
INTRODUCTION

In future ubiquitous communication environ-
ments, heterogeneous devices will be able to get
together and form a network spontaneously on-
demand. This is the “anyone, anywhere, any-
time” paradigm of intelligent overlay community
establishment that uses mobile ad hoc network-
ing (MANET) as the basic underlying technolo-
gy. Each element that becomes part of such an
on-demand network does not necessarily belong
to a standalone MANET; instead, it may be a
fixed or mobile element that may also belong to
other networks at the same time (e.g., Ethernet,
WLAN, GSM, 3G/4G, etc.), but it becomes part
of a new network in order to accomplish a par-
ticular task. This type of ubiquitous communica-
tion environment is one where applications and
services are not deployed onto a preexisting net-
work, but instead the network itself grows out of

the applications and services the users want.
This approach enables users to view the network
in the manner most appropriate to them and
their requirements. An expected result of this
“autonomic” approach is the ease with which
larger, more complex services can be composed
from smaller ones. Relevant mechanisms can
thus be rapidly deployed in such an on-demand
network, enabling new applications in diverse
areas such as smart homes and offices, distribut-
ed robotics, sensor networks, smart battlefield,
disaster relief, and so forth. This requires mech-
anisms for distributed service and resource dis-
covery, self/context awareness, self-organization,
and self-management in general. This article,
however, deals with the issue of discovering suit-
able devices that are going to become part of the
on-demand service-centric network.

In this process, a distributed application is
represented as a task which is composed of mul-
tiple smaller and less-complex subtasks that need
to be performed on various, potentially hetero-
geneous, computing elements [1]. For any ser-
vice discovery mechanism to work, the
dependencies induced by logical patterns of data
flow among different elements need to be known
in advance. Hence, it is advantageous to repre-
sent such dependencies of a given application as
an abstract task graph (TG). Given that in a
ubiquitous environment there may exist several
devices that can participate in the execution of
subtasks, the service discovery mechanism should
be intelligent and robust enough to identify the
most suitable devices/elements, depending on
the current context. However, in this preliminary
work we address the discovery of all the relevant
devices/elements, even if some of these may not
necessarily be the most optimal for the current
context.

Given that relevant devices/elements may be
mobile, a distributed service discovery mecha-
nism is preferable to a centralized one for relia-
bility and robustness. Service discovery
mechanisms can be classified according to one

IEEE Communications Magazine • September 2006106 0163-6804/06/$20.00 © 2006 IEEE

ADVANCES IN
SERVICE PLATFORM TECHNOLOGIES FOR
NEXT-GENERATION MOBILE SYSTEMS

Siva Sivavakeesar, Oscar F. Gonzalez, and George Pavlou, University of Surrey, UK

ABSTRACT

Past communication and computing trends
are inadequate to deal with today’s complex, dis-
tributed, and diverse network environments.
With the recent development of small-size teth-
erless communication/computing devices and the
increasing diversity in their capabilities, auto-
nomic ubiquitous communication environments
are emerging. In such environments, the execu-
tion of a complex task does not necessarily make
use of prconfigured devices or networks, but
requires instead the selection of suitable com-
puting elements on-the-fly, based on the task
requirements and device characteristics (i.e., net-
working-on-demand or task-centric networking).
Research is currently being carried out in vari-
ous dimensions in this emerging domain, includ-
ing, among other approaches for context
awareness, service discovery and self-manage-
ment. In this article we concentrate on propos-
ing a distributed mechanism for discovering
suitable service elements on-the-fly.

Service Discovery Strategies in
Ubiquitous Communication
Environments

SIVAVAKEESAR LAYOUT 8/21/06 1:38 PM Page 106

IEEE Communications Magazine • September 2006 107

key property, in a similar fashion to MANET
routing protocols. This property characterizes
the way in which clients acquire server details.
Three different policies can be adopted by any
distributed service discovery mechanism: proac-
tive , reactive , and hybrid . The proactive
approach relies on periodic dissemination of
service information in order to maintain consis-
tent, accurate information regarding the ser-
vices provided throughout the ubiquitous
environment. The reactive approach, on the
other hand, attempts to make the service dis-
covery process more efficient by passing on-
demand information regarding the required
service(s) to the requesting devices. Since both
schemes have their pros and cons, a hybrid
mechanism tries to strike a right balance
between these two extreme approaches.

In this article we propose and experimental-
ly evaluate two different service discovery
strategies. The first reactive strategy relies on
flooding, and despite the fact the adoption of
promiscuous listening reduces the flooding
effect, its scope is limited to small-scale ubiqui-
tous environments. On the other hand, the sec-
ond strategy uses unicasting as opposed to
arbitrary flooding and as such it is highly suit-
able for large-scale environments. We evaluat-
ed both approaches thoroughly using
simulations. We also implemented and tested
the first one in our experimental testbed, using
as case studies an online gaming application
and a cyber-foraging application. In the case of
online gaming, the purpose is to identify suit-
able partners in order to play a given game in
the ubiquitous environment — in this respect
the users provide a “gaming service.” We chose
a simple Tic-Tac-Toe game and, in this case,
the service discovery mechanism identifies
interested players; Fig. 1 depicts a screen shot
taken in the middle of the game. The purpose
of the second application is to enable a “thin”
client to perform a complex calculation in a
“thick” node and to download the results (i.e.,
“cyber-foraging”).

RELATED WORK

RELATED WORK ON
SERVICE DISCOVERY PROTOCOLS

Various service discovery mechanisms have
been proposed for fixed IP networks; the main
ones are IETF’s Service Location Protocol
(SLP), Sun Microsystems’ Jini, IBM’s Salutation
Protocol, and Microsoft’s Universal Plug and
Play (UPnP) [3]. With the exception of UPnP,
the rest follow a centralized proactive approach,
whereby devices/elements periodically update
their service information with one or more pre-
defined central directories. In SLP a centralized
service repository is termed directory agent
(DA) and it is used by service agents (SAs) to
register their services and then by user agents
(UAs) to locate the required services. Although
adopting a similar strategy, Jini provides addi-
tional functionality by aiming to turn the net-
work into a flexible and easily administered
tool. Jini Services register their attributes with
at least one lookup service (the repository)

which is later contacted by Jini clients. Howev-
er, lookup services do not just store service
information, but rather save a piece of software
that contains all the “intelligence” to execute
the required code locally or remotely. Such
pieces of software are known as proxies and
they are the key to the dynamic use of drivers at
runtime in Jini. Salutation is an open standard
that not only provides a service discovery proto-
col but also a session management protocol. In
this architecture, the centralized repository is
called a salutation manager.

Using a centralized service repository, howev-
er, raises the possibility of a single point of fail-
ure, which makes relevant mechanisms
unattractive to wireless ubiquitous environments.
On the other hand, UPnP can be implemented
with or without a lookup server (central directo-
ry). When it is implemented in a fully distributed
manner, each service provider element needs to
disseminate an “advertisement” message upon
joining a group and a “bye” message upon leav-
ing a group. Although the sheer amount of con-
trol traffic incurred in this process can be
acceptable in fixed IP networks, this will burden
the bandwidth-constrained wireless links in ubiq-
uitous environments. There have also been relat-
ed works in the domain of mobile ad hoc
networks. Since MANETs are distributed in
nature, relevant mechanisms are potentially suit-
able for ubiquitous environments and it is worth
exploring their suitability. The work in [4] pre-
sents a distributed service discovery approach
that relies on the creation of a virtual backbone
for registering and requesting services on a
dynamic network topology. The virtual backbone
is formed by a subset of nodes termed service
broker nodes (SBNs) (i.e., a dominating set).
Each service provider element advertises its ser-
vice information to the virtual backbone through
its dominating node, and in this way the virtual
backbone tries to maintain accurate information
pertaining to the services provided by the net-
work as a whole. However, it is not clear how
adaptable the virtual backbone is to node mobil-
ity; if backbone creation does not take mobility
into account, the associated control traffic may
saturate the network. A similar virtual backbone

n Figure 1. Peer-to-peer online gaming with Tic-Tac-Toe.

SIVAVAKEESAR LAYOUT 8/21/06 1:38 PM Page 107

IEEE Communications Magazine • September 2006108

creation mechanism has been employed in [5],
but it differs from the previous work in the fact
that a node can become a dominating one (medi-
ator) only if it is a service provider. This
approach does not always ensure a connected
backbone graph, and hence communication
among unconnected sets of the virtual backbone
poses a big challenge. Related works in [6, 7]
employ a proactive strategy, requiring each ser-
vice provider element/node to advertise its ser-
vice(s) throughout the network. A similar
mechanism employing reactive strategy with an
expanding ring search is specified in [1].
Although these resemble our distributed service
discovery mechanism which is targeted to small-
scale ubiquitous environments, these approaches
will not scale simply for large environments.
Table 1 presents a summary of the service dis-
covery mechanisms considered in this section
along with our own strategies to be discussed
below.

It should be finally mentioned that while
there exists research work on service discovery
mechanisms both in fixed IP networks and
MANETs, there has been no attempt to apply it
to the domain of ubiquitous environments in the
manner proposed here.

THE PROPOSED
SERVICE DISCOVERY MECHANISMS

A MIDDLEWARE-BASED
FULLY DISTRIBUTED APPROACH

Our approach is closely related to that followed
by Jini — but our aim is to make it more dis-
tributed. As stated above, Jini has a number of
undesirable features: its centralized approach
makes it vulnerable to a single point of failure

and its lookup service architecture is too
resource demanding. A ubiquitous environment
may be comprised of both “thick” and “thin”
devices. Therefore, we prefer to use a lightweight
distributed service discovery framework to cater
for the capabilities of “thin” nodes, while trying
to offer as many of the desirable features of Jini
as possible.

Our approach works in a similar fashion to
the reactive routing protocol for mobile ad hoc
networks (MANETs). Each node in our scheme
has its own lightweight lookup server (i.e., ser-
vice repository) consisting of entries that are
subject to a timeout mechanism. An entry in our
scheme is not proxy based as in Jini, because a
proxy-based approach demands high resource
usage. Instead, an entry is a description of a ser-
vice and its attributes using a descriptive lan-
guage defined using the extensible markup
language (XML). The lookup server uses a tree-
based service registry in order to logically group
services by category and to locate the required
services within each category with minimal
search time. Accordingly, a tree has a number of
levels that represent service classification. With
this, as we move down the tree from the root to
the leaves, services become more specific. This
tree-based approach enables each node to main-
tain the known services in a systematic fashion,
and hence helps to minimize the latency involved
in the service discovery process. For example, a
printer service can be identified by the following
logical path name: “<path> RootService:Hard-
wareService:PrintService: LaserPrint</path>,”
under which we can identify the preferred print-
er of our choice depending on its attributes (e.g.,
color, 300 dpi, 35 ppm).

In this scheme, whenever a node needs a par-
ticular service and does not know the devices
that provide it, it will initiate a service lookup

n Table 1. Comparison of service discovery mechanisms.

Service discovery mechanism Network type* Multicast Broadcast Approach Backbone
formation Clustering

Service location protocol Fixed Yes No Centralized Not applicable Not applicable

Jini Fixed Yes No Centralized Not applicable Not applicable

IBM's Salutation Protocol Fixed No No Centralized Not applicable Not applicable

Universal plug and play Fixed Yes No Centralized Not applicable Not applicable

SBN-based virtual backbone [4] Mobile No No Distributed Yes No

Mediator-based virtual backbone [5] Mobile Yes No Distributed Yes Yes

Konark [6] Mobile Yes No Distributed No No

Ad hoc naming service [7] Mobile Yes No Distributed No No

Fully distributed** (ours) Mobile No Yes Distributed No No

Home-zone-based** (ours) Mobile No No Distributed No Yes

* Network type for which the protocol was designed.
** Our service discovery approaches

SIVAVAKEESAR LAYOUT 8/21/06 1:38 PM Page 108

IEEE Communications Magazine • September 2006 109

(discovery) process, as illustrated in Fig. 2a. In
this process, the client node looking for the ser-
vice disseminates a lookup request (LREQ)
message at the middleware level with the follow-
ing information used to describe the service
being looked up {{service},{attribute1, attribute2,
…}, where service can be represented by a logi-
cal path name as described above and the sec-
ond part consists of a set of attributes used to
locate the desired service provider node. As in
ad hoc on-demand distance-vector (AODV)
routing, the dissemination of such an LREQ
message is subject to an expanding ring search
algorithm. Accordingly, at the initial attempt the
scope of the search is limited to a relatively
small area in the vicinity of the client node in
order to avoid networkwide flooding. Depending
on the outcome of the initial search, the scope
can gradually be increased, with the worst case
being networkwide flooding if the provider node
is at a “far edge” of the network. Any intermedi-
ate node having fresh enough information
regarding the devices that provide the service
being looked up may also respond with a lookup
response (LRES) message being passed back to
the LREQ source. Note that all this functionality
takes place at the middleware level.

Given that the service discovery process part-
ly employs flooding, and this together with node-
mobility may induce loops, all LREQ and LRES
messages include a broadcast id and a sequence
number. Using the broadcast id along with the
source address and the sequence number, inter-
mediate nodes can easily identify a “fresh” ser-
vice discovery process from a “stale” one.
However, flooding in an environment employing
the IEEE 802.11 distributed coordination func-
tion (DCF) as the underlying MAC will not
work due to the potential presence of hidden
and exposed terminals [8]. Although flooding in
certain situations is inevitable, our strategy
makes an attempt to limit its usage. For this pur-

pose, we exploit the promiscuous listening func-
tionality, whereby a node overhearing a LRES
transmission makes a corresponding entry in its
own lookup server. As mentioned above, such
entries are subject to a timeout mechanism.

If, in the future, any new client node initiates
a service lookup for a particular service and an
intermediate node happens to have an entry
learned through promiscuous listening, it may
respond. The typical objective of employing such
promiscuous listening functionality is to mini-
mize unnecessary superfluous flooding which
would otherwise take place.

Since this fully distributed service discovery
strategy employs flooding, it can operate well in
small networks but incurs heavy control traffic in
large-scale networks. As such, we propose a sec-
ond service discovery mechanism tailored to
large-scale ubiquitous environments.

A HOME-ZONE-BASED
SERVICE DISCOVERY MECHANISM

The basic idea of this scheme is to dynamically
assign lookup server functionality to certain
nodes located in a certain predefined location
(virtual cluster) for a particular service. This
strategy enables:
• The nodes providing a certain service S1 to

always update the details regarding the ser-
vice being provided, their address, location,
and so forth with the lookup servers chosen
specifically for S1, irrespective of the ser-
vice provider locations, or whether they are
moving or not

• Any client requiring the service S1 can
straightaway contact the lookup servers and
get the providers’ details

This strategy improves scalability in a number of
ways. Firstly, it minimizes superfluous flooding;
secondly, it prevents the control messages from
traversing unnecessary parts of the network; and

n Figure 2. Working mechanism of the proposed service discovery strategies: a) the middleware-based fully distributed approach; b) the
home-zone-based service discovery mechanism.

Lookup
request
(LREQ)

Client

Service
provider

Client Lookup
server

Service
provider

(b)(a)

Lookup
responsse
(LRES)

Service
update

SIVAVAKEESAR LAYOUT 8/21/06 1:38 PM Page 109

IEEE Communications Magazine • September 2006110

thirdly, it minimizes the latency involved in the
service discovery process. As will be inferred
below, this strategy follows a hybrid approach,
trying to blend the best of the proactive and
reactive approaches.

It has been shown that routing protocols that
use approximate location information scale bet-
ter than topology-based routing protocols [8].
This motivates us to use geographic location
information in our service discovery mechanism
for scalability reasons. For this purpose, we
make use of the virtual-cluster principles origi-
nally proposed in [8]. The idea is that a geo-
graphical area is divided into equal regions of
circular shape in a systematic way, so that each
mobile node can determine the circle it resides
in if location information of the node is avail-
able. For this purpose we assume that
• Each node has a clear picture of the loca-

tions of the virtual-cluster in its memory at
the time of bootstrap [8].

• Each virtual-cluster has a unique identifier,
termed VID.

• Nodes get their location information
through either GPS or a GPS-free position-
ing system.

• Each service provided in the network has a
unique identifier.

• There exists a universal hash-function that
maps every service to a specific virtual-clus-
ter based on the service identifier.
Nodes in that particular cluster act as lookup

servers (repositories) for that service and cease
to do so when they move away. The lookup serv-
er functionality of a node will vary depending on
its location, for example, a node in cluster A
may function as a lookup server for the service
S1; while if it moves to cluster D, it may function
as a server for service S4.

A geographically oriented clustering algo-
rithm and protocol are necessary for new nodes
in the virtual-cluster to acquire service details.
Our algorithm does not necessitate a leader or
cluster head (CH) election [8]. The purpose is to
maintain consistent group membership within a
particular virtual-cluster with less overhead. The
detailed description of the clustering mechanism
in virtual clusters is, however, beyond the scope
of this article. In this scheme, each node has its
own service repository as described above. The
lookup server functionality for a given service S1
is assigned to nodes located in a virtual-cluster
that has a unique identifier. Accordingly, every
node residing in the selected virtual cluster is
responsible for maintaining the given service
details in its service repository, and in this
respect a virtual cluster becomes a home zone
for a particular service. Since this mechanism
requires all nodes to store service information
about some other service providers, it can be
classified as an all-for-some approach, which can
scale well [8].

The static mapping of our hash function, as
given by Eq. 1, is to facilitate simplicity and dis-
tributed operation, and it does not depend on
the node density (a typical hash function that we
used in our simulations is provided below).

hf(ServiceIdentifier) → virtual-cluster (1)

In this hybrid approach, each service provider

needs to first identify the corresponding lookup
server (i.e., virtual-cluster) for each service it
provides by applying the hash function of Eq. 1
and then update the service details with nodes in
that cluster, as illustrated in Fig. 2b. In our
scheme, the service update mechanism is mobili-
ty driven as well as time driven. In the service
discovery mechanism, service updates, and
lookup requests (LREQs) and responses
(LRESs) can be unicast based on the virtual-
cluster identifier (VID), locations, and addresses
of nodes. This strategy prevents these control
messages from traversing unnecessary parts of
the network in the same way as adopted in [8].
Whenever a node in a virtual cluster receives a
service update meant for that cluster, it can stop
unicasting that packet any further. Instead, it
updates its own service repository and informs
other nodes within the same cluster through a
periodic HELLO packet, which includes the
entries of the service repository maintained by
that node, so that other cluster nodes can update
their repositories.

Whenever a client node is interested in a
particular service, it needs first to use the hash
function of Eq. 1 to determine the virtual clus-
ter associated with a service being looked up
and then to contact the nodes’ (any node func-
tions as a lookup server residing in a cluster
associated with the given service) lookup serv-
er(s) in that cluster. The lookup response can
be initiated by lookup servers (i.e., nodes in
the identified cluster), the service provider
itself, or any intermediate node as long as it
contains “fresh” information about the service
being requested.

In the worst case, when a querying node has
not received any response within a prespecified
time period after having tried for a prespecified
number of times, it will start gradually flooding
its request in the network — in the same fashion
as that adopted in our fully distributed approach.
This may happen, for example, due to the fact
that a given service’s home-zone virtual cluster is
currently empty.

Our service discovery mechanism is loca-
tion-based using service repositories in home-
zone virtual clusters, but not necessarily the
underlying routing protocols. Any service pro-
vided by any node in the ubiquitous environ-
ment should have a consistent service identifier
on a networkwide basis. In other words, in
order for the hash function to be able to map a
service to a particular virtual cluster, it is nec-
essary for the service to have an identifier. We
propose the creation of a standard publicly-
known ordered list. Such a list may not be stat-
ic, but could be maintained dynamically, with
newly appearing services appended at the end
of it. New services added to the list need to be
known to all nodes in the network and, there-
fore, broadcasting may become inevitable in
such situations. Since having popular services
in the initial list reduces the likelihood of many
new services being added, it is important to
have a well structured and populated “stan-
dard” list at bootstrap. The identifier of a ser-
vice is the rank of it as maintained in the list
and with this the chances for two services to
have the same identifier is minimized.

In order for the hash

function to be able

to map a service to a

particular virtual

cluster, it is necessary

for the service to

have an identifier.

We propose the

creation of a

standard publicly-

known ordered list.

Such a list may not

be static, but could

be maintained

dynamically.

SIVAVAKEESAR LAYOUT 8/21/06 1:38 PM Page 110

EVALUATION

TESTBED EXPERIMENTATION

The objective of our experimental testbed was to
test and evaluate our fully distributed approach
as described earlier in a real scenario.

Our cyber-foraging application (at the client
side) made use of the Remote Method Invoca-
tion (RMI) tool, while our middleware was
implemented on top of the JAdhoc packet ver-
sion 0.21 — which is an implementation of the
AODV routing protocol in Java [9]. JAdhoc
employs tools such as tcpdump and libpcap and
their objective is to allow an application to cap-
ture and process packets at the link layer. This
functionality is very important to our service dis-
covery mechanism, which works as a user space
daemon, since it allows promiscuous listening.
The ad hoc testbed supported the IEEE
802.11b/Bluetooth wireless standards for the
required wireless communication among nodes.
In our experiments, the service the client looked
up was remote execution of a piece of Java code
and retrieval of the results — our cyber-foraging
case study, which was subsequently invoked.

The experimental testbed consisted of three
laptops (named Zeus, Ares, and Poseidon)
placed in such a way to have a random topology.
The factorial server ran on one laptop (Ares)
while the client was on another (Zeus) and
Poseidon passively observed the medium. The
factorial server first registered its service
attributes with the lookup server running on the
same machine (Ares). When the client initiated
the service discovery process, the server respond-
ed. Zeus and Poseidon made an entry for this
service in their local repositories. We measured
the latency involved in the service discovery pro-
cess. The service discovery latency was defined
as the time involved from the time an LREQ is
generated up to the time at which an RMI object
is successfully instantiated, thus, confirming that
the server has been contacted. The average
latency obtained was of 1.86 ms with a standard
deviation not exceeding 0.1 ms, which confirmed
the relatively good performance of the devel-
oped service discovery middleware, although val-
ues varied considerably depending on the
environment, the channel condition and its inter-
ference level, and so forth.

In order to demonstrate the benefit of
exploiting the promiscuous listening functionali-
ty, we performed the second experiment. In this
process, we disabled the lookup servers of Ares
and Zeus, while keeping the entries of Poseidon
intact. Zeus initiated the service discovery pro-
cess for the second time and now Poseidon
responded. The latency involved in this experi-
ment was roughly equal to that of the previous
case, because of the fact that all the three lap-
tops were within close range of each other. It
would have been much less, if Ares were placed
far away from Zeus in a bigger network.

In order to test our module with “thin” nodes,
we replaced the client Zeus with a PDA, named
Venus, which has a 400 MHz Intel XScale pro-
cessor and possesses a 48 MB ROM and a 128
MB RAM. The tests were carried out as
described before with Venus as the client. In this

case, the average latency was measured at 33 ms
with a standard deviation of 21.7 ms. This differ-
ence is partly due to the fact that the PDA needs
longer processing time to perform instructions
associated with the opening and closing of sock-
ets as well as sending the data. This is inevitable
because of its reduced capabilities.

SIMULATIONS
The scalability of our service discovery approach-
es was assessed in terms of increasing node-
count and increasing average node speed. We
chose the reactive approach proposed in [1] for
performance comparison purposes — this
approach is termed FD_without_PL(AODV),
meaning that it is a fully distributed (FD)
approach that uses AODV as the underlying
routing protocol and does not use promiscuous
listening (PL). We performed our simulations
using the GloMoSim simulation package in
which we implemented both our service discov-
ery mechanisms together with
FD_without_PL(AODV) [8]. Unless explicitly
stated otherwise, our simulation parameters took
the following values:
• Nodes move according to the random way-

point mobility model with a constant speed
chosen uniformly between zero and 10 ms–1.

• The pause time took a value that is expo-
nentially distributed with a mean of 30 s.

• The transmission range of every node was
100 m.

• The link capacity was 2 Mb/s.
• The MAC layer protocol was the DCF of

IEEE 802.11.
• The total simulation time for each scenario

was 300 s.
The network provided 12 different services in
total. The probability that any node could arbi-
trarily become a server to offer one of the 12
services was 50 percent. Each node generated a
service request periodically, with the period
being uniformly distributed between 10 and 15
s. However, the probability that a given node
becomes a client at the end of the above period
was 70 percent. Our fully distributed approach
was tested using both AODV (called
FD_with_PL(AODV)) and a home-zone-based
geo-casting (HZGC) routing protocol (called
FD_with_PL(HZGC)) [8], and their results
were compared against our home-zone-based
service discovery mechanism, Home-Zone Ser-
vice Discovery, running over the HZGC. The
principle metrics of interest are network control
overhead and service discovery latency. The
control overhead is defined here as the extra
control traffic generated as part of the service
discovery process only. The hash function used
in our simulations was a simple modulus func-
tion. Accordingly, if a particular region has H
number of virtual clusters in total and the ser-
vice of interest has an identifier ι in the ordered
service list, then the corresponding lookup
servers are located in the cluster VID given by ι
Modulus H.

The objective of the first set of simulations is
to assess the scalability of our service discovery
approaches in terms of increasing node count. In
order to properly see the effect of increasing
network nodes on the service discovery schemes,

IEEE Communications Magazine • September 2006 111

In the future, we will

concentrate on

devising a generic

way to represent a

distributed task/

application in terms

of a TG and also use

contextual

information in the

discovery of the best

possible (optimal)

nodes to invoke

the service.

SIVAVAKEESAR LAYOUT 8/21/06 1:38 PM Page 111

IEEE Communications Magazine • September 2006112

the terrain area is also increased with an increase
in the number of nodes, so that the average
node density is kept constant in this set of simu-
lations. The number of nodes in this case was
varied from 20, 80, 180, 320, 500, and 720. The
terrain-area size was varied such that the aver-

age node degree remained the same and, accord-
ingly, 200 × 200 m2, 400 × 400 m2, 600 × 600 m2,
800 × 800 m2, 1000 × 1000 m2, and 1200 × 1200
m2 were selected for each scenario.

Figure 3 depicts the total overhead incurred
as part of the service discovery mechanism as a
function of increasing number of nodes for all
the four schemes. The home-zone service discov-
ery mechanism performs better than other three
fully distributed approaches, namely, FD_with-
out_PL(AODV), FD_with_PL(AODV), and
FD_with_PL(HZGC). While the incurred con-
trol overhead can be minimized by enabling
promiscuous listening, the actual performance is
badly affected by their reliance on flooding. As a
result, these fully distributed approaches have
very high increase in the total overhead incurred
when the number of nodes increases beyond 100.
Due to the inherent working mechanism of the
underlying DCF-based MAC of IEEE 802.11,
when a collision occurs, the nodes try to retrans-
mit, creating even more traffic, which saturates
the network rapidly. Since our home-zone ser-
vice discovery mechanism and its associated
routing protocol (HZGC) do not rely heavily on
flooding, their combined performance is excel-
lent. Figure 4 shows the average latency involved
for a successful service discovery as a function of
increasing node count. Although Fig. 4 appears
to follow the same pattern of Fig. 3, it should be
noted that Fig. 4 measures the average latency
involved for a successful service discovery. In
this respect, it does not show the actual perfor-
mance; for example, if there is no successful ser-
vice discovery, the latency appears to be zero.

Finally, Figs. 5 and 6 depict the network over-
head and latency as a function of node mobility.
In this case, the number of nodes and the terrain
area were kept at constant values that took 300
and 1000 × 1000 m2, respectively. While keeping
the other simulation parameters the same as the
previous case, the maximum node speed was
increased from 0 to 20 ms–1. It is evident that
our fully distributed approach performs substan-
tially well when used with the home-zone-based
location routing protocol. The same is not true
when it is used with AODV, although the per-
formance of FD_with_PL(AODV) is better than
that of FD_without_PL(AODV). Our home-
zone service discovery mechanism continues to
have a better overall performance than the fully
distributed approach in terms of the total over-
head incurred and the average latency involved.

CONCLUSION
This article has presented and evaluated two ser-
vice discovery mechanisms that can be used in
future ubiquitous communication environments.
As shown, the fully distributed service discovery
mechanism, although preferred, does not scale
well due its mere reliance on flooding. On the
other hand, our second service discovery mecha-
nism scales well and performs better when com-
pared to the fully distributed approach. Although
we assumed the availability of task graphs (TGs)
in our current work, a more generic way of rep-
resenting a distributed task/application in terms
of TGs needs to be devised. Hence, in the future,
we will concentrate on devising a generic way to

n Figure 4. Average service discovery latency as a function of increasing node
count.

Increasing number of nodes
100

A
ve

ra
ge

 la
te

nc
y

pe
r

no
de

 (
s)

0

4

4.5

3.5

3

2.5

2

1.5

1

0.5

0 200 300 400 500 600 700 800

FD_without_PL (AODV)
FD_with_PL (AODV)
FD_with_PL (HZGC)
Home-zone service discovery

n Figure 5. Total service discovery control overhead incurred as a function of
increasing average node speed.

Increasing speed (m/s)

To
ta

l n
et

w
or

k
ov

er
he

ad
 (

M
by

te
s)

0

20

25

15

10

5

0 18 20161412108642

FD_without_PL (AODV)
FD_with_PL (AODV)
FD_with_PL (HZGC)
Home-zone service discovery

n Figure 3. Total service discovery control overhead incurred as a function of
increasing node count.

Increasing number of nodes
100

20

To
ta

l n
et

w
or

k
ov

er
he

ad
 (

M
by

te
s)

10

0

30

40

50

60

70

80

90

100

0 200 300 400 500 600 700 800

FD_without_PL (AODV)
FD_with_PL (AODV)
FD_with_PL (HZGC)
Home-zone service discovery

SIVAVAKEESAR LAYOUT 8/21/06 1:38 PM Page 112

IEEE Communications Magazine • September 2006 113

represent a distributed task/application in terms
of a TG and also use contextual information in
the discovery of the best possible (optimal)
nodes to invoke the service. This renders itself as
the initial work towards realizing autonomic self-
managed ubiquitous environments.

ACKNOWLEDGMENT
The work presented in this article was carried
out in the context of the UK Programmable Ad
hoc Networks (PAN) EPSRC project —
GR/S02129/01.

REFERENCES
[1] P. Basu, “A Task-Based Approach for Modeling Dis-

tributed Applications on Mobile Ad hoc Networks,”
Ph.D. thesis, Boston University, Boston, MA, May 2003.

[2] P. E. Engelstad, and Y.Zheng, “Evaluation of Service Dis-
covery Architectures for Mobile Ad Hoc Networks,”
Proc. IEEE Wireless On-Demand Network Systems and
Services, Jan. 2005, pp. 2–15.

[3] Y. Yuan, and W. Arbaugh, “A Secure Service Discovery
Protocol for MANETs,” Proc. IEEE Symp. Pers., Indoor
and Mobile Radio Commun., Sep. 2003, pp. 502–06.

[4] U. C. Kozat and L. Tassiulas, “Network Layer Support for
Service Discovery in Mobile Ad Hoc Networks,” Proc. IEEE
INFOCOM, vol. 22, no. 1, Mar. 2003, pp. 1965–75.

[5] H. Koubaa and E. Fleury, “A Fully Distributed Mediator
Based Service Location Protocol in Ad Hoc Networks,”
Proc. IEEE GLOBECOM, Nov. 2001, pp. 2949–53.

[6] C. Lee et al., “Konark: A System and Protocols for
Device Independent, Peer-to-Peer Discovery and Deliv-
ery of Mobile Services,” IEEE Trans. Sys., Man, and
Cybernetics, vol. 33, no. 6, Nov. 2003, pp. 682–96.

[7] J. Jeong, J. Park, and H. Kim, “Service Discovery Based
on Multicast DNS in IPv6 Mobile Ad-hoc Networks,”
Proc. IEEE VTC 2003-Spring, pp. 1763–67.

[8] S. Sivavakeesar, and G. Pavlou, “Scalable Location Ser-
vices for Hierarchically Organized Mobile Ad hoc Net-
works,” Proc. ACM MobiHoc, 2005, pp. 217–28.

[9] UoB-JAdhoc New Release, v. 0.2, http://www.aodv.org

BIOGRAPHIES
SIVA SIVAVAKEESAR (S.Sivavakeesar@surrey.ac.uk) finished his
M.Sc. in communication networks and software engineer-
ing with distinction at the University of Surrey (UniS), Unit-
ed Kingdom, in 2001. After completing his Ph.D. at the
same institution, he is currently employed as a post-doctor-
al research fellow at UniS, where he has been carrying out

research in the areas of quality of service (QoS) support in
mobile ad hoc networks (MANETs), programmable MANETs
for self-alignment purposes, autonomic communication,
and computing systems. For additional information, includ-
ing his recent publications, see http://www.ee.
surrey.ac.uk/Personal/S.Sivavakeesar/.

OSCAR F. GONZALEZ received a B.Eng. degree in electronic
engineering from the National University of Colombia in
2002 and an M.Sc. degree in communications networks
and software from the University of Surrey in 2006. He
is currently pursuing a Ph.D. degree in autonomic com-
munications at the University of Surrey. His research
interests l ie in the areas of detect ion of mal ic ious
nodes, self-protection, and trust building in ubiquitous
systems.

GEORGE PAVLOU is head of the Networks Research Group of
the Centre for Communication Systems Research at the
University of Surrey. Over the last 15 years he has been
undertaking and directing research in the areas of commu-
nications with emphasis on network dimensioning, traffic
engineering and management, quality of service, multime-
dia service control, mobile ad hoc networks, programmable
networks, and communications middleware. He has man-
aged several research projects and contributed to ISO, ITU-
T, IETF, TMF, and OMG standardization activities.

n Figure 6. Average service discovery latency involved as a function of increas-
ing node speed.

Increasing speed (m/s)

A
ve

ra
ge

 la
te

nc
y

pe
r

no
de

 (
s)

0.2

0

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 18 20161412108642

FD_without_PL (AODV)
FD_with_PL (AODV)
FD_with_PL (HZGC)
Home-zone service discovery

SIVAVAKEESAR LAYOUT 8/21/06 1:38 PM Page 113

