WS support func-
tion (WSSF) is an OSF component that understands the f
messages and responds with the requested information. As
already stated, the information available across f is generally a
superset of the information available across q3. Assuming that
f can be fully derived from q3, we can physically separate the
WS from the OS using the Q3 interface. In order to achieve
this, we move the WSSF from the OS that offers the Q3 agent
interface to another OSF in the managing role, tightly cou-
pled with the WS function. The f reference point remains
internal within the resulting physical block, which we will call
a workstation-operation system (WS-OS), emphasizing the
fact that it contains both a WSF and a managing OSF.

It should be mentioned that according to the TMN architec-
ture, a physical block containing both a WSF and an OSF is called
an OS; but we call it WS-OS for purposes of illustration. The
ITU-T calls it an OS because its main role is as an OS, the
WS being secondary. In our case, its main role is that of a
WS: the managing OS is there to support the Q3 interactions and
typically does not have a significant management role. The
latter is provided by the TMN OSs with which it communicates.

Let us examine the WS-OS decomposition in more detail.
The WSF contains the UISF component, which is responsible
for managing the graphical user interface. It may also contain
a security function (SF), which provides authentication and
access control services for human users with respect to the
WS functionality (the SF is not shown in Fig. 1). The OSF
contains a WSSF, an information conversion function (ICF)
and a management application function in the manager role

MAF-M). Interactions across the f reference point are effected
as UISF-WSSF message exchanges. Within the OSF, the ICF
maps messages and relevant information between the WSSF and
the MAF-M. The latter is responsible for interactions across the
Q3 interface as manager; that is, it performs operations on man-

M Figure 1. Adopted physical configuration.

aged objects and receives notifications emitted by them. Automat-
ed management intelligence, if any, is embodied in the MAF-M
component, while the WSSF and ICF are responsible for f mes-
sage support and information conversion, respectively. Note that
the OSF may also contain a directory access function (DAF)
in order to support location transparency and shared manage-
ment knowledge services (the latter is not shown in Fig. 1).
According to the approach described above, interoperabili-
ty between WS-OSs in managing roles and other OSs in agent
roles is based on Q3 interfaces. The f reference point remains
internal within a WS-OS and becomes a matter of design dis-
cipline rather than a TMN architectural prescription. In other
words, it is up to the designer of a WS-OS application to sep-
arate GUI support functionality (UISF) from the application’s
management intelligence (WSSF/ICF/MAF-M). Such a sepa-
ration can be effected through a well-defined internal soft-
ware interface (i.e., a f reference point) rather than an
“on-the-wire” interoperable F interface. This separation pro-
vides for a cleaner design and makes it possible to change the
technology used for the GUI without affecting the rest of the
WS-OS application. According to our experience, this separa-
tion is possible and desirable, but it is not easy to make the f
reference point independent of the application-specific func-
tionality. This is one of the reasons we bélieve interopérability
should be based on the Q3 interface; as a consequence, we
suggest that the f reference point should not be standardized.
In Fig. 2 we present another view of the internal structure
of the WS-OS based on implementation considerations and
internal software interfaces. The Q3 interface is supported by
the message communication function (MCFq3) over the data
communication function (DCF) (i.e., a Q3 upper- and lower-
layer protocol stack, as in the ITU-T Q.812 / Q.811 standards).
A q3 reference point is provided internally, realized typically
through a CMIS API such as the X/Open XOM/XMP (direc-
tory access and file transfer APIs also need to be supported
because they are part of g3 functionality). Most OSI/TMN
software platforms provide higher-level access APIs that hide
the complexity of “raw” CMIS access through higher-level
abstractions. Such infrastructure is built on q3 APIs such as the
XOM/XMP and is depicted in Fig. 2 as “q3++ support.” Sup-
port for g3 and g3+ + constitute the generic part of the WS-OS,
while the rest is application-specific, implementing the various
functional components (i.e., WSSF/ICF/MAF-M and UISF).
Given the fact that the f reference point is application-spe-
cific while the q3 one is generic and interoperable, we decided
to produce generic infrastructure for the rapid prototyping of
WS applications based on the q3 reference point. In fact, our
infrastructure supports the “q3++” reference point, conceal-
ing much of the underlying CMIS/q3 complexity and harness-
ing its power. The key aspect of this infrastructure is that it is
interpreted, based on the Tcl language and its object-oriented

IEEE Communications Magazine * September 1996

83

UISF WSSF/ICF/
(display MAF(M) " |
engine) \ (manager

Application-specific part

H Figure 2.

extensions, while it provides built-in support for the easy con-
struction of GUIs, facilitating the rapid prototyping of WS
applications decomposed according to the presented model.
The application-specific part in Fig. 2 can be written fully in
an interpreted language such as Tcl, while the UISF compo-
nent can be prototyped using an associated widget set (Toolk-
it, or Tk, for Tcl) in a fraction of the time taken by the
traditional compiled approaches.

A SCRIPTING LANGUAGE FOR THE
TMN WS-0S

MOTIVATION

In today’s distributed system environments, there are emerg-
ing trends in the usage of interpreted scripting languages and
associated graphical toolkits. Such scripting languages are
available in many varieties: procedural or object-oriented;
some even provide built-in memory management facilities.
Above all, their main attraction lies in the ability to prototype
applications quickly, without having to go through the com-
-pile/link development cycle. In addition, their built-in GUI
support makes the construction of graphical applications easy.
The portability of application scripts across the conftuence of
different hardware and OS technologies is an extremely useful
additional feature; it suffices to port the associated inter-
preter, done once for every hardware and OS platform. .
.. TMN object-oriented APIs operating at a higher level than
CMIS are supported by most TMN platforms today. Such
interfaces help the TMN application developer a lot by pro-
viding the opportunity to spend more time on the application
functiona]ity rather than handling the complexity of the “raw”
CMIS service. Work on hlgh -level, object-oriented Q (CMIS
and directory access) APTs in C++ has been conducted in the
RACE Integrated Communications Management (ICM) pro-
ject [3], resulting in the OSIMIS object-oriented TMN plat-
form [1, 3]. Work is also ongoing'in this area for the
standardization of such APIs, driven by the NM Forum [4].
The OSIMIS high-level C++ APIs encapsulate the under-
lying CMIS and directory access services and the Q protocol
stack by using object-oriented principles and techniques. One
particular abstraction for TMIN OSFs functioning in the man-
aging role is the remote management information base
(RMIB) [1, 3] access infrastructure, which involves the use of
proxy objects (of an RMIBAgent class) These act as the local
image of the remote agent apphcauons (one-to-one mapping)
and provide CMIS-like message passing, simplifying many of
the CMIS access details (e.g., linked replies may be assembled
transparently, high-level event reporting facilities are provided,
etc.). As such, requests to a remote application in the agent role
are effected simply through local invocations on the representing
proxy object, concealing much of the Q interface interaction.
Both synchronous and asynchronous invocation semantics are
supported. In the latter case, the results/errors are eventually
passed back via callback facilities. An-abstract RMIBManager
- class is provided to specialize the different callback behaviors.

The OSIMIS RMIB manager support infrastructure
maps onto the “q3++ support” component depicted in
Fig. 2.

“The RMIB API provides argument-passing facilities -
based on string representations of attribute, action, and
notification types and values, filter expressions, and dis-
tinguished names. A more detailed consideration behind
the issues of a string-based CMIS approach is presented
later, in the section on the lightweight CMIP. These
string- based methods may be used even when programming
an application in C++ because of their simplicity. However,
they are obvious candidates.for use in unifying the RMIB
environment with string-based interpreted environments such
as Tcl. This unification constitutes a high-level mterpretedr
access facility and is discussed next,

TcL AND Tk ;

Tcl [5] is a general-purpose scripting language designed to be
both embeddable and extensible in a wide variety of applica-
tions. The core of Tcl is the Tcl interpreter, existing in-a
library of C language procedures. The built-in interpreted
procedures, which mirror the underlying compiled procedures
and any “application-specific” extensions, can either be
embedded in user applications or used interactively in a shell
environment. Tcl is a weakly typed language based on strings
and is relatively easy to use compared to programming lan-
guages such as C/C++ which follow the compiled approach.
In addition, object-oriented extensions such as Object Tcl pro-
vide classes, inheritance, and polymorphism, which are impor-
tant for structuring complex applications. '

One of the main reasons for the popularity of Tcl is its
extension for the MIT X Window System and MS Windows,
Tk. This is a graphical toolkit that extends the core Tcl facili-
ties with additional commands for constructing GUIs. Tk
exists in the form of a collection of display classes (or wid-
gets), providing a user-friendly way to compose graphical
primitives. The combination of Tcl and Tk presents a suitable
environment for the rapid construction of GUI-based applica-
tions. This approach is quicker than traditional compiler-
based GUI development, where a longer learning curve is
required and programming involves complex data structures.

A TcL-BASED HIGH-LEVEL CMIS LANGUAGE

As explained above, the Tcl-based high-level CMIS scripting
language mirrors the compiled RMIB functionality and owes
much to string-based management syntax support. The pro-
cess of creating an interpreted layer on top of an RMIB was
relatlvely simple: the two domains, C++ and Tcl, are bridged
by using a well-defined mechanism for exporting C++ classes
into Tcl. The relatively easy integration of Tel with compiled
languages such as C++ and C was an important feature in its
choice, in-addition to the easy-to-use Tk widget set that com-
plements it. The resulting language, called Tcl-RMIB, provides
a number of object control and management commands for
relatively high-level CMIS interaction. RMIB C++ objects
are manipulated by their interpreted counterparts. Commands
are provided for the user control (creatlon deletion, etc.) of
the agent and manager objects locally in Tcl, and for manage-
ment operations through those objects. Both synchronous and
asynchronous modes of operation are supported, the latter
ssential in single-threaded execution environments.

The control commands allow indirect handling of the proxy
agent and callback manager objects in C+ +; the latter totally
transparent to the user. Each control obJect (RMIBAgent or
RMIBManager) is assigned a unique identifier for selection in
the management commands. A manager object which receives
asynchronous results and event reports is bound with specific

84

IEEE Communications Magazine * Septermber 1996

Management command

m_disconnect agentld Terminates association with a remote agent

Description

m_cancel_get agentld invokeld Aliows the M-Cancel-Get invocation

m_action agentld?-c class? 2-i instance? 2-s scope ?syn??
?-f filter_expr? ?-a actionType? =actionValue??
?-m managerld?

m_delete agentld?-c class? ?-i instance? ?-s scope ?syn??
?-f filter_expr?
?-m managerld?

Allows the M-Action invocation; may return an invoke identifier for
callback correlation

Allows the M-Delete invocation; may return an invoke identifier if
callback correlation

H Table 1. Tcl-RMIB management commands.

behavior via the attachment of user-defined callback scripts. A
typical callback script may be to process an event report,
receive an asynchronous management result/error, or even be
notified of a problem such as the remote application’s termi-
nation, loss of connectivity, and so forth.

The management commands operate on the control objects and
essentially provide the CMIS functionality in Tcl. They fall broad-
ly into three categories: management association commands,
CMIS manager operation commands, and a command for request-
ing event reports based on a logical assertion. The complete set
of management commands and their syntaxes are listed in Table 1.

The management association commands are ra_connect
and m_disconnect; they operate on a proxy agent object.
The management operation commands closely model CMIS
operations but are simplified as much as possible. These are
m_get, m_cancel_get, m_set, m_action, m_create, and
m_delete, and they incorporate the standard CMIS mecha-
nisms for scoping, filtering, and synchronization. Filtering is
based on a string-based expression language. In order to allow
asynchronous results/errors and event reports, the operations
are extended to register the callback entity (i.e., an RMIBMan-—
ager object with the specific behavior). Finally, an m_notify
command is used to allow an RMIBManager object to be regis-
tered with a proxy agent in order to receive event reports
based on specified filtering criteria.

The above approach mirrors the compiled RMIB one in Tcl
and provides a CMIS-like interpreted interface. The full CMIS
expressive power is available: scoping, filtering, linked replies, and
fine-grain event reporting based on filtering. Control over man-
agement associations is also provided if necessary, while it may
be also left to the underlying infrastructure. Two modes of oper-
ation are supported, synchronous and asynchronous. In the lat-
ter case, linked replies may be assembled or passed back to the
manager object one by one, according to its requirements. It
should be noted that only the request commands are shown in
Table 1. A generic list structure that applies to all the requests is
used for replies and errors; its structure is described in detail in [6].

The Tcl-RMIB approach provides semantics of a dynamic

invocation interface, similar to the RMIB one. This means
that there is no need for precompiled knowledge of the
GDMO information model accessed across the Q3 interface.
Meta-data is used to map attribute, action, and notification
types to user-friendly names and to manipulate the relevant
syntaxes. While this approach is protocol-oriented, higher-
level abstract approaches are possible. A shadow MIB (SMIB)
approach is described in [3], and an interpreted Tcl layer may
be put in front of it in a similar fashion to Tcl-RMIB. Alter-
natively, similar infrastructure may be built directly over the
Tcl-RMIB using one of the object-oriented Tcl extensions.
The advantage of more abstract approaches lies in their sim-
plicity; on the other hand, some of the CMIS expressive
power may be lost when precompiled knowledge of the
accessed GDMO model is necessary. We may investigate such
more abstract approaches in the future.

Tcl offers most of the control constructs found in other
high-level programming languages, while object-oriented
extensions provide classes, inheritance, and polymorphism.
Combining these with the Tcl-RMIB extensions described
above enables developers to build arbitrarily complex but
well-structured scripts that operate in managing roles. In addi-
tion, the Tk widget set supports the quick construction of
GUIs. We have found this infrastructure extremely helpful in
building WS-OS applications.

A LIGHTWEIGHT STRING-BASED
CMIP ProTOCOL

hile Tcl operates on UNIX/X-Windows, MS Windows,

0S/2, and Mac System-7, portability of WS applications
written in Tcl-RMIB is only possible after the latter has been
ported to those platforms as well. This necessitates porting
the relevant Q protocol stack ihfrastructure, which is far from
trivial. Given the fact that all the interactions across the Tcl-
RMIB interface are string-based, it should be relatively easy
to map it on a simple on-the-wire interface. In that case, a

1EEE Communications Magazine * September 1996

85

generic interworking unit could be used to translate the
string-based interactions to Q3 interoperable messages. The
~question that arises is at what level to define the string-based
protocol, and the obvious answer is at the q3 reference point
because it is well-defined, standardized, and generic. By defin-
ing a lightweight string-based CMIP protocol, we could replace the
MCFqg3/DCF part on Fig. 2 with a lightweight MCF/DCF offering
similar functionality, moving essentially the complexity of the
full Q3 stack to an intexworking unit.
" Motivated primarily by the need to run WS-OS applica-
tions on various platforms without having to go through com-
plex, time-consuming, and possibly prohibitively expensive
porting exercises, we have designéd and implemented a
lightweight string-basod CMIP (LCMIP) operating over a
reduced protocol stack. The added value is, of course, the
reduced memory and processing power requirements when

operating on limited systems such as laptop PCs. In addition,

the lightweight protocol is mapped over both TCP/IP and
ITU-T OSI lower layers. It should be mentioned that the
ITU-T has also recently endorsed a TCP/IP mapping for the
lower-layer Q3 profile in the latest version of Recommenda-
tion Q.811. Another benefit of the lightweight CMIP approach
is that precompiled knowledge for new GDMO attribute,
action, and notification syntaxes is only needed for interwork-
ing units, because LCMIP treats these values-as strings:

. The reasoning behind a lightweight CMIP protocol can be
taken further through the possibility of managing simple net-
work elements unable to support full Q3 stacks, most notably
devices in mobile network environments. Such a protocol
inight also serve local/metropolitan area network (LAN/MAN)
* environments, currently dominated by the Simple Network
Management Protocol (SNMP); the main advantages would
be the richness of the associated GDMO information model,
event-based operation, and the generic functionality of the

systems management functions (SMFs), combined with

lightweight protocol stack operation. It should be noted that
similar efforts in the past, such as CMIP over TCP/IP
(CMOT) and CMIP over logical link control (CMOL), failed.
CMOT failed because the OSI management framework was
far from mature enough to be adopted in the Internet at the
time (1989); in addition, the CMOT protocol stack does not
save much compared to the full CMIP stack (it still uses full
presentation and application layers). On the other hand,
- CMOL has been suitably lightweight but lacked generality,
) operatmg only over the LL.C-capable LAN/MAN.
" The requirements behind a lightweight CMIP protocol are
the following:
¢ To be economical and efficient
» To be general and not sacrifice any functlonahty with
respect to full CMIP . -
* To be easily implementable on different platforms
e To operate over both ITU-T and Internet protocols
* To 1nteroperate seamlessly with full CMIP through
generic interworking units
A fundamental decision behind LCMIP has to do with the
communication paradigm: a reliable connection-oriented
approach has been chosen in a similar fashion to CMIP; this
aligns with CMIP, the needs of telecommunication environments,
and the nature of the emerging broadband technologies. As such,
LCMIP is essentially a corivergence protocol, mapped directly
onto the OSI Connection-Oriented Transport-Service/Proto-
- col (X.214/X.224) which operates over the lower layers as in
Recommendation Q.811 {e.g., X.25/LAPB, CLNP/LLCI,
RFC1006/TCP/IP, etc.).
 The LCMIP protocol itself is specified in Abstract Syntax
Notation One (ASN.1), while the Basic Encoding Rules
(BER) are being used to encode/decode its packets. Associa-

tion control and remote operations functionality is embedded
within LCMIP, while presentation and session functionality is
not necessary. Session functionality is not used in CMIP at all
(despite the fact that the session layer should be present for
interoperability redsons), so it is not an issue in LCMIP. Pre-
sentation facilities are not needed because the values of
attributes, actions, and notifications are transferred as “pretty-
printed” strings. This implies that well-defined string repre-
sentations for these are necessary. Currently, ‘most
management platforms define their own (propriétary)
representations; a common approach should be agreed on. Of
course, ASN:1 is a very powerful abstract syntax language, and
it is not possible to map syntaxes to user-friendly string repre-
sentations and vice versa in a generic fashion. This means that
manual coding of the relevant mapping logic may be necessary,
certainly a limitation. On the other hand, the use of a
lightweight protocol with rudimentary presentation facilities
satisfies most of the requirements set above. A detailed dis-
cussion of the proposed LCMIP together with performance
analysis and comparisons will be the subject of a future paper,
presenting the arguments for its potential standardization.
The full LCMIP protocol specification can be found in [7].
The structure of the WS using the lightweight CMIP
approach is shown in Fig. 3. An interworking unit is needed to
convert LCMIP to full CMIP. This is pure protocol conversion
and can be accomplished easily in a generic way by accepting:
primitives from one interface and copying them to the other
after simple conversions with respect to attribute, action, and
notification types/values. Such a unit must have knowledge of
all such possible types/values and of the rélevant ASN.1 syn-
taxes in order to perform the conversions. This means that
every time it needs to convert for an interface whose GDMO
model introduces new syntaxes, it has to be updated with

. additional logic and data to be able to handle them. This is a.

limitation, but it is outweighted by the flexibility and
lightweighit operation of LCMIP-based applications. Protocol
conversion can be effected in both directions by such units.

In TMN terms the lightweight CMIP is a Qx protocol,
while the interworking unit becomes a mediation function that
peiforms pure protocol conversion. This classification applies’
to simple LCMIP-capable devices that need to.be managed by
the TMN. In the case of WS applications that use: LCMIP as
above, the same conversion takes place in the opposite direc-
tion; that is, the managing application speaks Qx while it
accesses a managed OS through a Q3—Qx mediation device.
This type of “inverse” mediation is not catered to in the TMN
architecture, but the interoperability point is the accessed OS
Q3 interface, as already explained. It should also be clarified
that the WS-OS does not communicate directly with the NE
in Fig. 3 but with OSs at the other end of the Q3 interface.
Such OSs may manage lightweight LCMIP- capable NEs
through the interworking unit, as shown in Fig. 3.

Finally, our operational experience with LCMIP suggests
that the size of applications is substantially reduced from the
full upper-layer CMIP stack. The size of a simple application
in a manager role using the full CMIP upper-layer stack is

- about 1.2 Mb at runtime; it becomes about 0.6 Mb over the

LCMIP implementation. Performance is significantly better .
for applications communicating directly over LCMIP, but the
need for a mediation device between CMIP/LCMIP intro-
duces an additional delay. Summarizing, application size and
performance clearly benefit from the direct LCMIP approach.
In addition, the Tcl-RMIB infrastructure becomes easily
portable across different hardware and OS platforms, while
Tcl-RMIB-based scripts beconie fully portable since only the
interworking unit needs to have knowledge of new ASN.1 syn-
taxes for attribute, action, and notification values.

86

IEEE Commiunications Magazine * September 1996

APPLICABILITY EXAMPLES

We have used this technology in two RACE-II TMN pro-
jects and will also be using it in ongoing ACTS projects.
In this section we look briefly at the types of applications for
which we have been using it.

In the RACE II ICM project, a WS-OS application sup-
ported the GUI used by a human manager working for a
value-added service provider (VASP). This GUI provides the
. means to effect an ATM-based virtual private network (VPN)
service after receiving a request from a customer in nonelec-
tronic form (e.g., fax message). The WS-OS can be used for
naming the customer sites to be connected and describing the
desired performance requirements (e.g., bandwidth, end-to-
end cell delay, jitter, cost). It provides the graphical interface
to add, delete, modify, and view information about customers,
the networks, and their interconnection. The display part
(WSF) of the WS-OS was implemented through presentation
graphical objects supported by the Tk widget set. The rest of
the WS-OS that accesses management information in other
OSs (i.e., route design, configuration management) was imple-
mented entirely in Tcl-RMIB,

In another RACE II project, PRE-Pilot in Advanced
Resource Management (PREPARE), the Tcl-RMIB was used
for the development of flexible script modules to support
interdomain service management operations (i.e., resource
reservation/allocation, fault handling, and various graphical
user interfaces). These applications were written in Object Tcl
over Tcl-RMIB, and a purely object-oriented approach was
followed for their design and implementation. Also, in both
ICM and PREPARE, Tcl-RMIB scripts were used for testing
purposes (e.g., testing the functionality of Q3 interfaces).

SUMMARY AND CONCLUSION

This article has looked at the applicability of interpreted
scripting languages with CMIS/Q capabilities and built-in
graphical support in a TMN environment. We have found
such facilities extremely helpful in building WS applications
based on the presented model in which the internal f refer-
ence point is mapped onto external Q3 interface interactions.
Although we recognize the need for such f reference points
within graphical applications, we believe that interoperability
should be based on the Q3 interface. As such, we propose
that the F interface is not standardized by the ITU-T.

We have based our scripting language on Tcl because it
was the first interpreted language to integrate easily with
C/C++ and to provide the easy-to-use Tk widget set for
graphical applications. In addition, object-oriented Tcl exten-
sions such as Object Tcl provide classes, inheritance, and poly-
morphism, which are important for structuring more complex
applications. Although there is not yet industrial strength
behind Tcl, we believe that object-oriented interpreted lan-
guages will become popular in the future; Java is an example.
The same principles may be applied to similar languages.
Such technologies could be used in parallel with “tried and
tested” industrial approaches for TMN WS-OS applications,
such as UNIX Motif/C++, Windows NT Visual C++, and so
on, It should be added that the NM Forum has also initiated
an activity on a CMIS High-level Scripting Language (CMIS-
HSL), which underlines the importance of the approach.

Motivated also by the need to run such applications on
inexpensive desktop and laptop computers and to increase the
portability of the relevant scripts, we specified and implement-
ed a lightweight CMIP protocol. This operates directly over a
connection-oriented reliable transport service and uses well-
defined string representations for attribute, action, and notifi-

MCFo3

(CMIP)

cation values. Such a protocol may also be used by simple net-
work elements (e.g., in mobile environments). We experi-
enced important reduction in size and better performance for
applications using the lightweight CMIP, which also resulted
in highly portable interpreted applications across different
hardware and operating system platforms. We intend to pre-
sent in the future a detailed justification for lightweight CMIP
as a potential candidate for standardization, together with an
analysis of the relevant strengths and weaknesses.

ACKNOWLEDGMENTS

This article describes work undertaken in the context of the
RACE II ICM and ACTS Management of Integrated SDH
and ATM (MISA) projects, partially funded by the Commis-
sion of the European Union.

REFERENCES

[1] G. Paviou et al., “The OSIMIS Platform: Making OSI Management Sim-
ple,” Integrated Network Management 1V, Sethi et al., eds., Chapman
and Hall, 1995, pp. 480-93.

[2} ITU-T Rec. M.3010, “Principles for a Telecommunications Management
Network,” 1996.

[3] G. Pavlou et al., “High-Level Access APIs in the OSIMIS TMN Platform:
Harnessing and Hiding,” in Towards a Pan-European Telecommunica-
tion Service Infrastructure — IS&N "94, Kugler et al., eds., Springer-Ver-
lag, 1994, pp. 181-91.

[4] NMF, “Red, Green and Blue High-Level CMIP-APIs,” 1995.

[5] Qusterhout, The Tcl Language and the Tk Toolkit, Reading, MA: Addi-
son-Wesley, 1994.

[6] Tin et al., “Tc-MCMIS: Interpreted Management Access Facilities,” Proc.
IFIP/IEEE Dist. Sys.: Operations and Management Workshop, Ottawa,
Canada, Oct. 1995

{7} G. Paviou, “LCMIP: A Lightweight Protocol for Data and Telecommuni-
cation Network Management and Control,” UCL Comp. Sci. Res.Note
RN/95/61.

BIOGRAPHIES

GEORGE PAvLOU is a senior research fellow in the Department of Computer
Science, University College London, responsible for European-funded
research projects in the area of network and service management for high-
speed broadband networks. Part of his research has culminated in the
OSIMIS TMN platform. His main research interests include distributed man-
agement in the TMN and future integrated service engineering contexts. He
obtained a Diploma in electrical and mechanical engineering from the
National Technical University of Athens in 1982 and an M.Sc in computer
science from University College London in 1986. He expects to finalize his
Ph.D. thesis in 1996 at University College London.

THURAIN TIN is a research fellow in the Department of Computer Science,
University College London, where he has been involved in the area of net-
work and distributed systems management for European-funded research
projects. He has participated in the RACE Il ICM project and contributed
towards-the OSIMIS TMN platform. He is currently working in the ACTS
VITAL (Validation of Integrated Telecommunication Architectures for the
Long Term) project, which involves the investigation and validation of the
TINA and CORBA architectures for telecommunications management. He
received a B.Sc in computer science from Queen Mary and Westfield Col-
lege, University of London, in 1990.

IEEE Communications Magazine * September 1996

-87

