CMIS /P++: Extensions to CMIS/P for

Increased Expressiveness and Efficiency in the

Manipulation of Management Information

George Pavlou, University of Surrey
Antonio Lioita, University College London
Paola Abbi, Hewlett-Packard ltaliana
Stefano Ceri, Politecnico di Milano

Abstract

CMIS/P is the OSI systems management service and protocol used as the base
technology for the telecommunications management network. It is a generic object-
oriented protocol that provides multiple object access capabilities to managed
object clusters administered by agent applications. lts navigation and object selec-
tion capabilities rely on traversing containment relationships. This is restrictive
because information models for emerging broadband technologies (SDH/SONET,
ATM) exhibit various other relationships. In this article we present extensions to the
CMIS service that provide a richer access language and show how these exten-
sions can be supported by corresponding extensions to the CMIP protocol. These
extensions allow traversal of any object relationship and filtering out objects at any
stage of the selection process. CMIS++ provides much greater expressive power
than CMIS, while CMIP++ supports the remote evaluation of the corresponding
expressions, minimizing the management traffic required for complex management
infgrmation retrieval. These extensions follow an incremental approach, starting
from a version compatible with the current standard and gradually adding sophisti-
cated features. The applicability and importance of the proposed concepts is
demonstrated through an example from SDH management, while we also discuss

implementation considerations.

he advent of broadband network technologies — syn-
chronous digital hierarchy/synchronous optical network
(SDH/SONET) transmission, asynchronous transfer
mode (ATM) switching — which will form the basis of
future telecommunications infrastructures poses complex
management requirements. The International Telecommuni-
cation Union — Telecommunication Standardization Sector
(ITU-T) has developed the telecommunications management
network (TMN) [1] as the framework for their management.
The latter uses the object-oriented information architecture of
open systems interconnection systems management (OSI-SM)
[2] as the means to model manageable resources and the asso-
ciated access service and protocol to standardize interactions
across management interfaces.

The OSI-SM access service and protocol are the common
management information service (CMIS) [3] and Common
Management Information Protocol (CMIP).[4], respectively.
Managed elements and management applications acting in
agent roles contain clusters of managed objects (MOs) orga-

nized in a management information tree (MIT) according to
containment relationships. MOs exhibit hierarchical names
based on the containment relationships. Management applica-
tions acting in manager roles access these objects by using
CMIS/P in order to realize management policies. Access
could be either to a single object, by using its name, or to
multiple objects that are selected through scoping and filtering
parameters. Scoping selects objects based on containment
relationships starting from a particular position in the MIT
(the base). Filtering further eliminates this selection through a
Boolean expression containing assertions on attribute values.
When an operation is performed on multiple objects, a series
of linked replies is passed back to the manager application.
The advantage of scoping and filtering is both expressive
power of remote management requests and minimization of
management traffic, the latter being one of the fundamental
TMN architectural requirements [1].

The CMIS/P expressive power and capabilities, though
much better than that of the Simple Network Management

10 0890-8044/98/$10.00 © 1998 IEEE

IEEE Network * September/October 1998

Protocol [5] for broadband network management, it is
still not rich enough to address the complex manage-
ment needs of emerging broadband environments. We
have identified two main limitations:

* Scoping allows only for containment relationships to
be navigated.

* When filtering is used in conjunction with scoping, it
is only applied to selected objects after the selection
process has been completed.

In order to address these limitations, we have
extended CMIS/P with additional features. We have
first extended CMIS to CMIS++, and we present
these extensions as an MO manipulation language,
similar to object-oriented database languages. This can be
supported within manager applications and be mapped onto
CMIS/P in order to retain interoperability with existing TMN
applications in agent roles. We then present CMIP+ + exten-
sions that support the remote evaluation of CMIS+ + expres-
sions within agent applications. CMIS+ + provides greater
expressive power than CMIS by allowing traversal of any rela-
tionship and combining object selection and filtering at every
stage of that process. CMIP+ + supports the remote evalua-
tion of the corresponding expressions, minimizing the traffic
required for complex management information retrieval. Such
powerful features also need to be implementable, and we
examine relevant implementation issues. Finally, in order to
show the applicability and importance of the proposed con-
cepts, we present an example from SDH management.

The rest of this article has the following structure. We first
look briefly at the OSI-SM model, concentrating particularly

on the navigation issues. We then present the CMIS++ -

extensions and present examples from SDH management to
show its applicability. We then present the CMIP + + exten-
sions, addressing federation and also discussing implementa-
tion issues. We finally close with a summary and conclusion,
while we briefly discuss potential alternative approaches.

The OSI System Management Model

OSI-SM [2] projects an object-oriented model, with applica-
tions in agent roles “exporting” MOs that encapsulate man-
aged resources at various levels of abstraction. Applications in
manager roles access these objects in order to realize manage-
ment policies. MOs conform to the management information
model [6] and are formally specified using the Guidelines for
the Definition of Managed Objects (GDMO) [7]; the latter is
an object-oriented information specification language. The
CMIS access service [3] has “remote method call” semantics
and also allows operations on multiple objects. The OSI man-
ager-agent model is shown in Fig. 1.

Managed objects typically exist in managed network ele-
ments, end systems, and distributed applications (i.e., in
agents at the lowest level of a management hierarchy). They
may also exist in higher-level management applications. In
this case, MOs are abstractions of managed element resources.
The distinction between manager and agent roles for a man-
agement application serves only the purpose of the model and
is not strong in engineering terms: a management application
may be in both roles. This is in fact the norm in a hierarchical
layered architecture such as that projected by the TMN [1], in
which management applications exist in element, network,
and service management layers.

Each managed element or management application in an
agent role exports a cluster of managed objects, also referred
to as its management information base (MIB). Those MOs
typically have many relationships, but containment is treated
as a primary one that yields unique hierarchical names; hence,

B Figure 1. The OSI manager-agent model.

the MOs are organized in an MIT. Every object has a relative
distinguished name (RDN) which is a tuple consisting of a
naming attribute and its value (e.g., connectionld=123). The
local distinguished name (LDN) of an object in the MIT is
the concatenation of all the relative names after the root
object; for example, {subsystemlId=nw, protocolEntityld=x25,
connectionld=123} identifies an X.25 virtual circuit. Interop-
erable communication between applications in manager and
agent roles is achieved by the formal specification of manage-
ment information in the agent, the access management service
(CMIS), and the supporting protocol stack.

The containment relationships of MOs manifest themselves
implicitly through their names; that is, there is no explicit
information in an object’s attributes denoting the containing
and contained objects [6]. Other relationships manifest them-
selves as “pointer” attributes that contain the name of a relat-
ed MO [8]. MOs in an MIT may be accessed either
individually or collectively, through an object-oriented
database query facility. Many objects may be selected by

“traversing containment relationships through scoping. The

selection may be further eliminated by specifying a filter
expression to be evaluated, containing assertions on attribute
values linked by Boolean operators. An example using this
facility could be “retrieve all the X.25 VCs from that switch
which start or terminate at address X.” This may be expressed
by scoping all the objects contained immediately below the
X.25 protocol entity object and using the filter
(objectClass =x25VC and (srcAddr=X or destAddr=X)). One
CMIS/P request is sent and a number of replies are returned,
one for every accessed object. This reduces both the amount
of traffic required to access a number of objects and also the
overall retrieval time.

OSI management is a communications concept and, as
such, is object-oriented only in terms of information specifica-
tion and access. MOs are accessible across management inter-
faces, but the internal structure of the communicating
applications is not dictated and may not be object-oriented.
Research infrastructures such as OSIMIS [9] have shown early
how such an object-oriented information specification may be
mapped onto a fully object-oriented engineering framework,
providing high-level application programming interfaces
(APIs) and various transparencies. It has also shown that pro-
viding scoping and filtering facilities is easy in engineering
terms and not expensive in memory and processing require-
ments [10]. Implementation considerations for CMIS/P+ +
draw on our relevant experience with CMIS/P in OSIMIS.

Extensions to CMIS

Given the limitations of CMIS/P identified above, the first
step is to define more expressive access facilities. The inten-
tion is to avoid altering CMIS/P [2, 3] in order to maintain
compatibility and interoperability with the increasing existing
base of TMN implementations. These access facilities will be

TEEE Network ¢ Sentember/October 1998

, .

W Figure 2. Generic relationship graph.

implemented within manager applications and will have to be
mapped onto CMIS/P. As such, we refer to them as CMIS++
to mean higher-level access facilities in the form of a language
and associated APIs, but still conforming to the CMIS/P stan-
dards for interoperability. In this case, a well-defined mapping
from CMIS++ to CMIS is also necessary.

A key limitation of CMIS/P is that it allows object traversal
based only on containment relationships. Since it is our inten-
tion to support the arbitrary traversal of any relationship, the
first step is to modify the management information model [6]
to allow for this. In essence, we would like to treat contain-
ment as any other relationship which implies pointer attributes
to express contains and containedIn relationships. These
attributes should be added to the fop class which is the root of
the OSI-SM inheritance hierarchy [6]. For the purpose of
CMIS+ +, this is only a “virtual” extension: In the case of
CMIP + +, this can still remain a virtual extension i.e. agents
will treat the contains and containedIn “virtual attributes” in a
special fashion when included in object selection expressions.
An alternative approach with far reaching implications would
be to actually modify the OSI-SM management information
model. '

In general, MOs are linked through generic relationships,
rather than through the simple containment relationship, as
shown in Fig. 2. Object references are supported through
pointer attributes [8]. As such, no extension is required to the
data definition language, which in this context is provided by
the GDMO [7]. In the following subsections we propose to
extend CMIS with path expressions in order to enhance its
expressive power for retrieving interconnected objects with
arbitrary relationships. Each path expression consists of a
sequence of attribute names, represented through a “dot
notation.” A path expression denotes the path to follow in
order to reach objects in the MIB graph . A simplified syntax
for a path expression is the following ([] denotes optionality
and {} potential repetition):

variable name “=" gimple path_expression |
“where” filter])

simple path _expressicon -» variable_name[”.”
pathl

path -> attribute_label{”.”attribute_label}

We show the properties and capabilities of CMIS+ + by
examples. The full syntax for the CMIS++ M_GET operation
is provided in Appendix A.

Simple Path Expressions

A simple path expression has the typical form expressed
through the example

S1 = BASE. (rl.r2)

where S1 is a variable storing the set of all the objects
retrieved starting from the BASE object and traversing the

M Figure 3. Let S1 = BASE (ry.r2)
where (att4 = 5).

M Figure 4. SI = BASE(ry).

graph following the relationships r1 and r2, as shown in Fig. 2.
The shaded objects are those that constitute the set S1.

Therelevant attribute types, from a “navigational” point of

view, are:

* Attributes storing a single object name, the LDN

* Attributes of type SET OF object names (nonordered list of
names)

» Attributes of type SEQUENCE OF object names (ordered
list of names)

These attributes represent relationships and are candidates
as building elements for path expressions.

At each step of the graph traversal, a path expression
retrieves a set of objects. These objects are progressively
extracted from the MIB and assigned to variables. A variable
can only be used to store object names. In the example above,
rl and r2 are attribute names that reference different objects
using their identifiers (i.e., names). In CMIS the LDNs are
used to uniquely identify objects. Thus, we assume that a vari-
able can only store LDNS.

In CMIS+ +, as in CMIS, a starting point for the graph
traversal has to be chosen. BASE — that is, the parameter
already used in CMIS to refer to the base object — can be
used as a variable name storing the base instance where the
evaluation starts.

Qualified Path Expressions

Qualified path expressions are navigational clauses followed
by predicates, composed using Boolean expressions. Predi-
cates — syntactically, “where clauses” — reduce the number
of objects retrieved via path expressions through matching
rules on attribute values. A CMIS++ predicate is actually a
CMIS filter. The predicates refer to attributes of the objects
retrieved using path expressions. If the attribute is not present
in the object, the relevant predicate simply evaluates to false
(as in CMIS filters).

A qualified path expression has the typical form expressed
in the following example (Fig. 3).

LET S1 = BASE. (rl.r2) where (attrA = 5)

where only the objects retrieved starting from BASE, follow-
ing the relationships rl and r2 and having attrA = 5, are
selected and stored in S1. Note that path expressions are
used only for graph traversal. Note also that a CMIS+ +
query may include a sequence of qualified path expressions,
the first starting always from the base object and subsequent
ones typically taking as input the objects selected from the
previous one. This means that predicates can be applied at
different steps of the selection process, providing more flexi-
bility than CMIS.

Path Expressions with levelBased Restrictions

In CMIS++, as in CMIS, it is possible to restrict scope oper-
ations to a specified subtree. In CMIS+ + this can be done by

12

IEEE Network * September/October 1998

W Figure 5. S1 = BASE.(r1.r2) [2] where
(attr] = 6).

means of a qualifier which indicates the starting and final lev-
els at which objects are extracted by the path expression. This
mechanism is also extended with capabilities for infinite recur-
sion and the retrieval of fringe objects.

Single-level Restriction — The simplest form of level-based
restriction is an individual-level restriction where that level is
specified in the qualifier, as shown in the following examples.
Note also that the absence of any level implies level [1], which
is what was used in the previous examples.

LET S1 = BASE. (rl) [2]

(extracts the objects at 2nd level reached
following rl. Fig. 4).

LET S1 = BASE.(rl) [2] where (attrl = “blue”)
(extracts the objects at 2nd level reached
following rl and having attrl = “blue”)

LET S1 = BASE.(rl.r2) [2] where (attrl = 6)
(goes down, following the sequence of rela-
tionships (rl, r2) twice (level 2). The
objects reached at the last step are extracted.
The *“where” option is applied at the end of
navigation. Fig. 5).

Note that the expression

LET S1 = BASE. (rl.r2) [1]
is interpreted as

LET S1 = BASE. (rl.r2)

Multiple-level Restrictions — Multiple-level restrictions can be
specified as in the following examples:

LET S1 = BASE. (rl) [1..3]

(extracts objects between levels 1 and 3,
reached following rl. Fig. 6)

LET S1 = BASE.(rl.r2) [3..5] where (attrl = 6)
(goes down following the whole sequence of
relationships (rl, r2) 5 times. The objects
belonging to the 3rd, 4th and 5th level of
navigation are extracted. The *“where” option
is applied at the end of navigation).

The previous examples show that a where clause is a fil-
ter that may be applied at the end of evaluating a path
expression. Given the fact that a CMIS++ query may com-
prise a series of path expressions with where clauses (“quali-
fied path expressions”), it enhances the expressive power of
CMIS in which filtering can only be applied only at the end
of the selection process (through scoping). The following
example shows first a query with a single path expression in
which the where clause is evaluated at the end. It is subse-
quently shown how the query should be formulated for the
where clause to be evaluated at each step (i.e., level) of nav-
igation.

W Figure 6. S1 = BASE.(rl) [1.3].

W Figure 7. SI = BASE.(rl)[1..n].

LET S1 = BASE. (rl.r2) [3..5]) where (attrl = 6)
(filter applied at the end of navigation as
in CMIS)

LET S1 = BASE.(rl.r2) [3] where (attrl = 6)
52 = 8l.(rl.r2) where (attrl = 6)
53 = 82.(rl.r2) where (attrl = 6)

(similar to the one above but with the filter
applied at each level)

Recursion — Recursive path expressions denote the transitive
closure of a path expression, interpreted as a binary relation-
ship. The tree traversal through a certain direction is stopped
when the given path cannot be followed any more.

Recursion can be specified as in the following example:

LET S1 = BASE.(rl) [l..n]
(extracts all the objects, at any level,
starting from BASE and following rl. The
BASE object is not stored in Sl. Fig. 7)

The starting level can be changed. In the following example
the BASE object is included in S1.

LET S1 = BASE.(rl) [0..n]

The following examples show the use of predicates in con-
junction with recursion.

LET S1 = BASE.(rl) [1..n] where (attrl = 3)
(the relationship rl is followed recursively
until new objects are found. Only the objects
having “attrl=3" are finally stored in S1.
Fig. 8).

LET S1 = BASE.(rl.r2) ([1..n] where (attrl = 3)
(the sequence of relationships “rl.r2” is
followed. The search continues until the
sequence can be entirely followed. The target
objects are the ones having “attrl = 37
Fig. 9)

Fringe Objects — Using recursion, fringe objects in a graph
or subgraph can be extracted. Objects are termed fringe
objects when either a relationship — or sequence of rela-
tionships — can no longer be followed or an object belongs
to the extremes of the chosen subgraph. The following exam-
ples show the notation adopted in CMIS+ + to retrieve
fringe objects.
LET S1 = BASE.(rl)! [1..n]
(extracts the last level: all the objects
in the graph starting from which it is impossible
to follow rl. Fig. 10)
LET S1 = BASE.(rl)! [1..n] where (attrl = 6)
(1ike in the previous example. The “where”
option is evaluated at the end of navigation)

IEEE Network ¢ Sentember/October 1998

B Figure 8. S1

(attrl = 3). (attrl = 3).

LET S1 = BASE. (rl)! [1..3]

(objects at 1st and 2nd level from which it
is impossible to follow rl; by definition,
all objects reachable at 3rd level are fringe
ones. Fig. 11)

Set Expressions

From the previous introduction to CMIS++ through examples,
it is clear that the functionality of CMIS scoping and filtering is
provided in a more general fashion. Arbitrary relationships or
sequences of relationships can be followed to arbitrary levels,
with predicates (filters) applied at the end of each path expres-
sion evaluation. Sequences of such qualified path expressions
can be specified in a single CMIS+ + request, providing enot-
mous flexibility in accessing management information.

In the typical case, the set of objects
selected from a qualified path expression
become the input to the next one, as
demonstrated in the last example. An addi-
tional facility of CMIS+ + is that it also
allows specifying set expressions (union,
intersection, difference) which operate on
object sets which have been the output of
previous expressions. The set features of
CMIS+ + are summarized below, followed
by an example. The full formal definition of
the CMIS++ SELECTION clause which
replaces CMIS scoping and filtering is pro-
vided in Appendix A, being part of the
M_GET query; its formal definition in
ASN.1 is provided in Appendix B.

* Arbitrary set definitions are possible:
each one is a statement assigning the
result of ‘a graph traversal to a variable.

» Arbitrary set operations are possible between variables
which denote sets of objects already extracted by the scope
definition.

* Set operators are used to evaluate union, intersection, and
difference among extents bound to the different variables.

* A final clause of the selection section (RETURN) deter-
mines which object, deposited within sets, has to be pro-
duced as output. ‘

The typical structure of a selection clause can be seen in the

example below.

[1.3].

SELECTION:

LET S1 = BASE. (rl) where (attrA = 5), # qualified
path expression.)
S2 = Sl1.(x2) where (attrB > 34), # qualified
path expression.

83 = S2.(r3.r4), # path expression.

B Figure 10. SI = BASE. (r])![]..n].

S4 = S2 INTERSECT S3, # set operation.
RETURN S4 where (attrC = 0) # output production.

The problem with set expressions, though, is that they make
it difficult to federate CMIS/P++ queries across different
agent applications; this aspect is discussed in more detail later.

Containment in CMIS++

In CMIS, containment is the only relationship that can be
used for object navigation through scoping. When an MO is
created, its identifier-is inserted in the MIT. The latter can be
traversed using the scoping mechanism in order to access par-
ticular instances. Once an object is selected there is no way to
retrieve its “parent.” This feature represents a semantic limi-
tation. In fact, although containment is useful to order object
instances, some semantic content is lost.

In CMIS+ +, the navigation of the con-
tainment relationship is implemented as fol-
lows: we add in each object the contains and
containedln attributes. These are implicitly
defined for each object and do not need to
be included in the object’s declaration.
When an object is created, its containedIn
attribute is set to the value of its parent
object in the tree. Accordingly, the contains
attribute of the parent object is updated too.

The containedIn attribute is updated at
object creation. The contains attribute is
set-valued and is only updated when a new
child object is created. Both attributes only
have GET properties.

The use of the contains attribute allows
backward compatibility with CMIS. CMIS
scope and filter capabilities are still sup-
ported, as shown in the examples below.

BASE.(rl)!

LET S1 = BASE. (contains) [0..n] (whole sub-tree
is retrieved)
LET S1 = BASE. (contains) [0..5] (objects from

base to 5th level are extracted)
LET S1 = BASE. (contains) [3] (objects at 3rd
level only are extracted)
LET S1 = BASE. (contains) [1..n] where (attrl = 1)
(objects at any tree-level having attrl = 1)
LET Sl = BASE. {(contains) ! [1..n] where (attrl
= 1)
(objects at the last tree-level having attrl = 1)

Therefore, the new navigational capabilities affect the navi-
gation of the containment relationship. The scope clause no
longer exists, and a different way to scope objects is adopted.
Path expressions can now be used, and the contains and con-
tainedIn attributes are the ones to be used to build the paths.

IEEE Network * September/October 1998

W Figure 12. The SDH containment tree.

Example Use of CMIS++

We-present here two scenarios in the context of the SDH
technology, showing the expressive power of CMIS++. Both
scenarios depict an error condition requiring a sequence of
management operations to find out the required information.
The latter can be obtained by accessing MOs in the MIT. We
show some CMIS queries serving this purpose and their corre-
sponding CMIS+ + expressions.

In our scenarios a network is built up from different muln-
plexing paths, each one crossing a number of add drop multi-
plexers (ADMs). ADMs allow a signal of specified bandwidth to
be carried on the same physical link with other signals. ADMs
are connected through connection objects, whereas different
ports within a single ADM are connected through a cross-con-
nection object. Fig. 12 shows the containment hierarchy of this
environment; Fig. 13 depicts the scenario. The object classes,
packages, and attributes used are defined in [11, 12]. The fun-
damental ones for this example are presented in Appendix C.

W Figure 13. SDH scenario.

Fiber Break Scenario

In this scenario there has been a fiber break between two
ADMs. A query is required in order to find out all the vcd-
trails (end-to-end paths) affected by this fault. An error has
been notified to a certain manager through a CMIS
M_EVENT_REPORT, as usually happens in a TMN environ-
ment. A notification is generated by an optical TTPBidirec-
tional object, the termination point of an end-to-end path, We
term X the identifier of the instance notifying the error occur-
rence (Fig. 13). Two possible queries — in CMIS and
CMIS+ +, respectively — are described below. Another possi-
ble solution, highlighting further aspects of this scenario, is
presented in [13].

CMIS Query —

/*Search for all the gpiTrails having “X” as
“a" or “z" tp-instance;

IEEE Network * September/October 1998

we suppose that C is a set of records, each
one storing the trailID and its clientConnec-
tion. */

BEGIN
C= M_GET
{
BASE_INSTANCE: sdh network,
SCOPE: 1,
FILTER: (a_tp instance = X OR z_tp instance = X),

ATTRLIST: trailID, clientConnection
}

/* For each connection in C the “clientTrail”
attribute will find the associated trail, which
is involved in the fibre- break. */
FOR EACH (¢ in C.clientConnection) DO
M_GET
{
BASE_INSTANCE: c,

SCOPE: no,
FILTER: no,
ATTRLIST: clientTrail
}
END

END

CMIS++ Query —

M_GET

{
BASE: sdh_network,
SELECTION: {
LET S1 = BASE.containg where (a_tp_instance=X
OR z_tp_instance=X),
S2 =.Sl.clientConnection;
RETURN S2
}
ATTRLIST: clientTrail

We can underline the difference between the two approach-
es. The CMIS query works in two steps. First, a number of
trails and connections are retrieved through an M_GET.
Then, for each of these connections another CMIS M_GET is
required. Therefore, many M_GETs might be required to
carry out the task.

In contrast, in CMIS++ the same query can be expressed
with only a single M_GET. All the object LDNs retrieved fol-
lowing the containment relationship at the first step are stored
in S1. Then, S1 can be used to reach all the client connections
whose client trails are relevant to the fault.

Configuration Mismaich Scenario

In this scenario a crossConnection is changed in one ADM
while a ve4 path is using it. Thus, the path is broken. The
notification of the error is generated from a ve4TTPBidirec-
tional object, marked Y in Fig. 13. Two possible queries — in
CMIS and CMIS+ +, respectively — aimed at detecting the
crossConnection affected by the change are described below.

CMIS Query —
T - M GET
{

BASE_INSTANCE sdh_network,

SCOPE: 1,
FILTER: (a_tp instance = Y OR z tp instance = Y)
ATTRLIST: traillD,
}
/*This gquery finds out all the
trails(T).
For each trail serving connections are searched
for */
FOR EACH (t in T)
{
C = M GET
{
BASE_INSTANCE : T,
SCOPE: no,
FILTER:nO,
ATTRLIST: serverConnectionList,
a_tp_instance, z_tp instance
}

impacted

}
END

/*Let us suppose that, for a particular trail,
we find out 3 connections:

Cl, C2, C3 (Ordered List); let us call
vcATTPB(A) and vcdTTPB(Z) the two end points of
the trail. ‘

We have to check whether there is a crossCon-
nection between each pair of

terminationPointg: */

a)
M_GET
{
BASE_INSTANCE
SCOPE: .3,
FILTER: { from = vcdTTPB(A) AND to =
a_tp_instance(Cl))
OR (from = a_tp_instance(Cl) AND to =
vc4TTPB(A)),
ATTRLIST: crossConnectionID
}

sdh_network,

b)

M _GET
{
BASE_INSTANCE
SCOPE: 3,
FILTER: (from = z_tp_instance(Cl) AND to

= a_tp_instance(C2))
OR (from = a_tp_instance(C2) AND to =
7_tp_instance (Cl)),
ATTRLIST: crossConnectionID
}

sdh_network,

c)
M _GET
{
BASE. INSTANCE
SCOPE: 3,
FILTER: (from = z_tp_ instance(C2) AND to
= a_tp_instance(C3))
OR (from = a_tp instance(C3) AND to =
z_tp_instance (C2)),
ATTRLIST: crogsConnectionID

sdh_network,

16

IEEE Network ¢ September/October 1998

BASE_INSTANCE :

SCOPE: 3,

FILTER: (from = vc4TTPB(Z) AND to =
a_tp instance(C3))

OR (from = a_tp_instance(C3) AND to =

vCc4TTPR(Z)),

ATTRLIST: crossConnectionID

}

sdh_network,

/* We find the changed crossConnection when we
get no identifiers from one of
the queries. */

CMIS++ Query — In CMIS++ a single query is sufficient to
find out each connection, coupled with its client trail and ter-
mination points, as shown below.

M_GET
{
BASE: sdh_network,
SELECTION: {
LET S1 = BASE.contains where
(a_tp_instance = Y OR z_tp instance = Y),
S2 = Sl.serverConnectionList
RETURN S2
}
ATTRLIST: connectionID,
z_tp_instance }

Extensions to CMIP

In the two previous sections we presented the CMIS+ +
extensions to CMIS and demonstrated its use through exam-
ples that prove the increased expressiveness in manipulating
management information that exhibits complex interobject
relationships. CMIS++ can be implemented as an access lan-
guage within manager applications and mapped onto. CMIS/P
for the exchange of interoperable messages across TMN inter-
faces. We have actually studied the mapping of CMIS+ + to
CMIS and concluded that a suboptimal mapping is trivial,
while an optimal mapping that minimizes the CMIS/P interac-
tions presents a difficult research problem. We do not present
in this article an algorithm for the mapping of CMIS++ to
CMIS because we are concerned rather with the direct map-
ping of CMIS+ + to CMIP+ +, the latter being an extended
protocol that supports the remote evaluation of CMIS+ +
queries within agent applications.

The advantage of CMIP++ is that it combines the expres-
siveness of CMIS+ + with increased efficiency in manipulat-
ing management information, minimizing the amount of
management traffic required to retrieve complex information.
In principle, a single operation is adequate to access any num-
ber of MOs within an agent by navigating their relationships.
The query is evaluated by the agent, and a number of replies
are sent back in the form of a “consolidated result.” The
bandwidth required to access this information is minimized,
while the overall latency is only fractionally bigger than that
incurred accessing a single object, increasing the timeliness of
the retrieved information. The obvious disadvantage is that
CMIP+ + is not directly interoperable with CMIP. Despite
that, a generic “adaptor” application could be used to adapt
between the two by deploying the same algorithm as for the
mapping between CMIS+ + and CMIS.

As already explained, the CMIS/P multiple object access
capabilities are supported through the scope and filter parame-
ters which are evaluated by the agent, starting from the base
object specified in the request. In fact, we have already com-

traillD, a_tp_instance,

mented on the undesirable aspects of separating the scoping
and filtering procedures; and, as such, CMIS++ supports a
combination of the two, adding also multiple-step evaluation
within a single request. Naturally, CMIP+ + is only different
from CMIP in the sense that scope and filter have been
replaced by the objectSelection parameter. The CMIP proto-
col data units [4] are specified in the Abstract Syntax Notation
One (ASN.1) language [11]. CMIP+ + retains that specifica-
tion but replaces scope and filter with the new objectSelection
parameter, which is also specified in ASN.1. The exact object
selection syntax is presented in Appendix B. The structure of
this parameter supports the CMIS+ + features in two stages:
objectSelection supports the core CMIS++ features, while
objectSelection2 supports the more sophisticated set expres-
sions. The reason for this separation is explained below.

One important aspect of CMIS/P is that it can support feder-
ation. Whole agents can be organized in a hierarchical fashion,
with MITs in subordinate agents hanging through logical links
from the MIT of superior agents. The link objects in the superi-
or agent are virtual in the sense that they map onto the root
object of a subordinate MIT. A request to any agent can also
address objects in subordinate agents through scoping. While
scoping is evaluated, if a virtual link object is encountered, the
same CMIS/P request is sent to the subordinate agent with
the scope parameter modified accordingly to reflect the
already scoped levels. The results are returned to the superior
agent, which forwards them to the manager in a transparent
fashion. The whole procedure can be recursive, with many lev-
els of agents involved in the cascading of requests.

One fundamental aspect of the object selection procedure
in order to support federation is that it should not require
knowledge of any previous results in the evaluation process.
The CMIS/P++ set expressions violate this principle since
previous results are necessary in order to perform the set
operations. If the target agent does not contain link objects
pointing to subordinate agents, a CMIS/P++ request with set
expressions could be fully evaluated. If, though, a link object
is encountered, the whole procedure should be aborted with a
special processingFailure error returned to the manager. This
is the reason we have presented two versions of CMIP+ + of
increasing complexity: the first, supported by the objectSelec-
tion parameter, does not support set expressions and can deal
with federation in the same manner as CMIP. The second,
supported by the objectSelection2 parameter, does support set
expressions but cannot support federation.

Finally, another important consideration regarding
CMIS/P+ + is its implementability since it is more complex than
CMIS/P. In fact, CMIS/P was originally thought to be overly
complex and unimplementable due to the scoping, filtering, and
linked reply features. Early platform implementations such as
OSIMIS [9, 10] have shown this not to be true and have been
used widely for early TMN prototypes. Given our experience
with CMIS/P in OSIMIS, we have attempted a CMIS/P+ +
implementation as a proof of concept, using the same environ-
ment. We have implemented the objectSelection parameter as
specified in Appendix B and subsequent support in agents with-
out great difficulty. In fact, the key differences from CMIS/P
are the multiple evaluation steps and the fact that arbitrary
relationships should be followed. In addition to our implemen-
tation, a research team in the Hewlett Packard Research Labo-
ratories, Bristol, United Kingdom, have implemented CMIS+ +
in their prototype called Society. In summary, CMIS/P+ + is
more complex than CMIS/P but still perfectly implementable.
Its additional complexity is a one-off problem, since
CMIS/P+ + will be “hidden” in generic agent and manager
support infrastructures that will provide the relevant power,
expressiveness, and efficiency to management applications.

IEEE Network * September/October 1998

17

Summary and Conclusions

In this article we have identified a number of problems in
CMIS/P which stem from the fact that scoping allows only
containment relationships to be navigated, and filtering is
only applied at the end of the selection process through
scoping. These problems become apparent when manage-
ment information with complex relationships is accessed, as
in SDH/SONET and ATM network elements and relevant
network/element management applications. The current fea-
tures of CMIS/P result in many complex queries that increase
the complexity of management applications, increase the
traffic incurred on the managed network, and reduce the
timeliness of the accessed information. These problems can
gradually be overcome using two approaches in an incremen-
tal fashion.

In the first approach, a CMIS+ + higher-level access lan-
guage has been specified which can be mapped generically
onto CMIS/P (we have not addressed details of this mapping
in this article). This results in increased expressiveness and
reduced complexity of management applications while it
maintains interoperability with the increasing installed base of
TMN-capable network elements and applications. In the sec-
ond approach, a modified CMIP++ protocol supports the
remote evaluation of CMIS++ requests within agents. This
reduces management traffic and increases the timeliness of
accessed information, but breaks the compatibility with CMIP.
CMIS/P+ + could be thought as the new generation of TMN
management service and protocol. Interoperability with exist-
ing CMIP-capable elements and applications could be sup-
ported through generic adaptation units. Finally, CMIS/P+ +
is only modestly complex compared to CMIS/P and, as such,
perfectly implementable. ‘

An alternative approach to CMIS/P+ + would be to try and
achieve the same effect through “intelligent™ or “active” MOs.
These contain interpreted logic that can be evaluated in a
CMIS/P capable agent and return the results to the initiating
manager. We have also been pursuing this line of research [14],
the relevant advantages being compatibility with CMIS/P and
the disadvantages being performance due to the interpreted
approach, and security and federation issues. In general, intel-
ligent mobile agent technology may support a lot of the OSI-
SM/TMN functionality in a different fashion. We are working
in this direction and will report our findings in the future.

Finally, the use of distributed object technologies in TMN
environments is increasingly being considered, with the Object
Management Group (OMG) common object request broker
architecture (CORBA) [15] being the representative technolo-
gy. The Network Management Forum (NMF)/Open Group
Joint Inter-Domain Management (JIDM) task force has con-
sidered mappings of both GDMO and CMIS/P to the CORBA
Interface Definition Language (IDL). In this case, MOs are
mapped to CORBA objects, with each MO acting as a CMIS-
like agent for its subtree. An alternative approach would be to
separate CORBA-based MOs from CMIS-like access aspects,
with special management broker (MB) objects acting as
CMIS-like agents [16]. In this case, CMIS++ behavior can be
supported by special MBs that exhibit a CMIS + +-like IDL
interface. We have been experimenting with. CORBA-based
CMIS and CMIS + +-based MBs in the European-funded
ACTS REFORM project and also intend to report our find:
ings in the future.

Acknowledgments

This work described in this article was initially sponsored by
Hewlett Packard and involved a collaboration among the HP
Research Laboratory, Bristol, and University College London,

United Kingdom, and Politecnico di Milano, Italy. We would
like to acknowledge in particular Keith Harrison and Michele
Campriani, both of HP Research Laboratories.

This work was continued in the ACTS REFORM project
(Resource and Fault Restoration and Management for ATM),
which is partially funded by the Commission of the European
Union.

We would also like to thank the anonymous reviewers of
this article for their helpful comments. ‘

References

[1] ITU-T Rec. M.3010, “Principles for a Telecommunications Management Net-
work (TMN),” Study Group IV, Report 28, 1991,

[2] ITU-T Rec. X.701, “Information Technology =~ Open Systems Interconnection
— Systems Management Overview,” 1991.

[3] ITU-T Rec. X.710, “Information Technology — Open Systems Interconnection
— Common Management Information Service Definition,” v. 2, 1991,

[4] ITU-T Rec. X.711, “Information Technology — Open Systems Interconnection
— Common Management Information Protocol Specification,” v. 2, 1991.

[5] J. Case, M. Fedor, M. Schoffstall and J. Davin, “A Simple Network Manage-
ment Protocol,” RFC 1157, 1990.

[6] ITU-T Rec. X.720,"Information Technology — Open Systems Interconnection —
Structure of Managemenit Information -Management Information Model,” 1992.

[7] ITU-T Rec. X.722, “Information Technology — Open Systems Interconnection
— Structure of Management Information — Guidelines for the Definition of
Managed Objects,” 1992.

[8] ITU-T Rec. X.725, “Information Technology — Open Systems Interconnection —
Structure of Management Information — General Relationship Model,” 1992.

[91 G. Pavlou et al., “The OSIMIS Platform: Making OSI Management Simple,”
Infegrated Network Management IV, ed. A. Sethi, Y. Raynaud, F. Faure-Vin-
cent, Chapman & Hall, 1995, pp. 480-493.

[10] G. Pavlou, “Implementing OS! Management,” Tutorial presented at the 3rd
IFIP/IEEE Intl. Symp. Integrated Network Mgmt., San Francisco, CA, 1993;
ftp:/ /cs.udl.ac.uk/osimis/tutorial-isinm®3.ps.Z

[11]1TU-T Rec. M.3100, “Telecommunications Management Network: Generic
Network Information Model,” 1992.

[12] ITU-T Rec. G.774, “Transmission Systems — Synchronous Digital Hierarchy
{SDH} — Management Information Model for the Network Element View,” 1992.

[13] P. Abbi and S. Ceri, “CMIS++: An Extension to CMIS for Accessing
Telecommunication Databases,” Proc. 7th IFIP/IEEE Wksp. Dist, Sys.: Ops.
and Mgmt., UAquila, lialy, 1996.)

[14] A. Vassila, G. Pavlou, and G. Knight, “Active Obijects in TMN,” Infegrated
Network Management V, A. Lazar, R. Saracco, and R. Stadler, Eds., Chap-
man & Hall, 1997, pp. 139-50.

[15] OMG, “The Common Object Request Broker: Architecture and Specification
[CORBAJ,” v. 2.0, 1995.

[16] G. Pavlou, “From Protocol-based to Distributed Object based Management
Architectures,” Proc. DSOM ‘97, A, Senevirate, V. Varadarajan, and P.
Ray, Eds., 1997, pp. 25-40. .

Additional Reading

[1] ITU-T Rec. X.208, “Open Systems Interconnection —Maodel and Notation —
Specification of Abstract Syntax Notation One [ASN.1),” 1988.

[2] NMF/Open Group, JIDM Specs., “Static Mapping of GDMO/ASN.1 to
CORBA IDL,” 1995; also “Interaction Translation,” 1998

Biographies

GEORGE PAVLOU (G.Pavlou@es.surrey.ac.uk) received his Diploma in electrical
and mechanical engineering from the National Technical University of Athens,
and his MSc. and Ph.D. in computer science, both from University College Lon-
don. Over the last 10 years he has undertaken and directed research in the
areas of communications protocols, performance evaluation, distributed systems,
broadband network technologies, network management, and service engineer-
ing. He has been involved.in a number of European collaborative research pro-
jects, addressing the management of broadband networks and next-generation
telecommunication services. He has contributed to 1SO, ITU-T, NMF, OMG, and
TINA, and is the author of about 40 papers in international refereed conferences
and journals. He has contributed parts of two books on network management.
Since the beginning of 1998 he is a full professor at the Universiz of Surrey,
School of Electrical Engineering and Information Technology, where he leads the
activities of the networks research group.

ANTONIO LIOTTA received his Diploma in electronic engineefing from the University
of Pavig, ltaly, in 1994 and his MSc. in information technology from the Politecni-
co di Milano in 1995. Over the last five years he has undertaken research, first in

 the area of real-time control of autonomous mobile robots and then in the field of

computer-supported cooperative work over ATM arid ISDN networks. He is cur-
rently a Ph.D. candidate in computer science at University College London, where
he is-working on the application of mobile agent technologies to distributed net-
work management. He is collaborating with the Hewlett-Packard: Labordtories in

18

IEEE Network » September/October 1998

u

Bristol on management by delee%aﬁon and code migration, and with the ESPRIT
European project INSERT on Web-based management.

PAOLA ABBI received her Diploma in elecironic engineering from the Politecnico
di Milano in 1995. Her final year dissertation was undertaken under the aus-
pices of a European research project and concerned the study of advanced sys-
tems for database management. She subsequently obtained a scholarship from
Hewlett-Packard and was involved in a project related to telecommunications net-
work management. After that, she workecll at IBM for two years as a technical
consultant and is currently working at Hewlett Packard ltaly in the European
technical support team.

STEFANO CERI is full professor of database systems at the Dipartimento di Elet-
tronica e Informazione at the Politecnico di Milano; he was a visiting professor
at the Computer Science Department of Stanford University between 1983 and
1990. His research interests focus on extending database technology to incorpo-
rate data distribution, deductive and active rules, and object orientation, and on

. design methods for data-intensive Web sites. He is responsible for several Euro-

pean ESPRIT projects at the Politecnico di Milano, including “Web-Based Intelli-

gent Information Infrastructures.” He was associate editor of ACM Transactions

on Database Systems {1989-1992) and is currently associate editor of several
international journdls, including IEEE Transactions on Software Engineering. He
is the author of several papers in international conferences and journals and co-
author of several books, including Active Database Systems, Advanced Database
Systems, The Art and Science of Computing, and Designing Database Applica-
tions with Objects and Rules: The IDEA Methodology.

Appendix A: Syntax of a CMIS++ M_GET

get -> “M_GET {“
get_argument

ll};ll

get_argument -> argument_body
[”,ATTRLIST:” attribute_list]

argument_body -> base

[n ”

,” selection]

base ->"(BASE:”
attribute_label “=" base_managed_object_
instance”)”

selection -> “SELECTION” “:{“
“LET” selection_statement
{",” selection statement }
“RETURN” selection_statement
II)II

selection_statement->
variable name “=“ path _expression [
“where” filter] | variable name “=“
variable_name set_operator variable name

path_expression -> simple_path_expression |
structured_path_expression

simple path_expression -> variable_name[”.” path]

structured_path_expression ->
variable name”."attribute_label naviga-
tional_clause)
|variable_name”. (“attribute_label”.”path”)”
navigational_clause

path -» “(”attribute_label{”.”attribute _lalbel}”)”
navigational_clause -> level
level -> “[” single_level “]” |

“[* level_group “1” |

uyn

single_level -> positive_integer

" ”

level_group -> integer integer

variable_name -> [A-Z] [A-Za-z_0-9]*

set_operator -> UNION | INTERSECTION | DIFFERENCE

Appendix B: Syntax of the CMIP++
ObjectSelection Parameter

ObjectSelection DEFINITIONS ::=
BEGIN
IMPORTS AttributeId, CMISFilter FROM CMIP;

ObjectSelection ::= SEQUENCE OF PathExpression
PathExpression ::= SEQUENCE
{

relationships SEQUENCE OF Relationship OPTIONAL,
— non-existing or empty signifies
“contains”
relationshipNegation BOOLEAN DEFAULT FALSE,
searchlLevels SearchLevels OPTIONAL,

filter CMISFilter OPTIONAL
}
Relationship ::= AttributeId

— only ObjectInstance, SET OF ObjectlInstance,
SEQUENCE OF ObjectInstance
— attribute values are meaningful

SearchLevels ::= CHOICE
{
singlelLevel INTEGER, — >= 0
multipleLevels MultipleLevels

}

MultipleLevels ::= SEQUENCE
{
firstLevel INTEGER,

lastLevel INTEGER OPTIONAL — absence signi-
fies ”all subsequent levels”

b
END
ObjectSelection2 DEFINITIONS ::=

BEGIN
IMPORTS PathExpression FROM ObjectSelection

ObjectSelection2 ::= SEQUENCE OF PathOrSetEx-
pression
PathOrSetExpression ::= CHOICE
{

pathExpression[0] PathExpression,

setExpression [1] SetExpression
¥

SetExpression ::= CHOICE
{
union [0] IndexList,
intersection[1l] IndicesARB,
difference [2] IndicesAB

IEEE Network * September/October 1998

}
crossConnectionPack PACKAGE

Index ::= INTEGER ATTRIBUTES

— references (the product of) a position in the ATT . crossConnectionID,
PathOrSetExpression ATT from,

— the first position is 1, hence an index ATT to;

should always be >= 1 REGTSTERED AS ...;

IndexList ::= SET OF Index tpointPack PACKAGE
ATTRIBUTES
IndicesAB ::= SEQUENCE ATT tpointID;
{ REGISTERED AS ...;
a Index,
b Index trailID ATTRIBUTE
¥ WITH ATTRIBUTE SYNTAX(string);
MATCHES FOR EQUALITY;
END REGISTERED AS ...;

a_tp_instance ATTRIBUTE

Appendix C: Definition of the Fundamental

WITH ATTRIBUTE SYNTAX . (términation
Managed Objects Classes, Packages, and VATES BOR BQUALITY
Attributes Used in the SDH Scenario Example recisterep as ...;
trail MANAGED OBJECT CLASS z_tp_instance ATTRIBUTE
CHARACTERIZED BY trailPack; WITH ATTRIBUTE SYNTAX . (termination
REGISTERED AS ..; Point) ;
MATCHES FOR EQUALITY;
connection MANAGED OBJECT CLASS REGISTERED AS ...;
CHARACTERIZED BY connectionPack;
REGISTERED AS ...; serverConnectionlist ATTRIBUTE)
. WITH ATTRIBUTE SYNTAX (SEQUENCE OF
terminationPoint MANAGED OBJECT CLASS connection) ;
CHARACTERIZED BY tpointPack MATCHES FOR EQUALITY;
REGISTERED AS ...; REGISTERED AS ...;
crossConnection MANAGED OBJECT CLASS clientTrail ATTRIBUTE
CHARACTERIZED BY crossConnectionPack; WITH ATTRIBUTE SYNTAX (trail);
REGISTERED AS ...; MATCHES FOR EQUALITY;
REGISTERED AS ...;
trailPack PACKAGE
ATTRIBUTES from ATTRIBUTE
ATT traillD, WITH ATTRIBUTE SYNTAX . (termination
ATT a_tp_instance, Point) ;
ATT z_tp_instance, MATCHES FOR EQUALITY;
ATT serverConnectionlList; REGISTERED AS ...;
REGISTERED AS ...;
to ATTRIBUTE
connectionPack PACKAGE . WITH ATTRIBUTE SYNTAX . (termination

ATTRIBUTES
ATT connectionID,
ATT clientTrail;
REGISTERED AS ...;

point) ;
MATCHES FOR EQUALITY;
REGISTERED AS ...;

20

IEEE Network ¢ September/October 1998

