
In-Network Cache Management and Resource
Allocation for Information-Centric Networks

Ioannis Psaras, Member, IEEE, Wei Koong Chai, Member, IEEE, and
George Pavlou, Senior Member, IEEE

Abstract—We introduce the concept of resource management for in-network caching environments. We argue that in
Information-Centric Networking environments, deterministically caching content messages at predefined places along the
content delivery path results in unfair and inefficient content multiplexing between different content flows, as well as in significant
caching redundancy. Instead, allocating resources along the path according to content flow characteristics results in better use
of network resources and therefore, higher overall performance. The design principles of our proposed in-network caching scheme,
which we call ProbCache, target these two outcomes, namely reduction of caching redundancy and fair content flow multiplexing
along the delivery path. In particular, ProbCache approximates the caching capability of a path and caches contents probabilistically
to: 1) leave caching space for other flows sharing (part of) the same path, and 2) fairly multiplex contents in caches along the
path from the server to the client. We elaborate on the content multiplexing fairness of ProbCache and find that it sometimes behaves
in favor of content flows connected far away from the source, that is, it gives higher priority to flows travelling longer paths,
leaving little space to shorter - path flows. We introduce an enhanced version of the main algorithm that guarantees fair behavior to
all participating content flows. We evaluate the proposed schemes in both homogeneous and heterogeneous cache size
environments and formulate a framework for resource allocation in in-network caching environments. The proposed probabilistic
approach to in-network caching exhibits ideal performance both in terms of network resource utilization and in terms of resource
allocation fairness among competing content flows. Finally, and in contrast to the expected behavior, we find that the efficient
design of ProbCache results in fast convergence to caching of popular content items.

Index Terms—Information-centric networks, in-network caching, content multiplexing, Cache capacity

Ç

1 INTRODUCTION

INFORMATION- or Content-Centric Networks (ICN/CCN)
have been recently proposed as an alternative to the

traditional host-to-host communication paradigm [1], [2].
One fundamental property of ICNs is direct naming of
individual content objects, instead of their respective end-
host machines [3], [4]. In turn, request routing has to be
directly associated with content names, making routing
symmetry another property of the majority of ICN routing
approaches (i.e., forward and return paths have to be the
same).

Naming content objects and routing to those objects
directly, instead of the machines that host them, gives the
opportunity to identify contents as they travel from source
to destination [1], [2], [3]. In turn, given that the network
transfers named objects (instead of unidentifiable data
containers, i.e., IP packets), these objects can be cached in
the network and be forwarded to subsequent users interest-
ed in the same content [5], [6].

In-network caching has therefore emerged as a distinct
research field in the context of Information-Centric Networks.

In-network caching exhibits fundamental differences from
overlay Web-caching [7], [8], or hierarchical and co-
operative caching approaches [9], [10] and poses new
challenges [11], [12]. For instance, past research considered
mainly caching of whole files (with a few exceptions, [13])
as well as administration of their placement [14] and
location [15] by centralized entities, e.g., DNS and HTTP
redirection. Centralized administration of content place-
ment gives the opportunity to control and manage network
resources better at the cost of: 1) increased communication
overhead to update the content location database, and
2) reduced flexibility in terms of available cache locations.

In contrast, Information-Centric Networking enables
caching of addressable content chunks [2], [13] in any cache-
equipped network device and replacement of cached
chunks at line-speed [16], [17]. Although, this operation
increases the availability of cache locations [18], it also in-
troduces new problems. In particular, line-speed operation
renders prohibitive the process of updating logically-
centralized content location databases with the exact lo-
cation of cached contents. This operation in turn leads to
decentralized, location-independent management of con-
tents and caches, which alters many of the basic features of
past overlay caching techniques, e.g., content-to-cache allo-
cation [14], while it invalidates the applicability of some
others, e.g., content placement based on fixed overlay to-
pologies of caches and servers [15].

In this paper, we address the problem of cache man-
agement operations that have to be adjusted to fit in a com-
pletely decentralized and uncoordinated environment. We

. The authors are with the Department of Electrical and Electronic
Engineering, University College London. E-mail: {i.psaras, w.chai,
g.pavlou}@ucl.ac.uk.

Manuscript received 28 Oct. 2012; revised 19 Nov. 2013, and accepted 21
Nov. 2013. Date of publication 12 Dec. 2013; date of current version 15 Oct.
2014.
Recommended for acceptance by M.E. Acacio.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.304

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 11, NOVEMBER 20142920

focus on the allocation of the available cache capacity along a
path of caching entities among different content flows. We
consider each path of caching entities as a pool of caching
resources and try to find optimal ways of distributing con-
tent in these caches. Subsequently, our goal is to reduce
caching redundancy and make more efficient use of available
cache resources, in order to increase user-perceived quality.

To achieve our goal, we approximate the caching
capability of a given path per unit time (Section 2) and we
design ProbCache, a probabilistic algorithm for distributed
content caching and fair content multiplexing along a path
of caches (Section 3). In particular, ProbCache allocates
caching space to content flows based on the number of
hops from source to destination. That is, flows connected
close to the content source will be given priority to cache in
the available caches along their short route, over content
flows that travel further away and which have the op-
portunity to cache their contents in other nodes along the
path. Content multiplexing fairness is therefore, associated
with the amount of caching resources along a path of
caches that a specific content flow utilizes.
ProbCache was initially introduced in [19]. In the present

study, we elaborate on the content flow multiplexing fairness
of ProbCache and find that although it significantly improves
the overall network performance (e.g., in terms of cache hits),
it sometimes fails to multiplex content flows in a fair manner
(Section 4). Based on these observations, we apply modifica-
tions to the original design of ProbCache in Section 4.2. We
propose an enhanced version of the algorithm (called
ProbCacheþ) in Section 4.2, which together with our analytical
modeling constitute the main contributions of this paper.

We evaluate the performance of both versions of
ProbCache under several conditions in Section 5. We
compare ProbCache against well-known caching ap-
proaches, such as universal caching and Leave Copy
Down (LCD) [20]. Our results suggest that there is indeed
a lot of space for resource management optimization of in-
network caching policies, given that appropriate resource
allocation rules are in place (Section 5). We show that
careful content flow multiplexing in caches can achieve up
to 20 percent more cache hits in case of small scale flash
crowd events and an average of 11-13 percent under
normal conditions. This translates to an order of magnitude
reduction in terms of cache evictions, which in turn means
less computation load and longer cache times for individ-
ual contents. We define the Content Multiplexing Fairness
Index to better capture the resource allocation properties of
the protocols and show that ProbCache exhibits desirable
properties in that respect as well.

This paper includes the following companion supplemen-
tary sections, which are available in the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/10.
1109/TPDS.2013.304: 1) the extension of the basic algorithm
[19] for heterogeneous cache environments (Section 8), 2)
the analytical modeling of both the basic and the enhanced
version of the algorithm (Sections 9 and 10), 3) one extra
evaluation scenario with variable cache sizes (Section 11)
and 4) a comprehensive survey of related works in the area
(in Section 12).

We use the terms ‘‘router’’, ‘‘cache’’, and ‘‘node’’
interchangeably to refer to cache-enabled network devices
[16]; it should be noted that our approach does not require
every router to be cache-enabled, but it will work in hybrid
architectures as well. Furthermore, we refer to content
‘‘messages’’ and ‘‘chunks’’ interchangeably to refer to the
cacheable unit, which is not necessarily of similar size to an
IP packet. In fact, we leave open the actual size of the
cacheable unit which is yet to be defined by the ICN
research community. We highlight that the concepts and
algorithms proposed in this paper are cache unit- as well as
architecture-agnostic and would directly apply to those ICN
environments where symmetric routing is used, e.g., [2],
[21], while it will need slight modifications to fit to
asymmetric routing architectures, e.g., [22], [23], [24].

2 SYSTEM MODEL AND ASSUMPTIONS

We argue that in-network cache management has to take into
account the approximate cache capacity of the path of caches and
the estimated amount of traffic that these caches serve per unit
time, in order to make decisions on whether to cache incoming
contents or not. In Section 2.1, we make assumptions to
approximate the cache capacity of a given path and in
Section 2.2, we present our design principles.

2.1 Assumptions on Caching Technologies
By definition, caching is different to storage, both in
networks and in computer systems, in that caching keeps
contents stored for a specific amount of time and not
indefinitely, as in storage. Therefore, the size of a cache is
a relative factor, which cannot stand on its own, but instead
has to be linked to the amount of time that a given content is
cached for. We therefore, associate the cache size with the
traffic that the corresponding router serves per second. Our
cache size unit is the number of seconds worth of traffic cached
in a given router and depends on the speed of the outgoing
links of the router in question.

One important question then is: ‘‘For how long can we
afford to cache contents in a given router?’’. Furthermore,
given that we are concerned with paths of caches and not
with single-caches only, another important question is:
‘‘For how long do we need to cache contents in a given path in
order to minimize redundant traffic and maximize gain?’’. Our
reasoning for answering these questions is as follows:

. Today’s memory access technologies guarantee line-
speed access to DRAM or RLDRAM chips of up to
10 GBytes at a reasonable price [16]. This means that
a 5 GByte-long cache behind a 40 Gbps link can
safely be assumed to hold contents for one second
(see also Table 1) [17]. Without loss of generality, we
assume that each cache along a path has sufficient

TABLE 1
Link Speeds and Related Caching Properties

PSARAS ET AL.: IN-NETWORK CACHE MANAGEMENT FOR INFORMATION-CENTRIC NETWORKS 2921

memory to cache contents in a (RL)DRAM chip for at
least one second (see third column in Table 1).

. Authors in [6] show up to 60 percent bandwidth
savings by redundant traffic elimination within the
first 10 seconds after the original transmission, in some
enterprise networks. We associate redundant traffic,
i.e., subsequent requests for the same content, with
the aforementioned figure. That is, we consider,
without loss of generality, that any content should
be kept in any one of the path’s caches for a target
time window, Ttw, of 10 seconds.

Both the above settings are relatively arbitrary and can
change in the future, but these values are a good starting point
based on today’s technology. We note that our concepts and
algorithms presented next are still applicable should these
values change. For example, the setting for the target time
window is used here to obtain benchmark results. Larger
values for Ttw will result in contents staying in the cache for
longer, while smaller values will result in more evictions. We
briefly evaluate different values for Ttw in Section 5.2, but we
note that the setting for the target time-window depends also
on the traffic characteristics of the domain (e.g., temporal
locality characteristics of the traffic [25]) and therefore, it is up
to the ISP to set this value for its own network.

2.2 System Model
We assume the topology of Fig. 1 and consider (for
simplicity) that all network routers also have caching
capabilities. Note that the proposed scheme does not
necessarily require all routers to be caches. The decision
(of an ISP) as to which nodes to turn into cache routers
depends on several parameters, such as the topology, the
number of inter-domain links and the traffic character-
istics. Our recent study that estimates the proportion of
time that a given content stays in-cache given its relative
request rate [18] can assist on this direction.

In Fig. 1 the path from source to destination comprises n
routers, where router ri hasNi cache slots, each able to hold
one addressable content chunk (one-to-one relation of chunks
and cache slots). We assume that content chunks are of fixed
size, similarly to the fixed size of an IP packet or the MTU;
based on the discussion above, we assume that Ni slots can
hold one second worth of traffic. Our model notation is given
in Table 2. We also assume a Request-Response model of
Information-Centric Networks, where Request and Content
messages follow the same route (symmetric routing), simi-

larly to recent proposals, such as [1], [2], [21], [26]. This is a
fair assumption in general, given the name-based, location-
independent routing assumed in Information-Centric Net-
works. We introduce the following concepts:

Path Cache Capacity. The caching capacity of the path of
caches is

Pn
i¼1 Ni in terms of memory, which amounts to n

seconds worth of traffic cached along the delivery path.
Path Cache Capability. Given that our target time window

is Ttw seconds worth of traffic cached along a given path, the
caching capability of an n-hop long path, as a fraction of the

required capacity for Ttw seconds, is

Pn

i¼1
Ni

TtwN
, where N is the

average cache size along the path. We revisit the issue of
average cache size in the next section.

Path Length Monitoring. Similar to the Time To Live (TTL)
field included in IP packets, our design requires that ICN
request message headers include the Time Since Inception (TSI)
field and content message headers include both the TSI and the
Time Since Birth (TSB) fields. Every router increases the TSI
value of request packets by one. The content source attaches
the TSI value that it sees on the request message to the
content message. Every router increases the TSB value of the
content message by one, as shown in Fig. 1. Hence, during
the content message’s journey back to the client, the TSI value
in the content message is a fixed value and denotes the path-
length of this specific content flow, while the TSB value
denotes the number of hops that the content message has
travelled so far. In case of a cache hit, the TSI and TSB values
are treated as if the cache is the actual source, that is, the TSI
value of the content message is replaced by that of the Request
message, while the TSB is set to 1. Furthermore, in case of
request aggregation, TSI starts counting from the aggregation
point, that is, TSI counts as if the requesting client was
attached to the aggregation node. The rationale behind this
decision is that concurrent requests for a content reveal high
content popularity, hence, it is better to cache this content at
central nodes, such as the aggregation node or its neighbors.

3 BUILDING PROBCACHE

We approach the problem of content placement within a
system of caches from the path caching capability point of
view. In particular, each router, based on the amount of traffic
that it has to serve per unit time, indirectly approximates the
number of copies of incoming contents that the (rest of the) path
can accommodate. This value is the TimesIn factor (see
Section 3.1). Based on the TimesIn indication and on the
router’s distance from the user, which we call CacheWeight

Fig. 1. Design topology.

TABLE 2
Model Notation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 11, NOVEMBER 20142922

(see Section 3.2), each router probabilistically caches
contents as they travel along the path (see Section 3.3).
ProbCache was initially introduced in [19]. In this study we
elaborate on the behavior of the algorithm’s components
and we propose ProbCacheþ (in Section 4.2), an enhance-
ment to the original algorithm that allocates cache
resources to flows in a fairer manner. We note however,
that the main concepts introduced in this section remain
the same for both the original version of ProbCache [19] and
for its enhanced version.

3.1 Estimating the Caching Capability of a Path
Consider two users shown, in Fig. 1, five and four hops away
from the server, respectively. The total cache capacity of the
path is

Pn
i¼1 Ni, where n1 ¼ 5 for Request1 and n2 ¼ 4 for

Request2. Grey circles denote the caches that have to be shared
between the two users, while white and black circles denote
caches used exclusively by Users 1 and 2, respectively.

The number of times that the path can afford to cache
this content chunk is reflected in the TimesIn factor, whose
calculation takes place as follows:

TimesInðxÞ ¼
Pc�ðx�1Þ

i¼1 Ni

TtwNx
(1)

where c is the Time Since Inception (TSI) value and x is the
Time Since Birth (TSB) value that the router sees in the
header of the content message (Table 2). Therefore, in
Eq. (1), Nx denotes the size of cache x, TSB hops away from
the source. As an example, consider content messages
traveling through router r2 to fulfil Request1, in Fig. 1; these
messages will have TSI ¼ 5 and TSB ¼ 2, while contents
for Request2 will have TSI ¼ 4 and TSB ¼ 2. Given that the
sum in Eq. (1) is calculated in every node the content
traverses, it considers the result of the subtraction of TSI
minus TSB [or c � ðx� 1Þ in Eq. (1)], to account for the
remaining caches only, instead of the total number of caches
from the content source to the client. In Fig. 1 for example,
and for a content chunk in r3 that travels to User 1, the
TimesIn value refers to the white circles, in order to leave
the grey circles for users connected closer to the source.

3.2 Weight-Based Caching
We argue that in order to achieve fair resource (in our case
cache) allocation in a distributed environment, each
content flow has to take into account other content flows
sharing the same path (grey circles in Fig. 1). Hence, to
decide where to cache the number of copies that TimesIn
indicated, we use the Cache Weight factor

Cache WeightðxÞ ¼ x
c

(2)

where x is the TSB value of the packet header and c is the
TSI value; therefore, Cache Weight 2 ½1c ; 1�. We note that the
TSI value is fixed during the content chunk’s journey from
the source to the client, while the TSB value is increasing for
each router the chunk traverses; hence, CacheWeight! 1
as the content chunk is getting closer to its destination.
This is a desirable system property considering path-
diversity, in terms of hops, between different client/source
pairs.

3.3 ProbCache: Probabilistic In-Network Caching
ProbCache is the product of TimesIn and CacheWeight as
shown in Eq. (3). Each router along the path caches incoming
chunks according to ProbCacheðxÞ, denoted as P ðxÞ in all
equations, depending on their TSI and TSB values

P ðxÞ ¼
Pc�ðx�1Þ

i¼1 Ni

TtwNx|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
TimesIn

� x

c|{z}
CacheWeight

: (3)

The intention behind the Cache Weight factor is to increase
the probability of a content being cached closer to its
destination. This way, we expect to achieve fair content flow
multiplexing between contents that travel to different destina-
tions in terms of path length. For example, contents for User 1
in Fig. 1 should be cached inversely proportionally to User 1’s
distance from the server, i.e., in (white) routers r4, or r5, in
order to leave (grey) routers r1 � r3 for clients travelling
shorter paths to cache their contents. This is in accordance to
our previous findings in [18] that contents tend to be cached
for longer towards the edge of the network.

In Section 4, we evaluate the effect of the CacheWeight
factor in combination with TimesIn. We find that in
contrast to our expectation, ProbCache behaves unfairly
despite the effect of CacheWeight. We proceed to fix the
unfair behavior of ProbCache in Section 4.2 by modifying
CacheWeight and proposing an enhanced version of the
algorithm, which we call ProbCacheþ.

We note the following regarding the overall design of
ProbCache (which also apply to ProbCacheþ introduced
later in this paper):

1. The TimesIn factor may indicate that more than one
copies of a content chunk can be accommodated
along the content delivery path. This is especially so
in case of long-haul transmissions, where content
flows travel through many hops before they reach
their destination. Therefore, ProbCache is not
bounded to a maximum value of 1, but can take on
bigger values depending on: 1) the path-length, and
2) the target time window (TtwVsee Table 2 and
related discussion in Section 2.1). The theoretical
upper bound of ProbCache is the number of hops
from source to destination for each content flow,
that is, the extreme and rather unrealistic case where
there is enough cache capacity along the path to
keep one copy at each node the chunk is going
through. In this extreme case, the operation of
ProbCache is similar to that of universal caching.

2. To calculate the TimesIn factor each router has to
conjecture on the size of the rest of the caches on the
path. However, given that we do not know what
amount of cache each router will have, or if backbone
routers, for instance, will have bigger caches than
edge-network routers, we make the following simpli-
fying assumption. Each router assumes that all other
routers on the path have the same amount of cache as it has
got. Even in a random-size cache deployment scenario,
this assumption serves our purposes well. That is, a
router with a big cache, compared to the caches along
the path, will be caching contents with higher

PSARAS ET AL.: IN-NETWORK CACHE MANAGEMENT FOR INFORMATION-CENTRIC NETWORKS 2923

probability, while a router with a small cache will
experience the opposite effect [Eq. (1)]. This is a
desirable system property which alleviates the effect
of unknown cache sizes, but at the same time
guarantees fair load distribution among nodes with
diverse amounts of cache memory. In [19], we have
shown that although our simplifying assumption does
not harm the performance of ProbCache in heteroge-
neous cache size environments, it fails to fully exploit
extra caching resources.

3. ProbCache is a raw number that does not have a unit.
The raw number essentially represents the caching
probability of incoming content chunks. Although
Ttw is physically interpreted in terms of time (and
therefore, the formula in Eq. (3) points to 1

second for the
unit of the function), it is essentially a raw number,
which acts as a weight factor to determine the
replacement granularity of contents in the system of
caches. The smaller the value is the faster items are
replaced in caches, as discussed earlier in Section 2.1.

In [19], we have modified ProbCache for the case of
heterogeneous cache sizes along the delivery path. In
particular, we have considered three cache size settings:
homogeneous cache sizes, larger caches towards the core
and larger caches towards the edge of the network [27]. We
provide a summary of our findings in Supplementary
Section 8, where we also present the modification of
ProbCache for heterogeneous settings. We refer the reader
to that section for a more detailed presentation of these
versions of ProbCache. In the rest of the paper, we focus on
two cache size settings, namely homogeneous caches and
larger caches towards the edge and evaluate the behavior
of ProbCache based on these.

4 THEORETICAL ASSESSMENT

4.1 Analysis of Basic Functions
Our intention is to explore the behavior of ProbCache for
homogeneous cache sizes [Pc!eðxÞ, Eqs. (3) and (7)] and
heterogeneous cache sizes [Pc!EðxÞ, Eq. (9)] with regard to
its resource management and utilization properties. We are
interested in fair and efficient content flow multiplexing in
in-network caching architectures, which would in turn
increase the overall network performance.

We begin by plotting the behavior of the two versions of
ProbCache for users connected at different points along a
sample six-hop path in Fig. 2.

We observe that although fair content multiplexing was
one of the main design considerations for ProbCache [19],
and the main operational property of CacheWeight, in
reality, the path capacity calculation (TimesIn factor) has
unexpectedly high impact on the overall behaviour of the
algorithm. That is, we see that the longer the distance from
a client to the source of content, the higher the probability
this client has to cache contents along the entire path (i.e.,
even far from its attachment point and closer to the source;
nodes 1 to 4 in Fig. 2). Clearly, this behaviour leads to
unfairness in terms of resource allocation between clients.
In Fig. 3 we also plot the behaviour of ProbCache for
variable Ttw (from 5 to 20) and with constant c ¼ 6, where
we see that although the absolute values of the function
vary with different Ttw the overall trend is similar to the
default value of 10.

To verify this observation and get a deeper understand-
ing of the operational properties of the algorithm, we
elaborate on the distribution of values that the function gets
along a path of caches for clients connected at different
points along the path. We initially calculate the derivatives
of the two versions of the algorithm, in Supplementary
Section 9.1 to see at which point along the path ProbCache
gets its maximum values; we also calculate the integrals of
ProbCache in Supplementary Section 9.2 to monitor the
density distribution of the value range of ProbCache along
the delivery path. Our analysis in Supplementary Section 9.2
validates our observation in Fig. 2 that ProbCache behaves
unfairly for flows connected at different points along the
delivery path and gives more caching opportunities to flows
connected far from the content source.

Based on those findings, we proceed to investigate
further and fix the behaviour of ProbCache in the next
section; we base our analysis on the versions of the
algorithm that apply to homogeneous caches and for larger
caches towards the edge of the network.

4.2 Enhancing the Content Multiplexing Fairness
of ProbCache

Fig. 2 shows that ProbCache increases the probability of
contents being cached very early compared to the distance
of the client to the source. In contrast, according to our

Fig. 2. Behaviour of Pc!eðxÞ and Pc!EðxÞ along a six-hop delivery path. We observe that the longer a flow’s distance is from the content source, the
higher the chances it has got to cache its contents along the whole path. This is in contrast to our design considerations for fair content multiplexing.
(a) Behaviour of Pc!eðxÞ, Eq. (3). (b) Behaviour of Pc!EðxÞ, Eq. (9).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 11, NOVEMBER 20142924

design principles, the ideal algorithm would increase its
value directly proportionally to the distance of the client
from the source. That is, it would get low values when
going through the first nodes of the path and would
increase as it would get closer to its destination. To
accommodate this requirement and improve the content
multiplexing fairness of ProbCache we apply the following
modification: we raise the value of CacheWeight, xc), to the
power of c (i.e., the TSI value of the delivery path), ðxcÞ

c.
Our modified ProbCache functions, which we denote as

P 0c!eðxÞ and P 0c!EðxÞ for the homogeneous and the hetero-
geneous case, respectively are therefore, the following:

P 0c!eðxÞ ¼
Niðc � xþ 1Þ

TtwNx

x

c

� �c
¼ K1ðc � xþ 1Þ x

c

� �c
(4)

where K1 ¼ Ni

TtwNx
, and

P 0c!EðxÞ ¼
1

2

Ni

TtwNx
ðc2 � c � x2 þ 3x� 2Þ x

c

� �c
)

P 0c!EðxÞ ¼K2ðc2 � c � x2 þ 3x� 2Þ x
c

� �c
(5)

where K2 ¼ 1
2

Ni

TtwNx
.

We plot the behaviour of these enhanced versions of
ProbCache in Fig. 4. Clearly, the performance of the
algorithms is different now and much closer to what we
expected. Depending on the attachment point of the clients,
the value of the algorithm adjusts accordingly, in order to
leave resources closer to the source of the content for clients
travelling shorter paths. In Fig. 5, we plot the behaviour of

the enhanced version of ProbCache for variable values of
Ttw and constant c ¼ 6. We see, similarly to Fig. 3, that the
function behaves as desired for different values of Ttw,
although the absolute value of the function varies, as also
discussed in Section 2.1. In Supplementary Section 10 of the
Supplementary file, we repeat the methodology followed
before to verify our initial observations. We initially
calculate the derivatives of both versions of the enhanced
algorithm; we equal the derivatives to zero to find the
maximum values of P 0c!eðxÞ and P 0c!EðxÞ, which we plot in
Fig. 12; finally, we calculate and plot the integrals to
evaluate the density distribution of the enhanced version of
ProbCache.

4.3 Summary of Theoretical Analysis and Findings
We have elaborated on the performance of the original
version of ProbCache [19] and found that it favors content
flows that connect far from the content source, over content
flows that travel shorter distances (Fig. 2). We verified this
observation by capturing the value density distribution of
the basic equations of the algorithm, where we saw that
longer content flows (in terms of hops from source) behave
more aggressively and therefore, attempt to occupy
resources along the entire delivery path. Based on these
findings, we have modified the formula of ProbCache in
order for its value density distribution to evolve according
to path lengths (Fig. 4). Our theoretical findings show that
the new version of ProbCache [which we denote from now
on as ProbCacheþ and is given in Eqs. (4) and (5)] is indeed

Fig. 4. Behaviour of P 0c!eðxÞ and P 0c!EðxÞ along a six-hop delivery path. The modified CacheWeight factor [Eqs. (4) and (5)] results in caching
probability directly proportional to the node’s distance from the source. This is in accordance to our initial design principles. (a) Behaviour of P 0c!eðxÞ,
Eq. (4). (b) Behaviour of P 0c!EðxÞ, Eq. (5).

Fig. 3. Behaviour of Pc!eðxÞ and Pc!EðxÞ along a six-hop delivery path with variable Ttw for c ¼ 6. (a) Behaviour of Pc!eðxÞ with variable Ttw, Eqs. (3)
and (7). (b) Behaviour of Pc!EðxÞ with variable Ttw, Eq. (9).

PSARAS ET AL.: IN-NETWORK CACHE MANAGEMENT FOR INFORMATION-CENTRIC NETWORKS 2925

more fair in terms of resource allocation and content flow
multiplexing along a path of in-network caches.

5 PERFORMANCE EVALUATION

5.1 Simulation Environment and Setup
We test our algorithm in a custom-built simulator, where
we use Least Recently Used (LRU) caches. Given that the
ultimate goal of ProbCache is to manage caching resources
more efficiently, by reducing caching redundancy, the
straightforward metric of interest is the reduction of Server
Hits. Furthermore, the gain from serving user requests
from intermediate caches, instead of travelling to the origin
server, depends on the number of hops that the request
travels before it eventually hits cached contents. Clearly, as
the number of hops increases, the overall gain decreases.
To measure this gain, we also monitor the Hop Reduction
Ratio. Our simulator, which we also make publicly
available in [28], is an event-based simulator, hence, all
metrics are explicitly measured at the end of the simula-
tion. Cache Hits achieved by all nodes are summed up,
while the Hop Reduction Ratio is summing the distance (in
terms of hops) to the nodes where hits have happened over
the sum of the distance to the origin server.

Apart from the above well-known metrics, which have
been widely used in caching research in the past, we also
introduce one extra metric in order to capture the resource
management and content flow multiplexing properties of in-
network caching algorithms. We call this metric Content
Multiplexing Fairness Index (CMFI) and we define it as the
amount of caching resources that the algorithm under consideration
has left unused in order for other content flows to exploit over the
total amount of cache resources available along the entire delivery
path. The formula according to which the CMFI index is
calculated is given below in Eq. (6) for the homogeneous and
heterogeneous cache deployment cases, respectively

CMFIc!e ¼
Px

1 NiPc
1 Ni
¼ xNi

cNi
¼ x
c

CMFIc!E ¼
Px

1 iNiPc
1 iNi

¼ xðxþ 1Þ
cðc þ 1Þ : (6)

The rationale behind the design of CMFI is as follows:
considering that a relatively realistic representation of the
Internet topology comprises of fewer nodes at the core,

which then fan out to more leaf/edge routers that finally
reach out to residential connections, the CMFI index
considers fairer to cache towards the edge of the network,
rather than in the busy core. Therefore, the index gets
bigger values for algorithms that tend to cache towards the
edges of the network.

Although someone may argue that by caching contents
at the edge of a delivery path implicitly restricts access to
those contents by clients connected further up towards the
source, we consider that increased demand for content
from across the delivery path will minimize the effect of
this argument.

Furthermore, we highlight the following important
property of the index introduced here: CMFI is not a
flow-oriented metric, but rather a content-oriented one. It
targets multiplexing of contents (and not of flows) in caches.
That said, an algorithm that does not cache any content in
any cache is 100 percent fair (when compared to itself), as it
leaves space for other contents to be cached/this is similar
to a transport protocol that forces all flows to consume a
tiny portion of the available bandwidth, which is fair, but
still rather inefficient. The related flow whose contents are
not cached is not treated unfairly, as contents will be
delivered to this flow anyway. Unfairness here comes in
terms of the content, rather than the respective flow i.e., the
content will not be available in the cache network for
potential future requests.

We use scale-free topologies following the Barabasi-
Albert model [29], where nodes follow power-law degree
distribution to reflect realistic Internet topologies. We use a
benchmark topology of 200 nodes, but we note that results
remain qualitatively similar in larger topologies of up to
700 nodes.

We set the exponent of the Zipf distribution of content
popularity ðaÞ to 1.2 to capture the case of medium-
popularity content [30], while requests are generated
following Poisson distribution. Again, content popularity
affects the results in a quantitative way, as can also be
verified from the results presented in our previous study in
[19], where we have set Zipf a ¼ 0:8. That is, although
higher popularity (i.e., exponent of Zipf distribution)
results in higher performance for caching algorithms, this
improvement is similar for all algorithms tested. Hence,
qualitatively, the results follow similar trends for expo-
nents between 0.5-1.5. As we show later in this section,

Fig. 5. Behaviour of P 0c!eðxÞ and P 0c!EðxÞ along a six-hop delivery path with variable Ttw and c ¼ 6. (a) Behaviour of P 0c!eðxÞ, Eq. (4). (b) Behaviour of
P 0c!EðxÞ, Eq. (5).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 11, NOVEMBER 20142926

when popularity exceeds a certain threshold and causes
small-scale flash-crowd events, then performance is affected
more drastically. We discuss such issues in Section 5.3.

The experiments run until 100,000 content requests have
been successfully completed. We use two content servers,
which are connected at two different nodes in the core of
the network, that is, at the most well-connected part of our
topology. This placement of servers was done on purpose
in order to: 1) reflect a relatively realistic network
topology,1 and 2) avoid overwhelming isolated nodes (by
attaching busy servers next to them), as this would
(negatively) impact the behaviour of some of the protocols,
as discussed further later on. We set the cache-to-catalogue
size ratio to 0,0001-0,001 percent and as discussed before,
we set the default cache size to be one second worth of
traffic transmitted through the incoming link at each
router.

We compare the following caching strategies:

1. universal, or ubiquitous caching, a scheme that we
call Cache Everything Everywhere ðCE2Þ (and was
implicitly supported in [2]);

2. the Leave Copy Down (LCD) [20] algorithm proposed
in the past for overlay caching topologies. Accord-
ing to LCD, cache hits cause contents to be copied
one hop closer to the user, or one level down the
cache hierarchy;

3. the Leave Copy Edge (LCEd) algorithm. LCEd caches
contents deterministically one-hop before the client.
According to the main design principle of
ProbCache, contents should be cached closer to their
destination with higher probability, in order to leave
caching space at the core of the network for shorter
content flows. Therefore, one might contend that a
simpler algorithm that caches contents at the very
edge of every content-flow path might achieve
similar results. We, therefore, include LCEd in our
performance evaluation for completeness;

4. the original version of ProbCache, Eq. (3), [19];
5. the enhanced version of ProbCache [Eqs. (4) and (5)],

which we introduced in the present study.

We note that in [19] we have evaluated the performance
of ProbCache against simpler approaches to in-network
caching, e.g., with probabilistic algorithms that cache with
probability p ¼ 0:7 and p ¼ 0:3 at every cache. Our
evaluation showed that such algorithms perform similarly
to LCD, hence, we omit further comparison against such
approaches in the present study. Modulo caching [31], an
algorithm proposed in the past in the area of active
networks, caches contents along the path according to a
modulo calculation. This results in caching content mes-
sages every few hops along the delivery path. Although
this approach might seem close to our design, we highlight
that it follows a resource-management-agnostic approach
and therefore, performs similarly to LCD or the fixed
probability algorithms evaluated in [19]. For this reason,
we have chosen not to include modlulo-caching [31] in our
evaluations in this paper.

We present three evaluation scenaria, which capture
the most important aspects of the behaviour of the
above-mentioned caching protocols. In the first scenario
(Section 5.2), we test the performance of the algorithm in
an homogeneous cache-size environment, where all nodes
in the network cache traffic for one second. In the second
scenario (Section 5.3), we assess the performance of the
caching protocols with regard to their convergence prop-
erties to popular content, that is, how fast are the protocols
getting aware of a content that is becoming popular in
order to keep copies of it in several caches. Finally, in our
last evaluation scenario, which is presented in Supplemen-
tary Section 11 we use heterogeneous caches along the
paths and in particular, we assume larger caches towards
the edges of the network.

5.2 Scenario 1: Homogeneous Cache Environment
We evaluate the performance of the five caching strategies
in a homogeneous cache-size deployment in the 200-node
topology. In Fig. 6, we present the Server Hits performance
of the five protocols. We see that ProbCache outperforms
the rest of the protocols by approximately 4-5 percent,
while ProbCacheþ reduces the number of Server Hits by an
additional 5.5 percent compared to the original ProbCache
algorithm. This means an overall performance difference of
approximately 10-11 percent for ProbCacheþ compared to
CE2, LCD and LCEd, which perform largely the same.

In the same Figure we also evaluate the performance of
both ProbCache and ProbCacheþ for different values of
Ttw ¼ ½1; 5; 10; 20� (default value is 10). The results are
presented in terms of errorbars in the lineplots of
ProbCache and ProbCacheþ. In particular, the errorbars
above the lineplots depict the performance of the protocols
when Ttw ¼ 1, while the errorbars below the lineplots show
the performance when Ttw ¼ 5. For Ttw ¼ 20 the perfor-
mance is identical to the default setting. These results
reveal the following based on the specific settings of this
experiment: 1) Small values of Ttw (equal to 1 in our case)
result in many cache evictions and degrade the overall
performance. 2) Large values of Ttw (equal to 20 here) do not
affect the performance, as the caching probability is very
similar to the default setting. 3) Ttw ¼ 5 seems to achieve
better performance than the default setting, especially for the
original version of ProbCache [19]. 4) ProbCacheþ seems to

Fig. 6. Scenario 1: Server hit performance, set of simulations applying
increasing amount of cache in each experiment.

1. Although content sources and big content providers are not
necessarily placed in tier-1 domains, most CDNs are placed towards
the core of the network from the view-point of the clients.

PSARAS ET AL.: IN-NETWORK CACHE MANAGEMENT FOR INFORMATION-CENTRIC NETWORKS 2927

be less affected by the setting ofTtw thanProbCache. Although
interesting, we stress that these observations regarding
different values of Ttw should not be considered as conclusive
statements for every network setup. Further investigation
and experimentation is needed before general conclusions
can be drawn.

To get a better understanding of the performance of the
protocols, we trace the per-hop Cache Hits and Cache
Evictions of the protocols along a random 6-hop path in our
topology. The results are presented in Fig. 7. Figure 7a
depicts the overall cache hit behaviour of the protocols,
while Fig. 7b focuses on cache evictions. For example, we
see in Fig. 7b that LCD, in line with its core design
principles, is pretty aggressive in evicting contents from
caches close to the source of the content. In contrast, as we
move away from the source LCD is becoming less
aggressive. This behaviour results in more hits (and more
evictions) at the core of the network (i.e., close to the server)
and less towards the edges. These hits, however, are not
enough in order to guarantee satisfactory overall perfor-
mance as shown in Fig. 6. On the contrary, LCEd caches
always at the edge of the path and hence, results in more
aggressive behaviour (and therefore, more evictions) at the
edges of the network. Both algorithms, however, always
cache at least one copy of the content along the path an
action that might not always be affordable, given the
limited caching resources available. Furthermore, LCD and
LCEd cache at fixed and predefined places along the path,
resulting in poor resource management and content
distribution in the pool of available caching space.

The sophisticated resource management approach of
ProbCache and ProbCacheþ clearly makes better use of
available resources as shown in Figs. 7a and 7b. We see a
clear difference between the cache evictions of the two
versions of ProbCache and the rest of the protocols

(Fig. 7b). The resource management framework proposed
here and integrated in both versions of the protocol
caches incoming content chunks according to the resource
availability along the path. This means that not all content
chunks that traverse a path get necessarily cached in one
of the router-caches, but instead, some chunks might not
get cached at all.

Elaborating on the performance of the two versions of
ProbCache, we observe the following. The original version
of ProbCache [19], due to its slightly unfair content flow
multiplexing behaviour (also shown in Figs. 2a and 2b)
tends to cache contents half-way through the path from
source to destination. This is clear from Fig. 7b, where
nodes 2, 3, and 4 are forced to evict the highest number of
chunks. Although this does not necessarily translate to less
cache hits, as shown in Fig. 7a for nodes 2, 3, and 4, it does
impact the overall performance of the protocol (see Fig. 6).
In contrast, the enhanced version of the algorithm (see (4)
and (5) and Fig. 4 in Section 4.2), which targets more fair
resource allocation along the path achieves less evictions in
all nodes along the path, as shown in Fig. 7b. This verifies
our claims in the previous Section and in Supplementary
Section 10, where we presented the density distribution of
the algorithm (see Fig. 13 of the Supplementary sections),
as well as the local maxima distribution (see Fig. 12 of the
Supplementary sections), where both plots fall within the
fair content distribution area (grey area in Figs. 12 and 13 of
the Supplementary sections).

As a final step to verify our theoretical findings regarding
the multiplexing behaviour of the two versions of
ProbCache, we plot the Content Multiplexing Fairness Index
(CMFI) introduced earlier. The result is shown in Fig. 8.

We see that the design principle of LCD to gradually
move contents down the cache-path towards the edge of
the network results in low content multiplexing capability.
In contrast, LCEd, by caching contents only at the edges of
the network, leaves caching space for other content-flows.
However, the deterministic nature of LCEd results in lower
overall performance (e.g., in terms of server hits) as we
have shown in Fig. 6. Finally, the original version of
ProbCache shows little potential for fair content multi-
plexing, in contrast to our original design goals and in
accordance to our findings in Section 4. ProbCacheþ on the
other hand, exhibits ideal content multiplexing perfor-
mance, by caching contents according to their path lengths,
but also according to the path cache capability. These

Fig. 8. Scenario 1: Content Multiplexing Fairness Index [CMFI, see
Eq. (6)].

Fig. 7. Scenario 1: Cache hits and cache evictions along one delivery
path. (a) Per hop cache hits. (b) Per hop cache evictions.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 11, NOVEMBER 20142928

results verify the theoretical analysis of the two versions of
ProbCache in the previous Section.

5.3 Scenario 2: Caching Convergence to Popular
Content

In this scenario, we test the performance of the caching
protocols with regard to their convergence time in case of
emerging popular content. That is, we consider that after
the 1000th second of the simulation, a previously unpop-
ular content, which we refer to as the Content of Interest or
CoI, becomes popular and constantly receives 5 percent of
the total requests generated per second. We use the same
200-node topology and the homogeneous cache size setup
to capture the behaviour of the algorithms in the basic
setting. We note that the proposed algorithms are inher-
ently popularity-agnostic. The results are summarized in
Figs. 9 and 10.

In Fig. 9, we see significant performance differences
between ProbCache, ProbCacheþ, CE2 (which perform
roughly the same) and LCD, LCEd, both in terms of Server
Hit ratio (which now is very close to 20 percent, Fig. 9a) and
in terms of Hop Reduction Ratio (which is approximately
10 percent, Fig. 9b). In particular, LCD and LCEd being
deterministic algorithms that cache one copy of every
content in specific points along the content delivery path
fail to exploit the popularity of the CoI. This owes to the fact
that the deterministic nature of caching in these cases
results in contents (and particularly the CoI) being evicted
from the cache before it receives further requests. CE2,
which also caches deterministically, escapes (to a certain
extend) this behaviour due to its inherent caching redun-
dancy feature.

Although someone might expect that caching contents
probabilistically might result in slow convergence and

therefore, reduced performance, both versions of
ProbCache invalidate this claim. The sophisticated design
of ProbCache (and ProbCacheþ) bases its probabilistic
caching behaviour on the amount of traffic served by the
router per unit time and not based on arbitrary assumptions
regarding the server catalogue size. Having said that,
ProbCache is essentially choosing contents from a small
range of incoming traffic (see Eqs. 7, 8, and 9 in Section 9).
This feature of the proposed algorithm reduces the caching
redundancy and increases the number of contents cached
along the entire path. Therefore, although popular content
might not get immediately cached in all routers along the
path, it still gets cached at one point along the delivery path
and therefore avoids being fetched from the origin server.

To prove our claims further, we plot the number of caches
that hold the CoI in Fig. 10a and the hit-miss ratio in Fig. 10b
as the experiment progresses. In Fig. 10a, we observe that
indeed CE2 populates the caches faster with the CoI
compared to ProbCache and ProbCacheþ, but this differ-
ence is in the order of 120 to 150 seconds, as can be seen in
the beginning of the experiment from the 1050th to the
1200th second. In the long term, however, we see that CE2

evicts the CoI faster than new requests come in and
therefore results in less cache hits. This is shown in
Fig. 10b, where although for the interval between the
1050th and the 1200th second CE2 has higher hit-miss ratio,
after the 1200th ProbCacheþ is performing better. With
regard to LCD and LCEd, we see in Fig. 10 that the
deterministic approach to content caching results in very
poor performance in terms of convergence to caching of
popular content. This behaviour is due to high contention
for caching slots in the fixed places where these algorithms
cache contents. In turn, this results in evicting the CoI faster
than new requests come in.

Fig. 10. Scenario 2: Caching convergence to popular content. (a) Number
of caches holding CoI. (b) Hit-miss ratio.

Fig. 9. Scenario 2: Caching convergence to popular content/Set of
simulations applying increasing amount of cache in each experiment.
(a) Server hits. (b) Hop reduction ratio.

PSARAS ET AL.: IN-NETWORK CACHE MANAGEMENT FOR INFORMATION-CENTRIC NETWORKS 2929

6 SUMMARY AND CONCLUSION

We have argued that caching named chunks in network
routers’ DRAM memory, as opposed to caching large
objects or files in proxy disks, calls for reconsideration of
past approaches to caching. In-network caching in ICNs
has to happen in an uncoordinated and distributed fashion,
taking also into account the available cache resources. We
have therefore, introduced the concept of resource manage-
ment for in-network caching environments and have
argued that indiscriminate and/or deterministic caching
presents little potential for efficient resource utilization.

We have proposed ProbCache, an algorithm that
approximates the capability of paths to cache contents,
based on path lengths, and multiplexes content flows
accordingly. The ultimate goal of ProbCache is to utilize
resources efficiently, reduce caching redundancy and in turn,
network traffic redundancy. We have considered both
homogeneous and heterogeneous cache sizes and have
adjusted ProbCache to fit in both environments.

Although the calculation of the value of ProbCache
introduces extra computation complexity, we report sav-
ings of up to 20 percent in server hits; 7-8 percent in the
number of hops to hit cached contents; and reduction by an
order of magnitude in cache evictions. We argue that the
reduction of cache evictions counter-balances the extra
computation cost of ProbCache.

Several issues in our design warranty further investiga-
tion. For example, our formula can be adjusted to enforce
caching towards the edge of a domain and before an
expensive transit link. Furthermore, in this study, we have
not considered selective caching in terms of content
importance. Given the long tail distribution of Internet
traffic, as well as temporal locality characteristics, we
consider that only a subset of contents are worth caching
inside the network. Content identification policies can be
based on expected content popularity, which can be driven
by SLA agreements between content providers, CDNs and
ISPs. We hope that our study will trigger further research
as the ICN research field matures.

Finally, security and billing issues constitute major
open issues in the area of ICN. Clearly, by scattering
contents along the content delivery path, ProbCache
avoids both cache polution and sniffing attacks [32]. This
is because the attackers are not able to locate the exact
cache where sequences of chunks of the same content
might be cached. As regards billing issues between ISPs
and CDNs, we believe that the target time window value
ðTtwÞ of ProbCache, together with our previous modeling
work on the proportion of time that a given content stays
in the network’s caches [18] can assist in the design of a
billing framework for ICN. We leave those topics as
directions for future work.

REFERENCES

[1] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, K.H. Kim,
S. Shenker, and I. Stoica, ‘‘A Data-Oriented (and Beyond)
Network Architecture,’’ in Proc. SIGCOMM, 2007, pp. 181-192.

[2] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs,
and R.L. Braynard, ‘‘Networking Named Content,’’ in Proc. ACM
CoNEXT, 2009, pp. 1-12.

[3] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker,
‘‘Naming in Content-Oriented Architectures,’’ in Proc. ACM
SIGCOMM ICN Workshop, 2011, pp. 1-6.

[4] A. Detti, M. Pomposini, N. Blefari-Melazzi, and S. Salsano,
‘‘Supporting the Web with an Information Centric Network that
Routes by Name,’’ Comput. Netw., pp. 3705-3722, Aug. 2012.

[5] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker,
‘‘Packet Caches on Routers: The Implications of Universal
Redundant Traffic Elimination,’’ in Proc. ACM SIGCOMM,
2008, pp. 219-230.

[6] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee,
‘‘Redundancy in Network Traffic: Findings and Implications,’’
in Proc. SIGMETRICS, 2009, pp. 37-48.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, ‘‘Web
Caching and Zipf-Like Distributions: Evidence and Implica-
tions,’’ in Proc. INFOCOM, 1999, pp. 126-134.

[8] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, ‘‘Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,’’ IEEE/ACM
Trans. Netw., vol. 8, pp. 281-293, June 2000.

[9] H. Che, Z. Wang, and Y. Tung, ‘‘Analysis and Design of
Hierarchical Web Caching Systems,’’ in Proc. IEEE INFOCOM,
2001, pp. 1416-1424.

[10] N. Fujita, Y. Ishikawa, A. Iwata, and R. Izmailov, ‘‘Coarse-Grain
Replica Management Strategies for Dynamic Replication of Web
Contents,’’ Comput. Netw., vol. 45, no. 1, pp. 19-34, 2004.

[11] L. Muscariello, G. Carofiglio, and M. Gallo, ‘‘Bandwidth and
Storage Sharing Performance in Information Centric Network-
ing,’’ in ACM SIGCOMM ICN Workshop, 2011, pp. 26-31.

[12] U. Lee, I. Rimac, and V. Hilt, ‘‘Greening the Internet with Content-
Centric Networking,’’ in Proc. eEnergy, 2010, pp. 179-182.

[13] E.J. Rosensweig and J. Kurose, ‘‘Breadcrumbs: Efficient, Best-
Effort Content Location in Cache Networks,’’ in Proc. INFOCOM,
2009, pp. 2631-2635.

[14] A.A. Jiang and J. Bruck, ‘‘Optimal Content Placement for En-
Route Web Caching,’’ in Proc.IEEE NCA, 2003, pp. 9-16.

[15] P. Krishnan, D. Raz, and Y. Shavitt, ‘‘The Cache Location
Problem,’’ IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 568-582, 2000.

[16] S. Arianfar, P. Nikander, and J. Ott, ‘‘On Content-Centric Router
Design and Implications,’’ in Proc. ReArch Workshop, 2010, pp. 1-6.

[17] M. Varvello, D. Perino, and J. Esteban, ‘‘Caesar: A Content
Router for High Speed Forwarding,’’ in Proc. SIGCOMM ICN
Workshop, 2012, pp. 73-78. [Online]. Available: http://doi.acm.
org/10.1145/2342488.2342505.

[18] I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou,
‘‘Modelling and Evaluation of CCN-Caching Trees,’’ in Proc. IFIP
Netw., 2011, pp. 78-91.

[19] I. Psaras, W.K. Chai, and G. Pavlou, ‘‘Probabilistic in-Network
Caching for Information-Centric Networks,’’ in Proc. 2nd ACM
SIGCOMM ICN Workshop, Aug. 2012, pp. 55-60.

[20] N. Laoutaris, H. Che, and I. Stavrakakis, ‘‘The LCD Intercon-
nection of LRU Caches and its Analysis,’’ Performance Eval.,
vol. 63, no. 7, pp. 609-634, July 2006.

[21] W.K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G.G. de Blas,
F.J. Ramon-Salguero, L. Liang, S. Spirou, A. Beben, and
E. Hadjioannou, ‘‘Curling: Content-Ubiquitous Resolution and
Delivery Infrastructure for Next-Generation Services,’’ IEEE
Commun. Mag., vol. 49, no. 3, pp. 112-120, Mar. 2011.

[22] P. Jokela, A. Zahemszky, C.E. Rothenberg, S. Arianfar, and
P. Nikander, ‘‘LIPSIN: Line Speed Publish/Subscribe Inter-
Networking,’’ in Proc. SIGCOMM, 2009, pp. 195-206.

[23] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V. Siris, and
G. Polyzos, ‘‘Caching and Mobility Support in a Publish-
Subscribe Internet Architecture,’’ IEEE Commun. Mag., vol. 50,
no. 7, pp. 52-58, July 2012.

[24] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, ‘‘Network of Information (NetInf) an Information-
Centric Networking Architecture,’’ Comput. Commun., vol. 36,
no. 7, pp. 721-735, Apr. 2013.

[25] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feldmann,
‘‘Improving Content Delivery Using Provider-Aided Distance
Information,’’ in Proc. 10th ACM SIGCOMM IMC, 2010, pp. 22-34.

[26] K. Katsaros, G. Xylomenos, and G.C. Polyzos, ‘‘Multicache: An
Overlay Architecture for Information-Centric Networking,’’
Comput. Netw., vol. 55, no. 4, pp. 936-947, 2011.

[27] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, ‘‘Optimal Cache
Allocation for Content-Centric Networking,’’ in Proc. ICNP, 2013,
pp. 1-10.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 11, NOVEMBER 20142930

[28] Icarus: A Simulator for icn Cache Networks 2013. [Online].
Available: http://www.ee.ucl.ac.uk/lsaino/software/icarus.

[29] A.L. Barabasi and R. Albert, ‘‘Emergence of Scaling in Random
Networks,’’ Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999.

[30] D. Rossi and G. Rossini, ‘‘Caching Performance of Content
Centric Networks Under Multi-Path Routing,’’ Telecom Paris-
Tech, Paris, France, Tech. Rep., 2011.

[31] S. Bhattacharjee, K.L. Calvert, and E.W. Zegura, ‘‘Self-
Organising Wide-Area Network Caches,’’ in Proc. IEEE INFOCOM,
1998, pp. 600-608.

[32] T. Lauinger, N. Laoutaris, P. Rodriguez, T. Strufe, E. Biersack, and
E. Kirda, ‘‘Privacy Risks in Named Data Networking: What is the
Cost of Performance?’’ Proc. SIGCOMM CCR, 2012, vol. 42,
pp. 54-57.

Ioannis Psaras received a diploma in Electrical
and Computer Engineering from Democritus
University of Thrace, Greece in 2004, and the
PhD degree from the same institute in 2008. He
won the Ericsson Award of Excellence in
Telecommunications for his diploma dissertation
in 2004. Ioannis has worked, as a research
intern at DoCoMo Eurolabs (May-September
2005) and at Ericsson Eurolab (May-September
2006). His research interests are in the areas of
Congestion/Flow Control, Transport-layer Proto-

cols, Information-Centric Networks, Delay-/Disruption-Tolerant Net-
works (DTNs), User-Provided and User-Centric Networks. He is
currently working as senior research associate at the Electronic and
Electrical Engineering Department of University College London (UCL).
Further information on current and previous research projects he has
been involved in can be found at http://www.ee.ucl.ac.uk/~uceeips/. He
is a member of the IEEE.

Wei Koong Chai was awarded the BEng degree
in Electrical Engineering from the Universiti
Teknologi Malaysia, Malaysia in 2000 and both
the MSc (Distinction) and the PhD degrees from
University of Surrey, UK, in 2002 and 2008,
respectively. He is currently a senior research
associate at the Department of Electronic and
Electrical Engineering, University College Lon-
don, UK. His research spans across heteroge-
neous networks including wired/wireless
networks and cyber physical systems such as

smart grid. His current research interests include information-centric
networking (ICN), smart grid communication, quality of service (QoS),
resource management (e.g., for satellite networks and wireless mesh
networks), cross-layer design (specifically on interaction of protocols at
different layers), traffic engineering and network optimization. He is a
member of the IEEE.

George Pavlou is Professor of Communication
Networks in the Department of Electronic and
Electrical Engineering, University College Lon-
don, UK where he coordinates research activi-
ties in networking and network management. He
received a Diploma in Engineering from the
National Technical University of Athens, Greece
and MSc and PhD degrees in Computer Science
from University College London, UK. His re-
search interests focus on networking and net-
work management, including aspects such as

traffic engineering, quality of service management, policy-based
systems, autonomic networking, information-centric networking and
software-defined networks. He has been instrumental in a number of
European and UK research projects that produced significant results
with real-world uptake and has contributed to standardization activities
in ISO, ITU-T and IETF. He has been the technical program chair of
several conferences and in 2011 he received the Daniel Stokesbury
award for ‘‘distinguished technical contribution to the growth of the
network management field’’. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PSARAS ET AL.: IN-NETWORK CACHE MANAGEMENT FOR INFORMATION-CENTRIC NETWORKS 2931

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

