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Abstract—An increasing number of Low Latency Applications
(LLAs) in the entertainment, IoT, and automotive domains
require response times that challenge the traditional application
provisioning using distant Data Centres. The fog computing
paradigm extends cloud computing at the edge and middle-tier
locations of the network, providing response times an order of
magnitude smaller than those that can be achieved by the current
“client-to-cloud” network model. Here, we address the challenges
of provisioning heavily stateful LLA in the setting where fog
infrastructure consists of third-party computing resources, i.e.,
cloudlets, that come in the form of “data centres in the box”.

We introduce FogSpot, a charging mechanism for on-path,
on-demand, application provisioning. In FogSpot, cloudlets offer
their resources in the form of Virtual Machines (VMs) via
markets, collocated with the cloudlets, that interact with for-
warded users’ application requests for VMs in real time. FogSpot
associates each cloudlet with a price based on applications’
demand. The proposed mechanism’s design takes into account
the characteristics of cloudlets’ resources, such as their limited
elasticity, and LLAs’ attributes, like their expected QoS gain and
engagement duration. Lastly, FogSpot guarantees the end users’
requests truthfulness while focusing in maximising either each
cloudlet’s revenue or resource utilisation.

Index Terms—Edge/Fog Computing, Quality of Service, Pric-
ing, Decentralised Cloud Applications, Application Provisioning,
Network Economics.

I. INTRODUCTION

Cloud computing has been a tremendous success in enabling
computationally intensive applications to elastically cope with
changes in demand for computing resources in a scalable man-
ner, through on-demand computation. Cloud providers mostly
focus on the challenging problem of allocating computing
resources to different users while exploiting economies of
scale for decreasing their running cost [17]. Variants of usage-
based pricing schemes are deployed for controlling the demand
of cloud resources [8], where users are charged a static per-
unit price, e.g., x dollars per hour/workload. However, an
increasing number of applications (e.g., augmented reality, au-
tomotive, and health monitoring systems) require low response
times, rendering the current cloud-based infrastructure unfit for
this purpose. We refer to these as Low Latency Applications
(LLAs), since they strongly rely on the latency of the network
for achieving a satisfying Quality of Service (QoS).

As a result, there is a pressing need for alternative comput-
ing infrastructures that augment and complement the typically
centralised cloud computing paradigm in order to enable
LLAs. Fog computing extends cloud computing at the edge

Fig. 1: End-users on-path application request service by
cloudlets at the edge and middle-tier locations of the network.

and middle-tier locations of the network by utilising existing
in-network computing resources. In this work, we focus on
the setting where fog infrastructure consists of third-party
cloudlets that can be deployed as “data centres in a box” [28].
In detail, cloudlets can be placed throughout the network, in
order to bring computing resources closer to the end users, and
so have the potential of improving the performance of LLAs by
decreasing the corresponding Round-Trip Time (RTT) between
end-users and the computing resources they employ [23].

Nevertheless, cloudlets are incapable of providing the es-
sentially boundless elasticity in computing resources that is
currently offered by the cloud. That is, at any given cloudlet
the demand of resources can well exceed their availability.
Clearly, using a resource allocation mechanism for LLAs that
explicitly takes into account the inherently bounded cloudlet
elasticity, is of paramount importance. Similarly to the cloud,
a pricing scheme can affect the demand levels for cloudlet
resources; however, dealing with short-term demand fluctua-
tions can be a challenge [19]. We argue that in order to capture
demand fluctuations, cloudlets have to deploy flexible pricing
schemes where the price of resources is formed by the current
demand of the market.

In this work, we investigate the emerging market of pro-
visioning heavily stateful LLAs over the fog infrastructure. In
our context, heavily stateful LLAs are applications that cannot
be migrated to another cloudlet location, due to the size of
their user-generated runtime data, without seriously damaging
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their QoS. In other words, heavily stateful LLAs cannot be
suspended for serving another request. In the setting we con-
sider, computation is available firstly at the edge, secondly at
middle-tier locations of the network, in the form of cloudlets,
and, finally, at distant clouds/data centres (Fig. 1). We argue
that service provisioning over cloudlets is expected to take
place in a decentralised and uncoordinated environment. Given
that cloudlet resources are limited, the key challenge is to
create a market that operates on a per-request basis for
offering the finest possible resource allocation granularity. We
aim to provide answers to the fundamental questions of: i)
how should the cloudlet resources be allocated over time to
different applications/services?, and ii) how much should a
cloudlet charge an application-producer/creator? Here, we
present a decentralised pricing mechanism that answers both
questions, while addressing the challenges of dynamic service
provisioning over the fog computing infrastructure.

Our starting point is the spot pricing mechanism of [2],
which creates an auction-based market for available cloud
computing resources. In that work, cloud providers determine
their spot price at regular time intervals subject to their
resources’ demand. Then, at each time-interval, user requests
that bid above the spot price are accepted while the rest of the
users are suspended until the spot price falls below their bid.
Clearly, the spot pricing distributed solution to the problem
of allocating cloud resources is suitable for tasks that can
be disrupted; hence, typical spot pricing is unfit for LLA
provisioning since interruption affects their QoS.

For this reason, we introduce FogSpot, a pricing mechanism
that associates each cloudlet with a price for on-path, on-
demand, distributed LLA provisioning. In FogSpot, cloudlets
offer their resources in the form of Virtual Machines (VMs)
via collocated markets. By on-path provisioning we mean that
as LLA requests are forwarded towards a default execution
location (i.e., the cloud), they interact with cloudlet markets
along the path followed by them. If the price of a market is
less than the estimated QoS gain a LLA has, when served
by the corresponding cloudlet, an available VM is allocated
to serve the request; otherwise, the request is rejected and
continues its journey towards the cloud. For example in Fig. 1,
the request of User 2 at first is rejected by Cloudlet 2 before
continuing its journey to Cloudlet 4, which finally accepts it.
On the other hand, the request of User 3 fails to get served
by Cloudlets 1, 3 and 4, reaching its final execution location
at the Cloud. FogSpot addresses explicitly the heavily stateful
LLA requirement of undisrupted users’ engagement to LLA
instances while setting the FogSpot price of each cloudlet with
the aim of maximising either its revenue or utilisation. To this
end, the main contributions of this paper are as follows:

1) We study the emerging market of LLA provisioning in
fog computing from an economics point of view.

2) We develop FogSpot, a pricing mechanism for on-path,
on-request LLA provisioning with respect to cloudlets’
computing resource limitations and end users’ require-
ments for undisrupted LLA engagement.

3) We illustrate the merits of FogSpot in realistic topolo-
gies in comparison with state-of-the-art proactive and
reactive provisioning approaches.

II. RELATED WORK

A. Cloud Provisioning Pricing

A few existing works consider the problem of cloud re-
source allocation from a purely scheduling perspective (e.g.,
see [13] and references therein) while others also include
the dimension of pricing for maximising either the cloud
provider’s revenue [33] or the social welfare of the sys-
tem [35]. That said, the limited resource elasticity of cloudlets
renders existing cloud pricing plans insufficient for direct
application.

Regarding the current practise, cloud resources are offered
in terms of remote instances, i.e., virtual machines (VMs), with
dedicated CPU, memory, and storage resources, in the form
of Infrastructure-as-a-Service (IaaS) [6]. In particular, Amazon
offers instances under three pricing schemes:

1) Reserved instances that are guaranteed to be available
on a long term, i.e., for more than a year, by charging
fixed usage-based prices.

2) On-demand instances that are guaranteed to be available
on a short term, i.e., for an hour, by also charging fixed
usage-based prices.

3) Spot instances that are created using an auction-based
market for spare instances. More specifically, users can
use spot instances only if their bids exceed a spot price
while spot prices are updated every 5 minutes; this
means that the availability of instances is not guaranteed.

Offering cloudlet resources as reserved or on-demand in-
stances fails to capture demand fluctuations which are now
important, due to the cloudlet’s bounded resources elasticity.
For example, requests are rejected even if under-utilised in-
compatible instances exist as opposed to data centres where
additional resources are allocated. On the other hand, spot
instances are suitable for interruptible jobs, since a task is
executed as long as its bid exceeds the current spot price;
otherwise, the task is suspended. Spot instance interruptions
can affect severely the QoS of LLAs. Despite some efforts in
strategically bidding spot cloud instances by taking into con-
sideration the probability of disrupting a task [37], we suggest
that a cloudlet pricing plan should guarantee the undisrupted
execution of applications in its inherent characteristics.

B. Fog Computing & Cloudlets

Fog computing extends the cloud computing paradigm to
the edge of the network, providing low latencies that enable
the deployment of critical LLAs in the IoT (e.g., health
monitoring), entertainment (e.g., Virtual/Augmented reality),
and automotive (e.g., self-driving cars) industries, among
others [7], [18]. In this work, we focus on the realistic
setting where the fog infrastructure consists of third-party
computing resources, i.e., cloudlets, interested in offering
their resources for provisioning applications. Cloudlets have
been proposed in [28] with the initial purpose of acting as
a surrogate infrastructure where mobile devices can offload
intensive tasks to complement their computing power and
battery limitations [4], [12]. Hence, numerous works focus on
task offloading technologies [10] with the aim of augmenting
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the mobile devices’ computing capabilities [27], [32] and/or
battery duration [5].

Closer to our setting, [3] introduces on-path provisioning for
addressing the problem of application-specific task offloading
over the fog infrastructure, i.e., task requests from hosts are
simply routed towards the back-end cloud and are opportunisti-
cally executed by the cloudlets along the path as demonstrated
in Fig. 1. In particular, applications are provisioned according
to established techniques in content caching, such as Least-
Frequently-Used (LFU), in an uncoordinated fashion. However
in [3], the economic aspects of the problem are not considered
while the presented caching approaches are suitable for state-
less applications whose requests can be decomposed to indi-
vidual tasks that can be executed by any available application
instance in the fog. Initial efforts in on-path pricing has been
presented in [31] without however addressing sufficiently the
problem of price derivation. On the other hand, [30] presents
a market design for the pricing of application provisioning at
the Edge under the presence of user mobility, which however
is not suitable for the heavily stateful application setting we
consider here. Lastly, in [21] the authors propose a self-
tuning service/application provisioning combinatorial auction
mechanism where application providers bid periodically for
a specific number of VMs organised in different execution
zones. Nevertheless, the presented mechanism relies on precise
predictions about the future demand of an application while
the optimal bidding derivation is a computationally expensive
process that cannot be repeated frequently.

To the best of our knowledge, FogSpot is the first work
that addresses in detail the problem of on-demand, distributed,
heavily stateful LLA provisioning from an economic perspec-
tive over independent fog computing resources.

III. DESIGN RATIONALE & SYSTEM MODEL

In this section, at first, we justify the design choices of the
provisioning mechanism we envision. Then, we introduce the
system model.

A. Design Rationale

The challenge here is the design of a market mechanism
tailored to the provisioning of LLAs over an uncoordinated
cloudlet infrastructure. Our design has to address explicitly
the challenges of i) how the applications should discover the
cloudlets’ resources, and ii) the cloudlets’ limited elasticity.

In our context, cloudlet resource discovery refers to the
process of finding appropriate computing resources for provi-
sioning LLAs. Resource discovery over a set of geographically
distributed clouds is a challenging task [14], which is closely
associated to the process of resource monitoring [1] that
affects the efficiency of on-demand allocation/release of cloud
resources [36]. In our setting, cloudlet points of presences are
expected to exceed by far the number of clouds. Therefore,
discovering and allocating resources, as a response to a con-
tinuous monitoring process, would face scalability issues.

Given that LLA requests are forwarded in the network
towards a distant Data Centre, we argue for both on-path and
on-demand application provisioning. In particular, by apply-
ing on-path provisioning, there is no need for a centralised

TABLE I: FogSpot Notation

System Model
S Set of LLAs.
D,D̃s Set of cloudlets, default data centre of LLA s.
µs Exponential distribution engagement duration rate of application s.
P Set of requests’ classes.
Dp Set of cloudlets serving class p.
Pd Set of requests’ classes arriving at cloudlet d.
λs,p Poisson process arrival rate of LLA s class’s p requests.
uds,p Per second QoS gain of LLA s at cloudlet d for class p,

in terms of network condition.
Js(·) Average aggregated utility of LLA s per second.
yds,p,ys Request provisioning rate of LLA s class p at d,

provisioning rate matrix of LLA s.
Cd Number of VMs at cloudlet d.
ρthres Target utilisation level of resources.

FogSpot On-Demand Provisioning
πd Price of cloudlet d.

FogSpot Spot Price Derivation Mechanism
Pd,s(πtd) Set of classes of LLA s with gain in being

provisioned at price πtd at cloudlet d.
Xds (t) Arrival rate of LLA s at d that can be provisioned at iteration t.
Y ds (t) Admitted request rate of LLA s by cloudlet d at iteration t.

resource discovery process, since resources are discovered
in real time. Furthermore, applications are not required to
monitor the usage of cloudlets’ resources since on-demand
provisioning guarantees their full utilisation, i.e., each instance
remains active only for as long as a user is engaged to it. These
design choices enable the most promising and incrementally
deployable conditions for the problem of LLA provisioning
we tackle, providing an uncoordinated and distributed solution
similar to content delivery via on-path caching [24].

In this work we argue that cloudlet pricing schemes should
follow a pay-as-you-go structure in terms of application user
engagement duration in order to complement and promote the
on-demand provisioning of applications. In other words, the
LLA providers should be charged based on the time their users
occupy a cloudlet instance (e.g., x dollars per 1 ms).

B. System Model

We consider a set S , {1, 2, ..., S} of LLAs and a set
D , {1, 2, ..., D} of cloudlets. The engagement duration of an
LLA s ∈ S has an exponential distribution with rate parameter
µs, where 1/µs is its mean engagement time. We assume that
each LLA can be provisioned at a distant cloud/data centre
whose capacity is sufficient, in all cases, for serving the total
number of LLA requests it receives. In particular, each LLA
request is forwarded via a path from the access point of an
end user to a default application cloud/data centre, D̃s ∀s ∈ S.
Each path p is considered as a distinct traffic class traversing
a set of Dp cloudlets. Specifically, a class p request of LLA
s experiences a QoS improvement uds,p, in terms of network
conditions, for each second that the end user remains engaged
to an LLA instance at cloudlet d ∈ Dp, as opposed to the
default Data Centre D̃s. We denote that set of request classes
in the network by P , {1, 2, ..., P}. Note that a cloudlet d
receives traffic from a set of classes, Pd; that is, the gain of a
request of LLA s served at d is class-specific, i.e., two requests
of the same LLA but of different classes experience different
gains. In our system, we assume that the LLA requests of each
class are generated according to a Poisson process of rate λs,p
requests per second ∀s ∈ S and ∀p ∈ P .



4

In our setting each request concerns the allocation of a
single VM. Let the requests of LLA s of class p be admitted at
cloudlet d according to a rate yds,p; we define the provisioning
rate matrix of LLA s, ys , (yds,p : p ∈ P, d ∈ D). Note
that if d /∈ Dp then yds,p = 0 for all s ∈ S. The admitted
request rates of a class respects its Poisson generation process
rate, i.e., cloudlets Dp cannot admit more than the generated
requests of class p: ∑

d∈Dp

yds,p ≤ λs,p. (1)

Constraint (1) implies that the default execution location of
LLA s, D̃s, admits requests according to a Poisson process
of rate λs,p −

∑
d∈Dp y

d
s,p, when the admission rates yds,p

characterise a Poisson process too. We use Js(ys), ∀s ∈ S,
to denote the utility of LLA s as a function of ys in terms of
aggregated per-second QoS gain, estimated by:

Js(ys) =
1

µs

∑
p∈P

∑
d∈Dp

uds,py
d
s,p, (2)

where yds,p/µs is the average number of active class p request
s sessions at cloudlet d ∈ Dp, i.e., the average number of
allocated VMs to class p of LLA s, according to Little’s Law.

Let Cd be the number of identical VMs, in terms of
dedicated CPU, memory, and storage resources, that cloudlet
d ∈ D can support. Observe that the average utilised VMs
have to respect the VMs’ number restriction:∑

s∈S

1

µs

∑
p∈Pd

yds,p ≤ ρthresCd, ∀d ∈ D, (3)

where ρthres is the target utilisation level of the resources
taking values in [0, 1], since utilisation ranges between 0%
to 100%.

IV. FOGSPOT MECHANISM

In this section, we describe the individual components
of FogSpot mechanism, namely i) on-demand provisioning
(discussed in Section IV-A), and ii) price derivation (Sec-
tion IV-B), before concluding with a detailed scenario that
demonstrates their operation (Section IV-C). Given a price as-
signed to each market, the on-demand provisioning component
governs the real-time interaction of forwarding LLA requests
and each cloudlet’s collocated market. On the other hand, the
price derivation component is responsible for assigning a price
for each market, which determines the portion and class of
requests served at each cloudlet, with the aim of maximising
either the cloudlet’s revenue or its resource utilisation.

A. FogSpot: On-Demand Provisioning Component

An overview of the FogSpot on-demand provisioning
scheme is depicted in Fig. 2, where we consider an end user
request of LLA s ∈ S that arrives at the market of cloudlet
d ∈ D (step a). The interaction of a request with each on-path
market is characterised by the following properties:

A1) Each request is for a single VM.

Fig. 2: FogSpot On-Demand Provisioning Overview

A2) Each request belonging to class p is associated with
a bid, bs,p, which expresses user’s willingness to pay
per unit of engagement time to an LLA s instance.

A3) Requests are not queued at the on-path markets, i.e.,
the request is either served or rejected immediately.

A4) The VM allocation time overhead has no impact on
the LLA’s QoS.

More specifically, let the price at cloudlet d be πd. Upon the
arrival of a request of class p for LLA s, the market operates
according to the following rules:

R1 If there are no available VMs, reject the request.
R2 Else,

• If bs,p ≥ πd, a VM of cloudlet d is allocated to
serve the request at price πd, which is lower than
the bid, for each time unit of user’s engagement.

• Else if bs,p < πd, the request is rejected.
Assuming that bs,p ≥ πd and available VMs exist, the alloca-
tion takes place and the cloudlet starts a timer for keeping track
of the user’s engagement duration (step b). After the session
completion/application termination, the cloudlet informs the
market about the engagement duration (step c). Then, the
market verifies the duration and converts it to a bill that equals
the engagement duration times the agreed per time unit service
price πd (step d). Finally, the bill is sent to the corresponding
LLA provider which eventually pays the cloudlet provider for
its service (step e).1

Next, we explain how bids bs,p are derived ∀s ∈ S and
∀p ∈ P . Let uds,p be the per time unit QoS gain of class p
LLA s when served at cloudlet d, instead of its default cloud.
The truthfulness of a bid is defined in the straightforward way:

Definition 1. A bid bs,p for class p LLA s provisioning at
cloudlet d is truthful iff bs,p := uds,p, where uds,p is the per
time unit QoS gain of the requested LLA at d.

In other words, a bid is truthful when it equals the actual
gain of the served application. Then, given a cloudlet d’s price,
πd, the LLA s class p utility rate from using cloudlet d is
defined as:

Definition 2. The utility rate of class p LLA s from bid bs,p
and QoS gain uds,p is:

utility rate =

{
uds,p − πd, if bs,p ≥ πd,
0, otherwise.

Proposition 1. Under rules R1-R2, the request bids are
truthful.

1The technical details of the explained process, related to the security,
verification, etc., are beyond the scope of this paper.
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Proof. Let bs,p be the bid of a class p application s request
with uds,p. We investigate the following possible cases:

• If uds,p ≥ πd then the request would win a VM with a
truthful bid as well as an overbid.

• If uds,p ≥ πd > bs,p underbidding returns a utility rate
equal to 0, as opposed to a truthful bid for which the
utility rate is non-negative.

• If πd > uds,p then the request would not allocate a VM
with a truthful bid as well as an underbid.

• If bs,p > πd > uds,p, then overbidding would return a
negative utility rate, as opposed to a truthful bid for which
the utility rate is 0.

From the previous cases it is clear that truthful bidding, i.e.,
bs,p = uds,p, is the dominant strategy for the applications.

Since LLA requests have to be truthful for a rational user,
the strategy for setting them is straightforward. In other words,
each request has to be associated to its corresponding QoS per
time unit gain at a given cloudlet, i.e., bs,p = uds,p ∀s ∈ S,
∀p ∈ P , and ∀d ∈ D.

1) Practical Aspects of Bid Derivation: In practice, we
envision that trusted software-based agents, residing at each
cloudlet market, will derive and submit bids on behalf of
user requests. An agent associates a request to a bid after
estimating the QoS improvement (gain) that will be attained
by the request’s service at the current cloudlet as opposed to
the default application cloud.

In the context of LLAs, the QoS gain is based on RTT
measurements between i) the user, originating the request, and
the cloudlet, as well as ii) the cloudlet and the default cloud
of the requested LLA. Agents can measure RTT to the default
cloud locations by periodically sending probe messages that
trigger a reply at the other end. On the other hand, user-to-
cloudlet measurements pose a scalability challenge due to the
required per-user measurement state that has to be maintained
at the agent’s side; consequently, an efficient system would
delegate this process to the user-side. In detail, similarly to
user-side measurements currently deployed by major content
distribution networks (CDNs) (among others [9]), the client-
side of a LLA could start sending on-path probe packets,
that potentially interact with a set of cloudlets, as part of
an initialisation process before sending the actual application
request. Upon arrival of the probe response packets, the client-
side LLAs can piggyback the measurement results onto their
VM requests. This way, the agents obtain the measurement
state for only the users who request VMs at their market.

Finally, the agents perform the monetary valuation of the
estimated QoS gain as dictated by the provider of each LLA.
This is done in a straightforward way, i.e., each bid equals the
monetary valuation of the gain, due to the truthfulness prop-
erty, i.e., Proposition 1. Note that different classes requesting
the same LLA result in different bids at the same cloudlet.
Clearly, the closer a request is served to the cloud, the lower
the QoS gain will be, and in turn, the lower the bid becomes.
That is, at the cloud, bids and QoS gains become equal to 0.

B. FogSpot: Price Derivation Component

FogSpot’s price derivation component associates each
cloudlet d ∈ D to a price, πd, by deploying a Dutch auction
mechanism which is particular useful for the uncoordinated
execution of FogSpot as we analyse in Section V. We start
by presenting FogSpot’s underlying queueing model of each
cloudlet, dictated by the on-demand provisioning component
and the Poisson process LLA requests generation assumption
that create the basis of price derivation described next. We
conclude by discussing FogSpot’s truthfulness concerns at the
stage of price derivation.

1) FogSpot Cloudlet Queueing Model: FogSpot on-demand
provisioning component treats each cloudlet d as a First Come
Fist Served (FCFS) Queueing system of Cd identical parallel
servers with zero-sized queues, since the requests are either
accepted or rejected immediately without queueing. A cloudlet
receives requests at exponential interarrival times with rate∑
s∈S

∑
p∈Pd y

d
s,p while the user engagement duration, i.e.,

the service time of a request, has application-specific expo-
nential interarrival times of rate µs ∀s ∈ S. In other words,
each cloudlet d is a M/M/Cd/Cd/FCFS system, dictating the
admitted provisioning rate for LLA s at d, Y ds =

∑
p∈Pd y

d
s,p,

as we explain next.
Let Xd

s be the arrival rate of LLA s requests that arrive
at cloudlet d. The effective rate at which LLA s can be
provisioned, Y ds , equals:

Y ds = Xd
s × Pd(Cloudlet is not fully occupied)

= Xd
s ×

(
1− Pd(Cloudlet is fully occupied)

)
= Xd

s ×
(

1− Pd(n = Cd)
)
.

(4)

Clearly, requests of LLA s are rejected from cloudlet d at rate
Xd
s −Y ds , while the steady state probability of having all VMs

occupied, Pd(n = Cd), is:

Pd(n = Cd) =
ρCd

Cd!
Pd(n = 0)

=
ρCd

Cd!

[
Cd∑
n=0

ρn

n!

]−1
,

(5)

where parameter ρ is ρ =
∑
s∈S X

d
s /µs, as described in [20].

Note that rate Y ds characterises a Poisson process. Lastly, it
can be shown that, as we increase the number of VMs at d,
i.e., the capacity Cd, Y ds → Xd

s .
2) Price Derivation Process: Next we describe the steps

of the price derivation component when applied to cloudlet d,
resulting in price πd, assuming that the remaining cloudlets
in the network have already derived their prices. We start by
initialising price πtd with a very high value πmax, i.e., a few
times higher than any reasonable market price, so that Y ds (t) =
0 ∀s ∈ S at t = 0. Then the steps followed are:

Step 1: Each LLA provider s estimates the traffic that
could be served at price πtd, Xd

s (t). At first each LLA provider
s identifies the classes whose gain after the price reduction is
non-negative when served at d, Pd,s(πtd) ⊆ Pd, defined as:

Pd,s(πtd) =
{
p : d ∈ Dp and uds,p ≥ πtd

}
. (6)
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Fig. 3: Toy Topology, Single cloudlet receiving requests from
10 classes.

Then:

Xd
s (t) =

∑
p∈Pd,s(πtd)

(
λs,p −

∑
d′∈Dp:ud′s,p>uds,p

yd
′

s,p

)
, (7)

where
∑
d′∈Dp:ud′s,p>uds,p

yd
′

s,p is the request provisioning rate
of LLA s over the cloudlets with a higher QoS with respect
to class p, i.e., the cloudlets that are deployed between the
end users and cloudlet d along a path that defines class p
and therefore are closer to the end users. The LLA s then
submits value Xd

s (t) to cloudlet d. Note that cloudlet d does
not require information related to the requests’ classes, since
it is interested in the aggregate rate of each LLA s, Xd

s (t).
Step 2: Cloudlet d estimates the provisioning request rate

of LLA s, Y ds (t), from (4). Note that the information about
cloudlet’s capacity in terms of VMs, Cd, does not have to be
shared with the LLA providers, who are only interested in the
request provisioning rate of their service at d.

Step 3: Cloudlet d applies one of the following termination
criteria:

Revenue maximisation (RevM): The Dutch auction
terminates if πtd = 0. Then, the price is set based on
the candidate price that maximises the revenue of
cloudlet d :

t∗ = arg max
t

(
πtd ×

∑
s∈S

Y ds (t)
1

µs

)
. (8)

Then πd = πt
∗

d and cloudlet d serves LLA s at rate
Y ds = Y ds (t∗).
Social welfare maximisation (SWM): The
Dutch auction terminates either when the provi-
sioning requests cover the cloudlet’s capacity, i.e.,∑
s∈S Y

d
s (t)/µs ≥ ρthresCd, or when πtd = 0; in

both cases SWM policy serves the highest possible
volume of requests. The price is set to πd = πtd while
the accepted request rates are Y ds = Y ds (t) ∀s ∈ S.2

Step 4: Cloudlet d decreases price by ∆π according to the
Dutch auctions, i.e., πt+1

d = πtd − ∆π, and proceeds to the
next iteration, t = t+ 1, by returning to Step 1.3

3) Addressing Truthfulness Concerns: Assume that LLA
s is untruthful in the provisioning request rate it declares
at cloudlet d, X̃d

s instead of the truthful rate Xd
s . Then,

if X̃d
s > Xd

s , cloudlet d will eventually detect the false
declaration by observing the under-utilisation of its resources
by LLA s. Similarly, if LLA s declares a X̃d

s < Xd
s , the

derived price at d will be reduced from the ideal price πd to π̃d,
i.e., π̃d < πd, which means that the actual admitted requests

2Note that, ρthresh serves the purpose of achieving a price higher than 0,
since from Eq. 4 we see that the utilisation of the system can never be 100%.

3∆π can be chosen so that πt
d ≥ 0 always holds.

TABLE II: FogSpot Price Derivation Detailed Execution

t πtd Xds (t) Y ds (t) Y ds (t)/µs πtdY
d
s (t)/µs

0 100 0.1 0.0999 5.9999 599.9977
104 94.8 0.2 0.1980 11.8824 1126.4564
298 85.1 0.3 0.2672 16.0341 1364.5077
478 76.1 0.4 0.2971 17.8300 1356.8644
643 67.85 0.5 0.3099 18.5974 1261.8372
796 60.2 0.6 0.3164 18.9853 1142.9194
935 53.25 0.7 0.3201 19.2115 1023.0166
1060 47.0 0.8 0.3226 19.3576 909.8079
1170 41.5 0.9 0.3243 19.4589 807.5475
1258 37.1 1.0 0.3255 19.5331 724.6804
2000 0.0 1.0 0.3255 19.5331 0.0

will be higher than the expected ones. Then again, cloudlet
d will be able to detect the false declaration by observing
the over-utilisation of its resources by LLA s. Especially
when cloudlet d applies a SWM approach, a price π̃d < πd
increases the competition for resources and LLA s will have
less chances in finding available VMs since cloudlets aim the
highest possible utilisation of their resources.

C. Detailed Scenario

Next, we present step-by-step the execution of FogSpot
when applied over a toy topology with a single cloudlet, i.e.,
Cloudlet 1, that serves 10 classes of requests as depicted in
Fig. 3. We consider a single LLA s whose request classes
experience the QoS gains of {37.15, 41.55, 47.03, 53.3, 60.25,
67.87, 76.15, 85.11, 94.83, 100.0} upon getting served at
Cloudlet 1. Furthermore, the average engagement duration of
a user to an LLA instance is set to 60 sec, while each request
has an equal probability of being generated by any class at the
total rate of 1, i.e.,

∑
p∈{1,2,..,10} λs,p = 1. Lastly, we assume

that Cloudlet 1 can support up to 20 VMs.
1) Price Derivation Component Execution: In the begin-

ning, FogSpot applies its price derivation component to asso-
ciate Cloudlet 1 with a price. Without loss of generality, we
assume a linear relationship between the QoS gain and the
amount of money that a user is willing to pay, i.e., a user will
pay X$ per second of engagement for every single unit of QoS
improvement. That is, the maximum price that a request could
possible pay is 100 X$ per second of engagement that defines
the price at the beginning of the price derivation execution,
i.e., πmax = 100. Lastly, we set the decremental price step of
Dutch auction, ∆π, equal to 0.05, and the utilisation target
level, ρthres, equal to 0.93.

The step-by-step execution of the price derivation compo-
nent is presented in Table II. Specifically, the first column
indicates the iteration of execution, the second the price at
this iteration, the third the arrival rate of LLA requests that
can be served at Cloudlet 1, the fourth the effective arrival rate
of requests that is actually served due to the zero queue size,
the fifth the expected number of utilised VMs, and the last one
the expected revenue (in X$) per second for Cloudlet 1. As
the price decreases, according to the applied Dutch auction,
both the effective arrival rate of requests (column 4) and
expected utilised VMs (column 5) increase. Table II includes
only the iterations where requests’ arrival rate (column 3)
grows as response to Dutch auction’s price reduction. Cloudlet
1 achieves the SWM target utilisation of its resources upon
iteration 796, i.e., 18.9853 > 0.93 × 20, while the maximum



7

0 200 400 600
Time (in seconds)

40

60

80

100

Qo
S 
Ga

in
 o
f R

eq
ue

st

Accepted Rejected

(a) SWM policy accepted/rejected requests
over time.

0 200 400 600
Time (in seconds)

0

5

10

15

20

Ut
ilis

at
io
n 
M
ov

in
g 
Av

g.
 (i
n 
VM

s)

SWM
RevM

(b) Policies comparison, VMs utilisation
moving average over time.

0 200 400 600
Time (in seconds)

0

250

500

750

1000

1250

Re
v.
 M

ov
. A

vg
. (
in
 X
$)

SWM
RevM

(c) Policies comparison, revenue moving aver-
age over time.

Fig. 4: FogSpot, Detailed Scenario, On-Demand Provisioning Component

revenue is achieved at iteration 298 and 85.1 X$ price. That
is, the price of Cloudlet 1 is set to 60.2 X$ if SWM policy
is applied and to 85.1 X$ in the case of RevM policy. After
setting the price the upcoming requests interact with Cloudlet
1 according to FogSpot’s on-demand provisioning component
as we show next. Note that Cloudlet 1 is never completely
utilised even for a price equal to 0, as we see in iteration
2000. This is because in the case of zero queue size, a request
can never arrive at a cloudlet at the exact moment when a VM
becomes available. That is, SWM policy is able to achieve a
positive spot price, despite the fact that it aims for the highest
possible utilisation of a cloudlet’s resources, due to the target
utilisation parameter ρthres.

2) On-Demand Provisioning Component: As requests of
LLA s arrive at Cloudlet 1, on-demand provisioning com-
ponent accepts a subset of them based on the derived price
and VM availability at the time of request arrivals. Fig 4a
depicts the accepted and rejected requests by Cloudlet 1, over
600 seconds of simulation4, when SWM policy is applied. In
this case, only requests with at least 60.2 QoS units gain are
accepted in accordance to the price assigned to Cloudlet 1 by
the price derivation component.

The RevM policy similarly serves requests with at least 85.1
QoS units gain. That is, when comparing SWM with RevM,
there are more requests accepted by the first which leads to
a higher utilisation of VMs as captured by their moving VM
utilisation average in Fig. 4b. On the other hand, SWM results
in a lower revenue per second compared to RevM, as depicted
in Fig. 4c. Note that both moving averages of utilisation and
revenue converges to the estimated values of Table II.

V. FOGSPOT GAME THEORETIC ANALYSIS

In this section, we analyse the uncoordinated price deriva-
tion performance of FogSpot mechanism, i.e., each cloudlet
is assigned a price periodically without coordinating with the
rest of the cloudlets, from a game theoretic perspective.

A. FogSpot Cloudlet Pricing as a Game.

We consider each cloudlet d as a player whose action is
related to the price selection over a set of prices Πd = (uds,p :

4The details are provided in Section VI.

∀s ∈ S,∀p ∈ Pd). We associate with each cloudlet d a payoff
function Rd(·) mapping Π1 × Π2 × ...× ΠD to a real value,
where the elements of Π1×Π2×...×ΠD are referred as action
combinations or states. A pure Nash equilibrium is defined as a
state π = (π1, ..., πD) such that for each cloudlet d there is no
action to replace the selected one that can increase its payoff
further, i.e., Rd(π1, .., πd, ..., πD) ≥ Rd(π1, .., π′d, ..., πD) for
any π′d ∈ Πd.

Consider a directed graph G = (Π, E) whose nodes consist
of the states in Π = Π1×Π2× ...×ΠD space and edges in E
connect only states that differ by a single component causing
an improvement to the corresponding player’s payoff function,
i.e., there is an edge (π, π′) iff states π = (π1, .., πd, ..., πD)
and π′ = (π1, .., π

′
d, ..., πD) differ only in component π′d

and Rd(π′) > Rd(π). From [25] we know that if the
graph is acyclic then the Nash dynamics converges to a pure
Nash equilibrium (the sinks of the graph), leading us to the
proposition presented in [15] :

Proposition 2. If the Nash dynamics converges, then there is
a pure Nash equilibrium.

Next we investigate the settings under which FogSpot
derives a pure Nash equilibrium to the game of cloudlet
pricing for stable LLA demand conditions, i.e., λs,p remains
stable for each p ∈ P and s ∈ S . The existence of a Nash
equilibrium indicates that FogSpot derives a stable solution in
an uncoordinated way.

B. FogSpot Nash Equilibrium Derivation of SWM Approach

Let Y ds (π) be the provisioning rate of service s at cloudlet
d when the state of prices is π. The payoff function of SWM
policy in FogSpot is:

RSWM
d (π) =

 1, if
∑
s∈S Y

d
s (π)/µs ≥ ρthresCd

or πd = 0,
0, otherwise.

(9)
Note that as πd decreases,

∑
s∈S Y

d
s (π)/µs increases.

Theorem 1. FogSpot mechanism converges to a pure Nash
equilibrium with the highest possible payoff, in the pricing
game, when the SWM policy is applied.
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Proof. Let the current state of prices be π = (π1, ..., πD)
and cloudlet d is the next that triggers the price derivation
mechanism. Then we know that the new price of cloudlet d,
π′d, derived by the SWM policy will be either i) π′d < πd,
since in case that πd > 0 and RSWM

d (π) = 0 the new price
will either comply to

∑
s∈S Y

d
s (π′)/µs ≥ ρthresCd or π′d = 0,

i.e., RSWM
d (π′) = 1, otherwise ii) π′d = πd and therefore

state π′ = π. Clearly, FogSpot’s SWM approach’s execution
forms a directed graph whose nodes cover the states existing
in space Π. SWM policy starts from state πinit = (π1 =
πmax, ..., πD = πmax), i.e., Y ds (πinit) = 0 ∀d ∈ D and
∀s ∈ S. Then the execution of the mechanism by a cloudlet d
leads to a new state π = (π1 = πmax, ..., πd, ..., πD = πmax)
where πd < πmax and RSWM

d (π) > RSWM
d (πinit). In general,

edges in SWM policy graph connect only states that differ
by a single always decreasing price, causing an improvement
to the payoff function of the corresponding cloudlet. Clearly,
this graph is acyclic since under no circumstances a price is
increasing and therefore the Nash dynamics converges to a
pure Nash equilibrium.

C. FogSpot Nash Equilibrium Derivation of RevM Approach
Next we focus on the RevM policy, whose payoff function

is:
RRevM
d (π) = πd

∑
s∈S

Y ds (π)/µs. (10)

Unfortunately, there are no guarantees that given a state π the
execution of the RevM policy in an uncoordinated way will
either decrease or increase the price of a cloudlet. Hence, we
focus on the special case of fog topologies where cloudlets
are deployed in a hierarchical way defined as:

Definition 3. Two cloudlets are associated with a hierarchical
relationship if the actions of the first do not affect the payoff
of the second.

In other words, a cloudlet d is hierarchically lower than a
cloudlet d′ if there is no class and LLA such that uds,p > ud

′

s,p

while the relationship uds,p < ud
′

s,p is true for at least one class
and LLA. In a sense, cloudlet d′ is located closer to an end
user meaning that by setting its price it determines the rate of
LLA requests that it serves, consequently affecting the rate of
requests left to get forwarded to cloudlet d.

Two cloudlets can also be uncorrelated as we define next:

Definition 4. Two cloudlets are considered uncorrelated if
their actions do not affect the payoff of each other.

In detail, a cloudlet d is uncorrelated to a cloudlet d′ if
there is no class for any LLA that traverses both of them, i.e.,
Pd ∩ Pd′ = {∅}. Hence, the rates of provisioning each LLA
to one of the two cloudlets, does not affect the provisioning
rates at the other.

Definition 5. A fog infrastructure is considered hierarchical
if all the deployed cloudlets are associated either by a hier-
archical or uncorrelated relationship.

Theorem 2. The FogSpot RevM approach converges to a
pure Nash equilibrium, in the pricing game, when applied in
hierarchical fog topologies.

Proof. Let the current state of prices be π = (π1, ..., πD)
and the RevM policy is applied to cloudlet d next. Without
loss of generality assume that cloudlet indexes imply the
hierarchy of the topology, i.e., only cloudlets 1 to d− 1 have
a hierarchical relationship with cloudlet d, meaning that their
price affects the payoff of d. Then, if d = 1 the first execution
of the RevM policy will derive cloudlet’s optimal price π∗1
that is not affected by any other cloudlet price in the fog, i.e.,
RRevM

1 (π∗1 , ..., πD) ≥ RRevM
1 (π) for all π ∈ Π. In general,

if prices π1 to πd−1 are optimal, for d > 1, then the newly
derived price of d, π∗d , is optimal in the sense that maximises
its expected revenue, since cloudlets 1 to d−1 will not change
their price in the future, i.e., RRevM

d′ (π∗1 , ..., π
∗
d, ..., πD) ≥

RRevM
d′ (π) for each d′ ∈ [1, 2, .., d] and all π ∈ Π.

VI. PERFORMANCE EVALUATION

In this section, we evaluate FogSpot’s performance. We
begin by revisiting the toy setting of the detailed scenario,
presented in Section IV-C, to perform additional small-scale
experiments that shed light on FogSpot’s behaviour, before
proceeding to simulation results in realistic topologies. We
implement FogSpot and the baseline comparison approaches,
described next, by extending the ICARUS caching simulator
for application provisioning problems [26].

A. FogSpot Toy Setting

1) QoS Gain-Demand Correlation Experiments: Similar to
the detailed scenario of Section IV-C, we assign a capacity
of 20 VMs to Cloudlet 1 of Fig. 3, and we investigate the
behaviour of FogSpot in the following scenarios:
• Positive correlation of demand and QoS gain, where the

most popular, i.e., generating the most requests, class is
Class 10 with QoS gain equal to 100, the second most
popular is Class 9, etc.

• Negative correlation of demand and QoS gain, where the
most popular class is Class 1 with QoS gain equal to
37.15, the second most popular is Class 2, etc.

• Uncorrelated demand and QoS gain, where the requests
have equal probability of falling into any class.

The total request generation rate is equal to 1, while the request
correlation is expressed via a Zipf distribution of exponent
0.8 that categorises each request to one of the 10 classes.
Specifically, the highest probability is assigned to Class 10
(Class 1) in the case of the positive (negative) correlation.

In Fig. 5 we plot the price (in X$ per QoS gain unit
and second of engagement5) achieved by FogSpot for the
3 demand correlation scenarios. The RevM policy derives
identical prices to the SWM policy for the case of positive
correlation since the requests of Classes 9 and 10 are sufficient
for utilising the cloudlet resources, i.e., the price is set equal
to the QoS gain of Class 9. That said, the RevM policy in the
cases of uncorrelated and negatively correlated demand has the
opportunity of trading utilisation for increasing the cloudlet’s
revenue. In particular, in the case of negative correlation (no
correlation) the RevM policy sets a price that serves Classes 5

5Assuming a linear relationship between prices and QoS gains.
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to 10 (8 to 10), while SWM focuses on achieving a satisfying
utilisation of the available VMs by accepting to serve Classes
3 to 10 (5 to 10).

The tradeoff between resource utilisation and revenue in-
crease is depicted in Figs. 6 and 7. In Fig. 6, the percentage
of time VMs remain idle in the RevM policy is 3 times (5
times) higher than the corresponding SWM idle time of 8%
(5%) for the case of negative correlation (no correlation).
However, the idle percentage time in all cases and policies
remains higher than the baseline FCFS policy that serves all
classes, i.e., in FCFS the cloudlet’s price is set to zero. Lastly,
the idle percentage time overhead of RevM policy comes with
the merits of a higher revenue as we observe in Fig. 7.

2) Cloudlet Capacity Impact Experiments: Next we focus
on the case of uncorrelated arriving requests, i.e., equal prob-
ability of request generation for each class, and we illustrate
FogSpot performance as we increase the number of VMs at
Cloudlet 1 of the toy setting topology. Figures 8 and 9 show
the impact of VM quantity on the price and the effective rate of
SWM and RevM policies. Clearly, the effective/admitted rate
of SWM policy is strictly higher than that of RevM, since in
RevM each cloudlet trades its resource utilisation for a greater
price that leads to a higher revenue as we see in Fig. 10.

B. FogSpot Realistic Topologies Setting

Next we focus on FogSpot performance on realistic topolo-
gies.

Application categories for LLAs: In a real world setting,
the QoS of the LLAs is expressed as a decreasing function of
each cloudlet’s latency as perceived by an user [11], [34]. We
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assume that each LLA is characterised by a decreasing QoS
function of the latency having the general form:

u(x) =

(
umin

umax
+
(

1− umin

umax

)(
1− x− lmin

lmax

) 1
α

)
× umax.

(11)
The constants umax (umin) represents the maximum (min-

imum) QoS that the application user can achieve at the
minimum (maximum) latency lmin (lmax), i.e., u(lmin) = umax

and u(lmax) = umin. We set umax = 100 and lmin = 5 ms6

when it is not specified differently. Moreover, function u(·) is
convex for 0 < α ≤ 1; that is, we set α = 0.2 since LLAs’
QoS is expected to be more sensitive to latency changes closer
to lmin. We depict the QoS function for α values 0.2 and 1.0
in Fig. 11.

Based on Eq. 11, we create ten LLA categories, each associ-
ated to a QoS function that models a certain sensitivity of the
LLA to network latencies. We assign to the ten LLA categories
a unique umin value from the set: {0, 10, 20, . . . , 90}. In this
way, different application categories have different gains from
being provisioned at a cloudlet, varying in the best case from
10 for umin = 90 (less latency sensitive LLAs) to 100 for
umin = 0 (latency critical LLAs), when provisioned at the
edge. We consider the number of ten LLA categories sufficient
for the purposes of our evaluation since it is comparable to the
currently considered types in the context of IoT [7], [22] and
Tactile Internet [16]. We assume that users remain engaged
to their LLA instance on average for one minute, while
each user selects one of the ten LLA categories with equal

6With recent advances in LTE technology, mobile operators re-
ported handset-to-base-station latencies around 2 msec (RTT of 5
ms), see: http://news.itu.int/with-5g-looming-sk-telecom-reduces-lte-latency-
to-just-2ms
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probability, i.e., 10%. We execute the following experiments
for the duration of three hours.

Topologies: We evaluate FogSpot under:
• A Small Tree topology: We consider the setting of Fig. 12

that depicts a small binary tree of seven cloudlets placed
over three levels that create a round-trip-time to the cloud
equal to lmax = 290 ms. At each of the three leaf nodes,
we generate one request per second.

• An ISP topology: We use the Tiscali topology from the
Rocketfuel dataset [29] that contains 240 nodes and 404
links. Among the 240 nodes, we designate as hosts the 79
nodes that present a degree of one, i.e., they are connected
to only a single node of the topology. After that, we
place the cloud at the node with the highest closeness
centrality, i.e., shortest average distance, with respect to
all hosts. Then, each host is generating one request per
second forwarded to the cloud via the shortest, in terms
of latency, path. We place a cloudlet to each node of the
topology that belongs to at least a single shortest path
from a host to the cloud. As a result, there are 80 cloudlets
in the topology for reducing the cloud’s RTT latency that
on average is accessible at 155 ms from each host.

Comparison approaches: We compare RevM and SWM
policies of FogSpot against the following approaches:
• Static Provisioning: Cloudlets assign their VMs to appli-

cation instances according to their demand at once, i.e.,
an equal number of VMs is assigned to each LLA due
to the uniform request distribution we assume.

• Least Frequently Used (LFU) provisioning: Cloudlets
periodically assign their VMs to LLA instances, priori-
tising the ones with the highest observed demand, i.e.,
popularity. In this case, VMs are allocated first to the
most popular application, and the process continues with
second most popular etc., until all the VMs of a cloudlet

u
max

u
min

l
min

l
max

a =1

a = 0.2

Fig. 11: The QoS function we consider for each LLA category.

Fig. 12: Small Tree Topology.

are allocated. The number of VMs assigned to each
application is determined according to the number of both
the accepted and rejected requests by a cloudlet.

• Self-Tuning Provisioning: Cloudlets periodically assign
their VMs to LLA instances by prioritising the ones with
the highest QoS gain. In particular, this strategy iterates
through the applications, sorted in decreasing order of
QoS gain, and assigns the corresponding number of
unallocated VMs. This results with VMs being assigned
to applications that are willing to pay the most. The
number of VMs assigned to each application depends
once again on its observed demand.

The Static approach is a form of proactive provisioning,
since it relies on prior knowledge of the demand (i.e., request
volume) for each application, while LFU and Self-tuning
approaches perform reactive provisioning, as each cloudlet
periodically reassigns VMs to individual LLA instances based
on the request patterns received during the most recent ob-
servation period. We set the length of the observation period
to 6 minutes. Note that we consider a single LLA per LLA
category in order to give an advantage to the above-mentioned
approaches against FogSpot’s on-demand provisioning, other-
wise their performance could be arbitrarily deteriorated. For
example, by increasing the number of LLAs per category from
1 to 10, the utilisation of each cloudlet would decrease to the
10% of the currently achieved utilisation for the Static, Self-
tuning, and LFU provisioning with a negative impact on the
achieved QoS gain as well as cloudlets’ revenue. Lastly, in
order to perform a straightforward and fair comparison against
FogSpot, we assume that the comparison approaches leverage
a pay-as-you-go charging mechanism, identical to FogSpot,
where each cloudlet is associated to a price that equals the
lowest QoS gain over all the accepted LLA request classes at
a given location. In that way, we avoid creating application
specific prices that challenge requests’ bidding truthfulness
since they would pay different prices for identical VMs.

1) Cloudlet Capacity Impact Experiments: In this experi-
ment, we set ρthres = 0.9 and increase the number of VMs
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Fig. 13: Small Tree, Number of VMs impact.
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Fig. 14: ISP, Number of VMs impact.
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Fig. 15: Small Tree, Number of VMs impact, Average Idle
Time Percentage Per Layer, FogSpot SWM vs. RevM.

that are supported by each cloudlet for both topologies7. In
Fig. 13, we plot the QoS gain, Revenue, and Idle Time
percentage for various per-cloudlet VM quantities. Fig. 13a
depicts the QoS gain of the described approaches for the
small tree topology. Clearly, the QoS gain is an increasing
function of VM quantity for all strategies, i.e., the more
VMs the better, with FogSpot SWM and RevM consistently
achieving better QoS than the others by more than 10%. Self-
tuning approach comes next followed by Static provisioning,
which interestingly outperforms LFU. The reason is that under
the uniform request distribution assumption, it is better to
statically assign VMs according to their distribution instead
of attempting to host the currently most popular LLAs, as in
the case of LFU. Note that the performance of the comparison
approaches to FogSpot would be much worse if we consider
more LLAs per category.

7The exact value of ρthres is setting specific, and in our default evaluation
setting the value of 0.9 is chosen based on the performance diversification of
SWM and RevM policies, i.e., a low ρthres would force the SWM policy to
increase its idle time and eventually behave like the RevM one.

SWM and RevM FogSpot policies have identical perfor-
mance for up to 30 VMs per cloudlet. After that, RevM starts
trading the utilisation of cloudlets’ VMs for improving their
revenue (Fig. 13b) as opposed to SWM that aims the full
utilisation of VM resources, i.e., the minimum possible Idle
Time Percentage (Fig. 13c). In particular, RevM continues
increasing its revenue, in terms of X$, while the revenue
of SWM expectedly decreases. Specifically, for 70 VMs the
RevM policy has 4× higher revenue than the other approaches.
Regarding the remaining policies, Static and LFU present the
lowest revenues, since they do not consider the QoS gain for
their LLA provisioning, while Self-tuning and LFU demon-
strate the highest idle times, due to their reactive provisioning
nature that does not take into account the distribution of
requests.

A more detailed picture of how the idle time is propagated
to the higher levels of the topology is depicted in Fig. 15.
Each level has similar idle time for up to 35 VMs for both
SWM and RevM. After that, in RevM approach the idle time
starts increasing at Level 2, i.e., leaf nodes, affecting the higher
levels of the tree which in comparison to the SWM approach
present lower idle times, since more requests are rejected from
Level 2 and get forwarded towards the cloud.

In Fig. 14, we see similar trends for the default ISP topology
with FogSpot outperforming again the comparison approaches.

2) Impact of Cloudlet Resource Allocation Strategies: In
this section, we consider two resource allocation strategies
that determine how computation resources are assigned to
nodes in the network. First, we present an incremental de-
ployment scenario, where an increasing number of cloudlets
with identical resources are assigned one-by-one to a subset
of the nodes in the ISP topology. In the second scenario,
we consider a non-uniform allocation of resources, where
cloudlets with a varying amount of resources are deployed
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Fig. 16: ISP, incremental deployment of identical cloudlets of 40 VMs each.

over the ISP topology subject to a total budget of VMs. We
discuss the two allocation strategies and evaluate their impact
on the performance below.

Incremental Deployment: We consider a scenario where
identical cloudlets, in terms of VM capacities, are placed at
individual nodes starting from the most central ones. A node’s
centrality is computed according to the shortest-path between-
ness centrality metric; however, in the centrality calculation
we include only the shortest paths between the hosts and the
cloud, as opposed to all node pairs of the topology. As a
result, this allocation strategy deploys resources starting from
the nodes with the highest concentration of arriving requests.
In this scenario, we assume that each cloudlet has 40 VMs,
which is roughly the resource amount where SWM and RevM
policies diverge in terms of revenue as shown in Fig. 14b.

Fig. 16 depicts the performance of the strategies over a
range of 10 to 80 deployed cloudlets, with 80 indicating their
full deployment in the default topology. We observe that SWM
achieves the highest QoS among all the strategies while as
more cloudlets are placed over the topology, the QoS gap
between SWM and the rest of strategies marginally increases.
Expectedly, SWM also achieves the lowest overall idle time
(Fig. 16c) among all the strategies, while RevM achieves
the highest revenue (Fig. 16b) as observed in the previous
experiments. Furthermore, the idle time is roughly constant for
the RevM strategy as opposed to an upwards trend presented
by the rest of the strategies when resources are incrementally
deployed in a top-down fashion, i.e., starting from nodes near
the cloud and expanding towards the edges. We observed a dif-
ferent behaviour with the bottom-up incremental deployment
(using the reciprocal of centrality to select nodes) of cloudlets
with idle times decreasing as the number of cloudlets increases
due to lower concentration of arriving requests at the edges;
however, we omit those results due to space limitations.

Non-uniform Resource Allocation: In this scenario, given a
total computation budget in terms of number of VMs, we dis-
tribute the budget onto individual nodes (along shortest paths
from hosts to the cloud) corresponding to cloudlet locations
in the topology. We consider two ISP topologies in addition
to the default Tiscali: AT&T and Exodus from Rocketfuel
dataset [29]. AT&T (Exodus) topology is considerably larger
(smaller) than Tiscali with 216 (33) nodes and 248 (31)
hosts. Each host in all topologies generates approximately one
request per second.

Nodes obtain a share of the total VMs’ budget proportional
to their betweenness centrality, i.e., cloudlets located in central

nodes support more VMs, where the centrality is estimated
as in the incremental deployment allocation setting. For each
node, we obtain a number of VMs by probabilistically round-
ing up or down the ratio of node’s centrality divided by the
total centrality of all nodes in the network. In general few
nodes present a high centrality compared to the rest in each ISP
topology. Specifically, the Cumulative Distribution Function
(CDF) of VMs’ budget over the nodes assigned, sorted in
increasing centrality order, follows a long-tail distribution
where the ten most central nodes obtain approximately the
53%, 51%, and 46% of the resources’ budget in Exodus,
Tiscali, and AT&T topologies, respectively. We omit the CDF
plots due to space limitations.

We set the total VM budget in each ISP topology equal to
the product of the number of hosts and expected engagement
time (in secs) of requests. The reason is that we want to deploy
a sufficient amount of VMs for serving the corresponding
workload generated by the total number of hosts in each
topology, that contribute on average one LLA request per
second. Fig. 17 depicts the performance of the RevM, LFU,
Self-tuning and Static strategies over the three ISP topologies
using the non-uniform VM allocation. In the plots we include
only the RevM policy performance in order to demonstrate its
ability in trading idle time and QoS for achieving a highest
revenue in the case of a sufficiently deployed number of VMs.
We observe that RevM achieves better QoS, lower idle time,
and significantly higher revenue in all three topologies than
the rest of the strategies.

As expected, the QoS and idle time values remain consistent
for each strategy across the three topologies, as a result of
having a similar proportion of computation budget to the total
workload in each topology. On the other hand, the revenue
obtained by each strategy is proportional to the amount of
available VM resources. Consequently, each strategy attains
the highest (lowest) revenue in AT&T (Exodus) topology.

Self-tuning performs close to RevM in terms of QoS gain,
albeit obtaining a much lower revenue. As described before,
in Self-tuning, Static and LFU strategies, cloudlets charge
according to the lowest QoS gain of the accepted requests.
Self-tuning strategy aims to select the highest QoS applications
while keeping the utilisation of resources high. However, even
Self-tuning strategy fails to set an appropriate threshold price
that achieves a good balance between utilisation and revenue.
On the other hand, RevM strategy is able to make a selection
of price thresholds that achieve a reasonably better utilisation
of resources as well as a significantly higher revenue than the
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Fig. 17: 3 ISP topologies, Non-uniform Allocation of VMs.
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Fig. 18: Small Tree Topology, Engagement duration Impact,
Excess VMs availability, (Number of VMs 70).

rest of the strategies, in both scenarios of incremental and non-
uniform resource allocation. Note that as decreasing the VM
resources’ budget the benefits of FogSpot are amplified.

3) Impact of Engagement Duration: Next we investigate
the impact of LLAs engagement duration on the FogSpot
approaches performance. Specifically, we consider the case of
varying solely i) the highest (H.) demanding LLA category,
i.e., umin = 0 and maximum QoS gain 100, and ii) the least
(L.) demanding LLA, i.e., umin = 90 and maximum QoS gain
10. That is, we vary the average engagement duration of only
the most (or least) demanding LLA for each experiment while
we keep the engagement time stable for the other 9 LLAs.

In Fig. 18 we consider a setting where the number of VMs
is sufficient for serving the total number of requests in the
small tree topology, i.e., 70 VMs per cloudlet (as we see from
the idle time captured in Fig. 15). Clearly, only changes in the
duration of the most demanding LLA have an impact on the
average QoS gain, i.e., scenario H., for both SWM and RevM
approaches (Fig. 18a). That said, the revenue is affected only
for the RevM approach of scenario H., since scenario L. has
no impact on the revenue as it is captured in Fig. 18b. On the
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Fig. 19: Small Tree Topology, Engagement duration Impact
on Revenue, Limited VMs availability, (Number of VMs 10).

other hand, the revenue of SWM remains stable considering
that the supply of VMs exceeds the demand for resources.

The engagement duration impact is similar in the setting
where the number of VMs per cloudlet is limited, e.g.,
10 VMs, since again the QoS gain is influenced only by
changes in the most demanding LLA for both the SWM and
RevM FogSpot variations. However, in this scenario the most
demanding LLA is also affecting the revenue of the SWM
approach, Fig. 19, due to the fact that its requests are sufficient
for utilising the cloudlet resources. Our default ISP topology
presented similar trends.

VII. CONCLUSIONS

An increasing number of network applications with low
latency requirements render cloud provisioning unfit for pur-
pose. In this paper, we studied a market where applications
lease third-party cloudlet resources for provisioning their in-
stances. This is a promising research direction since it manages
to provision applications closer to their users, resulting in im-
proving users’ perceived latency, while compensating cloudlets
for their resource contributions.

Along these lines, we proposed FogSpot as an on-path,
on-demand market based provisioning mechanism. FogSpot
associates each cloudlet to a price that either targets to max-
imise cloudlet’s resource utilisation or revenue. FogSpot takes
explicitly into account the provisioning of heavily stateful
applications which once instantiated cannot be suspended
and/or migrated to another cloudlet location, without impairing
irreversibly the involved QoS. Our game theoretic analysis
showed that FogSpot can derive the optimal prices in an
uncoordinated way especially for the case of hierarchical
topologies. FogSpot advantages were demonstrated in a va-



14

riety of scenarios against proactive and reactive provisioning
techniques in realistic topologies.
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