
18 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

Adaptive Resource Management and Control
in Software Defined Networks

Daphne Tuncer, Marinos Charalambides, Stuart Clayman, and George Pavlou

Abstract—The heterogeneous nature of the applications, tech-
nologies and equipment that today’s networks have to support
has made the management of such infrastructures a complex task.
The Software-Defined Networking (SDN) paradigm has emerged
as a promising solution to reduce this complexity through the
creation of a unified control plane independent of specific vendor
equipment. However, designing a SDN-based solution for network
resource management raises several challenges as it should exhibit
flexibility, scalability and adaptability. In this paper, we present
a new SDN-based management and control framework for fixed
backbone networks, which provides support for both static and
dynamic resource management applications. The framework con-
sists of three layers which interact with each other through a set
of interfaces. We develop a placement algorithm to determine the
allocation of managers and controllers in the proposed distributed
management and control layer. We then show how this layer can
satisfy the requirements of two specific applications for adaptive
load-balancing and energy management purposes.

Index Terms—Software defined networking, adaptive resource
management, decentralized network configuration.

I. INTRODUCTION

THE evolution of information and communication technol-
ogy (ICT) over the past thirty years has heavily influenced

the life of the modern consumer. The crucial role played by
ICT today has catered for a persistent demand in terms of
new services and applications with strict requirements in terms
of availability, service quality, dependability, resilience and
protection. This has resulted in increasingly complex networks
and software systems that need to support heterogeneous appli-
cations, technologies and multi-vendor equipment, making the
management of network infrastructures a key challenge.

The vision of Software-Defined Networking (SDN) as a key
enabler for simplifying management processes has led to keen
interest from both the industry and the research community,
who have been investing significant efforts in the development
of SDN-based solutions. SDN enables the control of networks
via a unified plane which is agnostic to vendor equipment and
operates on an abstract view of the resources. Among its advan-
tages, flexibility and programmability are usually highlighted,

Manuscript received November 15, 2014; revised February 2, 2015; accepted
February 5, 2015. Date of publication February 11, 2015; date of current
version March 17, 2015. This research was funded by the EPSRC KCN project
(EP/L026120/1) and by the Flamingo Network of Excellence project (318488)
of the EU Seventh Framework Programme. The associate editor coordinating
the review of this paper and approving it for publication was F. De Turck.

The authors are with the Department of Electronic and Electrical Engineer-
ing, University College London, London WC1E 7JE, U.K.

Digital Object Identifier 10.1109/TNSM.2015.2402752

in addition to simplification of management tasks and applica-
tion deployment through a centralized network view [1]–[3].

Centralized management and control solutions have, how-
ever, limitations. In addition to resilience, scalability is an
important issue, especially when dealing with operations that
require dynamic reconfiguration of network resources. Central-
ized approaches are generally well-suited for implementing the
logic of applications for which the time between each execution
is significantly greater than the time to collect, compute and
disseminate results. As a consequence, adaptive management
operations with short timescales call for both distributed man-
agement and control approaches, which are essential enablers
of online resource reconfigurations.

In this paper, we present a novel SDN-based management
and control framework for fixed backbone networks. The pro-
posed framework, based on SDN principles, follows a lay-
ered architecture where the communication between layers
is achieved through a set of interfaces. Although different
approaches have been proposed in the literature, these have
either mainly focused on the control plane (e.g, [4], [5]) or
considered centralized management solutions (e.g., [6], [7]).
In contrast, the framework presented in this paper relies on a
distributed management and control layer, which consists of
a set of local managers (LMs) and controllers (LCs) forming
separate management and control planes. The modular structure
of this layer is a salient feature of our approach. This not
only simplifies the integration of management applications, but
also offers significant deployment benefits, allowing control
and management functionality to evolve independently. For
example, management and control components from different
vendors can be used together, but also the functionality of
management applications can be updated without disrupting ac-
tive network services. The degree of distribution in each plane
(number of elements) depends both on the physical infrastruc-
ture as well as the type of management applications to consider.
The exchange of information between distributed elements in
each plane is supported by the management substrate developed
in our previous work [8], [9].

We investigate how the proposed framework can be used
to support adaptive resource management operations which
involves short timescale reconfiguration of network resources,
and we discuss the main research issues/challenges associated
with the deployment of such a distributed solution. In particular,
we show how the requirements of the adaptive load-balancing
and energy management applications proposed in our previous
work [10]–[12] can be satisfied by the functionality and inter-
faces of the framework. In addition, we develop a placement
algorithm to determine the allocation of LMs and LCs (both

1932-4537 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

TUNCER et al.: ADAPTIVE RESOURCE MANAGEMENT AND CONTROL IN SOFTWARE DEFINED NETWORKS 19

TABLE I
MAIN ACRONYMS

in number and mapping to network equipment) according to
topological characteristics of the physical infrastructure. Based
on real network topologies, we show how the parameters of
the algorithm can be tuned to control the allocation. We also
evaluate the performance of the load-balancing and energy
management applications in terms of resource utilization based
on real traffic traces and compare their performance to different
schemes. The results demonstrate that a significant reduction
in terms of link utilization and energy consumption can be
achieved in a scalable manner.

The remainder of this paper is organized as follows.
Section II provides background information. Section III de-
scribes the main components and interfaces of the proposed
framework and highlights the operations performed by each
component. Section IV presents the placement algorithm. An
overview of the adaptive resource management applications
is provided in Section V. Section VI describes in detail how
the requirements of these applications are supported by the
proposed framework. The results of the evaluation are presented
in Section VII and Section VIII discusses related work. Finally,
conclusions and future directions are provided in Section IX.

II. DEFINITIONS AND BACKGROUND

In this section, we first define some of the basic terms and
notations used in this paper and give background information
on SDN. We also present the network management substrate,
which forms the communication basis of the proposed archi-
tecture. In the last sub-section, we provide information about
Multi-Topology Routing which serves as the routing mecha-
nism for achieving path diversity in the context of the two man-
agement applications considered in this work. For clarification
purposes, the main acronyms used in this paper are summarized
in Table I.

A. Definitions

We consider network topologies represented by the sets of
network links L and nodes N . We refer to network edge nodes
as the set of nodes generating and absorbing traffic and we
represent this set by NE. We refer to all other nodes as core
nodes. For any pair of edge nodes (i, j) ∈ NE, sdij represents
the source-destination pair of source node i and destination
node j. Each sdij is associated with a volume of traffic v(sdij)
that represents the traffic demand between source node i and

destination node j. We define the traffic flow F (sdij) as the
2-tuple (sdij, v(sdij)) and the set of traffic flows φi locally
originating at edge node i ∈ NE as follows:

∀ i ∈ NE, φi = {F (sdij), j ∈ NE} (1)

B. Software-Defined Networking

The main principle of SDN lies in the decoupling of network
control from forwarding hardware [13]. In the SDN architec-
ture, physical network devices are represented as basic forward-
ing elements (usually referred to as switches), forming a data
plane, and are supervised by a network-wide control platform
consisting of a set of software components (the controllers)
[5]. The control platform can be seen as a logically centralized
control plane which operates on a global network view and
which implements a range of control functions. The controllers
interact with the switches via a standardized interface which
is used to collect network state information and distribute
control commands to be enforced in the network. The existence
of a standard interface enables the separation of the control
and forwarding logic and, as such, supports the independent
evolution of both planes.

Although there is no formal requirement for the choice of
the interface to use, OpenFlow [14] has progressively imposed
itself as the de facto standard given the massive support from
both academia and industry [3]. As stated in its specifications,
it provides an open protocol to define the basic primitives for
programing the forwarding plane of network devices [13]. In
the OpenFlow model, the network traffic is identified as a set
of flows which are defined according to a set of pre-defined
match rules instantiated by the controller in the flow tables of
the switches. Each flow is associated with a set of instructions
used to control how traffic should be routed and treated in the
network.

Recently, the Open Networking Foundation (ONF) has pre-
sented an architecture for SDN in a technical report [15]. The
proposed architecture consists of the following three planes:
(i) a data plane, comprising the set of network elements,
(ii) a controller plane, with a set of SDN controllers which have
exclusive control over a set of network resources, and (iii) an
application plane, implementing a set of network/management
applications which are executed through the control plane. The
communication between the planes is realized in a hierarchical
manner through a set of interfaces.

C. Network Management Substrate

In our previous work [8], [9], we developed an in-network
management approach for fixed backbone networks, in which
an intelligent substrate is used to enable the dynamic recon-
figuration of network resources. Compared to traditional man-
agement solutions, where reconfigurations are decided offline
by a centralized management system that has a global view
of the network, reconfiguration decisions are directly taken in
a decentralized and adaptive fashion by the decision-making
entities distributed across network edge nodes, based on peri-
odic feedback from the network. The decision-making entities
are organized into a management substrate (MS), which is a

20 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

logical structure used to facilitate the exchange of information.
In particular, it is used for coordination purposes since it
provides a means through which decision-making points can
communicate.

Any node in the substrate can directly communicate only
with its neighbors, which are defined by the topological struc-
ture used. The choice of this structure can be driven by different
parameters related to the physical network, such as its topology,
the number of edge nodes, but also by the constraints of the
coordination mechanism between the nodes and the associated
communication protocol. The overhead incurred by the com-
munication protocol in terms of delay and number of messages
exchanged, for example, is a key factor that can influence the
choice of the structure [9].

D. Multi-Topology Routing

To achieve their objectives, most resource management
approaches employ routing protocols that can support path
diversity. Multi-Topology Routing (MTR) [16], [17] is a stan-
dardized extension to the common Interior Gateway routing
Protocols, i.e., OSPF and IS-IS, which can provide a set of
multiple routes between any source-destination (S-D) pair in
the network by enabling the virtualization of a single physical
network topology into several independent virtual IP planes.

To determine to which topology packets need to be routed,
these are marked at network ingresses with the Multi-Topology
Identifier (MT-ID) of the routing topology to which the corre-
sponding traffic flows have been assigned. A separate routing
table needs to be implemented for each topology (i.e., routing
scheme) in each router, so that upon receiving a traffic flow, the
router analyzes the MT-ID marked in the packets and forwards
the packets to the next-hop according to the relevant routing
table [18]. The configuration of the different virtual planes is
part of an offline process which computes a set of desired IP
virtual topologies given the physical network topology.

Splitting ratios, enforced at network ingresses, can subse-
quently control the portion of an incoming traffic flow to be
routed over each of the virtual planes.

III. MANAGEMENT AND CONTROL FRAMEWORK

Resource management in fixed networks is usually per-
formed by external offline centralized systems, which optimize
network performance over long timescales. Typically, the cen-
tral manager operates on a global view of the network, which
facilitates the implementation of management applications.
However, while centralized/offline solutions are adequate for
network operations that do not require frequent reconfig-
urations (e.g., computation of MTR planes), they are not
appropriate for applications that adapt to traffic and network
dynamics (e.g., online traffic engineering). In addition to the
single point of failure, these approaches have limitations es-
pecially in terms of scalability (i.e., communication overhead
between the central manager and devices at runtime) and lag in
the central manager reactions, which may result in sub-optimal
performance. To overcome these limitations, dynamic man-
agement applications and control should rely on a distributed
framework. In this section, we present a hierarchical resource

Fig. 1. Proposed framework.

management and control framework for fixed backbone infras-
tructures in the context of SDN environments.

A. Architecture

In the proposed framework, the network environment is con-
ceptually divided into three layers as shown in Fig. 1. The bot-
tom layer represents the physical infrastructure, which consists
of network switches1 and links, and can be defined as the data
or forwarding plane. The second layer consists of a set of local
controllers (LCs) and managers (LMs), forming the distributed
control and management planes, respectively. Finally, the third
layer represents the centralized management system.

A key characteristic of the proposed framework is its modular
nature, which enables the separation between the management
application logic (represented by LMs) and the control logic
(represented by LCs). As a result, this allows the two to evolve
independently, offering increased design choices and flexibility
for the system vendors, as well as simplified integration of
network applications, while maintaining interoperability.

More specifically, the LCs and LMs are software components
which are in charge of controlling and managing the network
resources (i.e., switches and links), respectively. Each LC is
responsible for a set of network switches, which define its scope
of control, so that a network switch is controlled by one LC
only. In addition, each LC is logically associated with one or
more LMs. The LMs implement the logic of management appli-
cations (e.g., traffic engineering) and are responsible for making
decisions regarding the settings of network parameters—for
example to compute new configurations that optimize resource
utilization—to be applied in the switches under their respon-
sibility. To take management decisions, the LMs communicate
through the management substrate, as described in Section II-C
and shown in Fig. 1. The substrate, which was proposed in our
previous work [8], is implemented as an integral part of the
framework and is used by LMs to exchange information about
the network state and the configurations to apply. Configuration

1In this paper, we assume that each network node is represented by an
OpenFlow switch.

TUNCER et al.: ADAPTIVE RESOURCE MANAGEMENT AND CONTROL IN SOFTWARE DEFINED NETWORKS 21

decisions taken by LMs are provided to peering LCs, which
define and plan the sequence of actions to be enforced for up-
dating the network parameters. These actions are then mapped
to OpenFlow instructions sent-to and executed-by the switches.
It is not the intention of this paper to propose a specific planning
mechanism and mapping functions. These are implementation
choices that depend on the type of inputs from the management
applications. The separation of concerns between LMs and LCs
provides significant deployment benefits since changes can be
applied to LMs in an operational environment independently
of the LCs and vice versa. In particular, replacing or updating
the management logic can be achieved without stopping the
network as LCs can rely on existing rules.

The number of LMs and LCs to deploy, as well as the
association between the two, can depend on different factors
such as the size and topology of the physical network, or the
type of management applications to support. In this paper, we
adopt a configuration similar to the one depicted in Fig. 1. We
consider an equal number of LCs and LMs and a one-to-one
mapping between them. In addition, LCs and LMs interact with
the same set of switches, i.e., there is a perfect overlap between
their zones of responsibility. As shown in Section VI, such a
model is well suited to the resource management application
scenarios investigated in this paper.

The centralized management system consists of two com-
ponents, namely, the Local Controller Orchestrator (LCO),
which supervises all LCs, and the Local Manager Orchestrator
(LMO), which supervises all LMs. These are responsible for
longer term operations, for example those that pertain to the life
cycle of LMs and LCs. In particular, they are used to determine
the number of LMs and LCs to deploy, their location, as well as
their zone of responsibility.

It should be noted that the proposed architecture is compati-
ble with the generic ONF SDN model [15]. However, while the
report does not elaborate on the specifics of each layer, we go
a step further in this paper by investigating the issues that arise
from the requirements and realization of the functionality of
such an architecture. In particular, we investigate how the dis-
tributed management and control planes can support dynamic
operations.

B. System Design and Interfaces

The three layers of the proposed architecture are realized
with a set of functional components and interfaces that facilitate
the interaction/communication between the various compo-
nents. These are depicted in Fig. 2 and elaborated below.

1) Functional Components: From an architectural viewpoint,
the system can be decomposed into four main components.

Central Management System The functionality of the cen-
tral management system pertains to long term management
operations. The LM Substrate Orchestrator module implements
methods to compute the structure of the management substrate.
The Application Orchestrator module is responsible for per-
forming a high-level control of the management applications
which are instantiated in the network. In particular, this module
decides how the logic of each application should be distributed
across the different LMs (i.e., to select the LMs which need to

Fig. 2. Overview of system components and interfaces.

be involved in the decision-making process of a given applica-
tion). The LC Substrate Orchestrator module is concerned with
the supervision of LCs. The decisions taken by the central man-
agement system rely on information obtained from the Global
Network View, which maintains a global knowledge about the
environment, such as the physical network topology. It should
be noted that, in this work, we do not elaborate on issues
associated with gathering such information and generating a
global network view. This component is included in Fig. 2 for
completeness purposes to illustrate how this view can be used
by other components of the framework.

Local Manager From a functional viewpoint, a LM can be
represented by three main modules. The Monitoring Module is
concerned with functions related to network monitoring, such
as data collection, filtering, aggregation etc., and in particular,
it enables each LM to create its own local network view.
Furthermore, it also allows the LM to maintain consistency with
the network view of other LMs. Network information collected
and generated by the Monitoring Module can be stored on the
local memory of the LM. The logic to perform management
operations is realized by Management Application Modules,
which maintain information tables and implement algorithms
to decide on the configurations to apply. A module is defined
for each management application and each LM can implement
a different number of applications. The decision of whether a
module should be instantiated on a given LM is made by the
Application Orchestrator and depends on the application type.
Finally, the Routing Module implements basic methods related
to the routing functionality (e.g., shortest path computation).

Local Controller An instance of a LC is represented by
three main modules. The Storage Module consists of a set of
local storage structures, which are used to maintain information
received from the LMs regarding the configuration output of
management applications. Based on this information, the Plan-
ning Module determines the actions to take to (re)configure
the switches, for example, according to mapping functions.
This also encompasses scheduling methods to decide on how
and when actions should be applied. The Execution Module
is responsible for translating the planned actions into a set of

22 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

configuration commands (e.g., OpenFlow) to be enforced in the
switches.

Switch The basic functionality of the network switches is
forwarding. In the context of OpenFlow, switches perform
packet lookups and forwarding. They are represented by one
or more Flow Tables and an OpenFlow channel to an external
controller [14]. Each table entry is mapped to a flow and is as-
sociated with a set of instructions to apply to matching packets.
The number of tables to configure, as well as their structure, de-
pends on the nature of the management applications supported
by the system. It should be noted that different applications
may have different requirements in terms of structures and
capabilities to be embedded in the switches (e.g., support for
hashing functions).

2) Interfaces: Some previous research initiatives on SDN
(e.g., [1], [15]) have used the notion of northbound/southbound
to refer to the different interfaces. The relevance of such a
terminology presupposes, however, that the controller(s) can be
regarded as the focal element(s) of an SDN architecture. In the
proposed framework, both LMs and LCs act as the focal points
and, as such, we define the name of the various interfaces based
on the identity of the interacting components instead.

The interaction between the different components of the
proposed architecture is supported by the interfaces shown in
Fig. 2. The communication between the orchestrator compo-
nents (LMO and LCO) and the LMs and LCs is supported
by the O-M and O-C interfaces, respectively. The exchange of
messages between the LMs and the LCs, for example regarding
new configurations computed by the management application
modules, is supported by the M-C interface. The M-S interface
is defined between the LMs and the switches. It serves monitor-
ing purposes, so that each LM can build its own local view of
the network by directly collecting information from the set of
switches under its responsibility. Since the network information
is primarily needed by the LM, the M-S interface bypasses the
LC to avoid additional processing and delay. Finally, the inter-
action between the LCs and the switches is supported by the
C-S interface. Switches can report network events to the LCs,
which, in turn, instruct them about configuration updates to
apply (e.g., modification of table entries). This interface can be
realized by the OpenFlow protocol, however, extensions will be
required to enable the configuration of more than one table type.

C. Operations

This subsection provides a detailed description of the main
operations performed by each component of the architecture.

Management Operations The main difference between the
management operations performed by the central management
system and the LMs concerns the timescale at which they are
executed. The central management system performs long term
operations, which concern the computation of static config-
urations based on a global view of the network (e.g., con-
nectivity/topology). These rely on a set of algorithms, which
are usually invoked at long timescales (e.g., in the order of
days/weeks) and are executed in an offline manner. The place-
ment of LMs and LCs, the organization of the management
substrate and the computation of virtual MTR planes are ex-

amples of such operations. To take management decisions, the
central manager uses network-wide information maintained by
the Global Network View component. This stores information
related to the network topology, as well as to the structure of
the distributed management and control planes. Any changes in
the environment (e.g., node failure) are reported to the central
system since these can affect the current settings and should
subsequently trigger appropriate reconfigurations.

Short to medium term management operations are performed
by the LMs in the distributed management plane. Short term
operations are concerned with management decisions taken in
the order of seconds/minutes, with failure recovery mechanisms
and adaptive splitting ratio reconfiguration algorithms being
representative examples. In contrast, medium term operations
deal with configurations which need to be updated less often
(e.g., every few hours), such as the route computation between
two nodes. The decisions can be taken independently by each
LM based on local knowledge of the network, which is acquired
from switches under their responsibility. However, to avoid
configuration inconsistencies, the LMs may also coordinate
their decisions through the management substrate. In particular,
they can exchange information available locally about network
statistics. The characteristics of the coordination process are
application-specific.

Control Operations Control operations are performed by
the LCs on switches under their scope of control, based on
directives received from the LMs. More specifically, the LCs
are responsible for configuring the entries of the tables imple-
mented in the switches by deciding which entry(ies) should be
installed, removed or updated, and also when possible changes
should be applied. They act as intermediate entities between
LMs and switches, capable of translating the decisions of the
management modules into commands to be executed to modify
table entries in the switches. In addition, LCs can also control
which configurations should be applied and when. For instance,
a LC may decide to instantiate entries for a subset of the flows
to satisfy the memory capacity constraint defined for a table.
Configurations that are not directly enforced are stored in the
local Storage Module.

At the network level, each incoming packet is matched
against entries in successive tables implemented in the switches
based on rules. These define whether the packet satisfies some
characteristics (i.e., belonging to a given traffic flow). In case
of a positive match, the actions defined for the matching entry
are added to the action set associated with the packet. In case
the packet does not match any entry, it is sent to the relevant
LC through the C-S interface to determine how it should be
processed. Upon receiving a packet request, the LC defines the
set of actions to be applied based on the configurations stored
in the Storage Module and instantiates the corresponding new
table entries in all the switches under its zone of control.

IV. LOCAL MANAGER/CONTROLLER PLACEMENT

A key deployment aspect of the decentralized management
and control planes is the distribution of LCs and LMs. It was
recently argued by Heller et al. in [19] that one of the key
parameters to take into account when designing a SDN-based

TUNCER et al.: ADAPTIVE RESOURCE MANAGEMENT AND CONTROL IN SOFTWARE DEFINED NETWORKS 23

architecture for large networks (i.e., WAN) is the propagation
delay between the controller(s) and the network devices. In the
case of the architecture proposed in this paper, a “good” config-
uration can be thought, from a qualitative point of view, as one
that can reduce the communication delay between the LM/LCs
and the network components without significantly increasing
the management overhead (e.g., due to the coordination be-
tween LMs). For instance, while assigning a LM/LC to each
network switch can optimize the communication delay, this
may also significantly affect the complexity of the coordination
mechanism required to harmonize management decisions (i.e.,
volume of messages and delay).

In this section, we present an approach to compute the
placement of LCs and LMs in the distributed management and
control planes for the specific case depicted in Fig. 1, where
the mapping of LCs to LMs is one-to-one. Given a network
topology, the approach aims at determining the number of
LM/LCs to deploy, their location, as well as the switches these
are connected to, with the objective of minimizing the distance
(in terms of hop count) between the switches and the LM/LCs.
To avoid overloading the text, we use the term LC to refer to
the pair LM-LC in the rest of this section.

A. Placement Algorithm

The placement problem can be formulated as an uncapaci-
tated facility location problem, which is known to be NP-hard.
It has been addressed in several application domains, ranging
from the selection of network service gateways (e.g., [20]) to
the deployment of sensor networks (e.g., [21], [22]). In this
work, we develop an approach based on a modified version of
the leader node selection algorithm proposed by Clegg et al.
in [23], which more closely relates to our application scenario.
The algorithm, called Pressure, aims at determining, given a
dynamic network environment, the subset of nodes on which
to install monitoring points to minimize the average distance
(in terms of hop count) between the monitoring entities and
the network nodes. While Pressure has a similar objective to
the one considered here, it was originally designed for dynamic
network topologies and cannot be directly applied to the LC
placement problem. To account for the requirements of a static
topology, we modify the logic of Pressure and extend it to
incorporate an initialization step and a terminating condition,
which are essential in this case. The output of the new algo-
rithm, which we refer to as PressureStatic, provides the number
of LCs to deploy, their location, as well as the configuration of
their mapping to network switches.

More specifically, PressureStatic follows a greedy approach,
where the LCs are iteratively added in the network one-by-one.
The main principle is to select, at each step, the location at
which, if a LC is installed, will lead to the largest reduction
in terms of average distance. To decide on the location, the
algorithm maintains a list of locations at which it is still possible
to install a LC and, at each step, it calculates the Pressure
score of the node i associated with each of these locations as
follows [23]:

P (i) =
∑

j∈N
max(0, lj − di,j) (2)

TABLE II
NETWORK CHARACTERISTICS

where for all j in N , lj represents the distance between node j
and the LC to which it is currently connected and for all i and
j in N , di,j is the distance from node i to node j. The node
with the highest score is then selected to attach the next LC and
based on the updated list of selected locations, the algorithm
finally determines to which LC each network node should be
logically connected, so that a node is connected to its closest
available LC.2

B. Algorithm Initialization and Terminating Condition

1) Initialization: Due to the greedy nature of the Pressure-
Static algorithm, the order according to which LC locations are
selected can affect the resulting configuration. Given that this
is directly driven by the choice of the first placement location,
the objective of the initialization step is to determine how to
best select this location. In practice, different strategies can be
implemented, ranging from simple random selection methods
to more sophisticated approaches which can take into account
some topological characteristics of the locations. We analyze
and discuss in detail the effects of the initialization step in
Section VII.

2) Terminating Condition: Given that the objective of the
proposed placement algorithm is to minimize the average dis-
tance of LCs to switches, the optimal configuration would be
the direct one-to-one mapping of LCs to network switches.
However, as previously explained, a fully distributed solution
has inherent limitations in terms of scalability. The purpose
of the terminating criterion is to provide a condition under
which no more LC should be added to the network. To derive
such a condition, we build upon the observations formulated
by Heller et al. in [19], in which they investigated, for a wide
range of network topologies, the "ideal" number of controllers
to deploy to minimize the controller-to-switch communication
latency. It was shown that, in most cases, the gain in terms of
latency reduction tends to decrease as the number of controllers
increases.

To evaluate the performance of PressureStatic with respect
to the distance reduction improvement with the introduction
of a new LC, we first define the terminating condition as a
constraint on the maximum number of LCs to deploy. As such,
the algorithm stops when the number of selected LCs is equal
to the maximum authorized value. We then apply the algorithm
to the four networks presented in Table II.

For each network, we vary the maximum authorized value
from 1 to the total number of nodes in the topology and deter-
mine, for each case, the resulting average distance. We note D̄k

the average switch-LC distance in case the total number of LCs

2It should be noted that a network node is connected to one LC only.

24 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

Fig. 3. Evolution of the value of τk+1 with the number of LCs.

is equal to k. To measure the benefit of having multiple LCs,
we then define, for all k in [2;N], the parameter ωk as follows:

∀ k ∈ [2;N], ωk =
D̄k

D̄1
(3)

ωk represents the gain, in terms of distance reduction, when
using k ≥ 2 LCs compared to the case where only one LC is
used. Based on the ωk values, we then define, for all k in [2;N],
the parameter τk+1 as follows:

∀ k ∈ [2;N − 1], τk+1 =
ωk+1 − ωk

ωk
. (4)

The value τk+1 represents the improvement, in terms of
distance gain, when an extra LC is added to the network. Fig. 3
shows the evolution of the τk+1 values for the four considered
topologies. As observed, all networks follow the same trend—
the improvement in terms of distance gain reduction rapidly
decreases until reaching a stage where it slowly converges to
zero. These results corroborate the observations formulated in
[19] and show that when reaching a certain number of LCs, the
addition of an extra LC does not yield significant benefits in
terms of average LC-to-switch distance reduction.

Based on these results, we define the terminating condition
according to a threshold imposed to the gain improvement τk+1.
The algorithm terminates if the value of τk+1 is smaller than
the input threshold. We further investigate the influence of the
threshold value in Section VII. It should be noted that with the
proposed approach, the minimum number of selected LCs is
always equal to 2 and that the introduction of a new LC always
leads to a positive improvement (i.e., reduces the average
distance). The pseudo-code of the PressureStatic algorithm is
presented in Fig. 4. Its time complexity is dominated by the
number of nodes in the network, i.e., O(N2).

V. ADAPTIVE RESOURCE MANAGEMENT

Initial demonstration of management applications in SDN
environments relied on centralized solutions (e.g., [7], [28]).
While these are well-suited for computing long term network
configurations, they have limitations which make them un-
able to efficiently deal with dynamic resource reconfigura-
tions. Adaptive resource management approaches call for the
development of distributed solutions. In our previous work,

Fig. 4. Pseudo-code of the PressureStatic algorithm.

we investigated a new approach to support dynamic resource
reconfiguration functionality in the context of load-balancing
(LB) [10], [11] and energy efficiency management (EM) [12]
applications. This section describes the main characteristics of
the proposed approach.

A. Management Functionality

The resource management decision process is distributed
across the network edge nodes, which are organized into
a management substrate (Section II-C) and embedded with
dedicated management logic that enables them to perform
reconfigurations based on feedback regarding the state of the
network. More specifically, based on path diversity provided
by MTR, the reconfiguration decisions of both applications
concern the traffic splitting ratios applied at network ingresses
so that individual objectives are met.

In the case of the LB functionality, the objective is to balance
the load in the network by moving some traffic away from
highly utilized links towards less utilized ones to disperse traffic
from hot spots. In order to minimize the maximum utilization in
the network, the load-balancing algorithm iteratively adjusts the
splitting ratios of the traffic flows, so that traffic can be moved
away from the link with the maximum utilization lmax.

Exploiting the fact that many links in core networks are
bundles of multiple physical cables [29], the objective of the
EM approach is to offload as many router line cards (RLCs) as
possible, which can subsequently enter sleep mode. RLCs can
be full if their load is equal to their capacity, utilized if their
load is not zero and less than their capacity, and non-utilized if
they have zero load. One of the key decisions when adjusting
the splitting ratios concerns the bundled link to consider for
(a) removing traffic from, and (b) assigning that traffic to.
This decision is based on a ranked list of all utilized RLCs in
the network according to their load. Traffic load is iteratively
moved from the least utilized RLC to more utilized ones that
can accommodate this load and thus potentially fill-up their re-
maining capacity, without activating new RLCs in the process.

The adaptation of the splitting ratios for both applications is
performed in short timescales, for instance, every 15 minutes.

B. Adaptation Process

To adjust the splitting ratios of network traffic flows, both
applications rely on an adaptation process, which is an iterative

TUNCER et al.: ADAPTIVE RESOURCE MANAGEMENT AND CONTROL IN SOFTWARE DEFINED NETWORKS 25

process triggered periodically by the nodes in the substrate (i.e.,
managers). It consists of a sequence of reconfiguration actions
decided in a coordinated fashion.

To prevent inconsistencies between concurrent traffic split-
ting adjustments, these are made in a collaborative manner
between nodes involved in the process, so that only one node is
permitted to take reconfiguration decisions at a time. The node
selected at each iteration, which we refer to as the decision-
making point, is responsible for executing locally a reconfigu-
ration algorithm, which tries to adapt the splitting ratios of local
traffic flows (i.e., originating at the corresponding edge node) so
that the resource optimization objective can be met.

To select a unique decision-making point, each node in the
substrate is associated with an unique identifier. This can be
defined based on the actual network identifier of the node (e.g.,
address) or determined according to some of the characteristics
of the node, for example with respect to its local traffic flows.
The identifiers are used to compute a ranked list of nodes,
which is made available at each node in the substrate using
the communication protocol defined in [9]. The node with the
highest identifier is initially chosen to be the decision-making
point. Upon completing the reconfiguration locally, it sends
a message to the next node in the list (i.e., node with the
second highest identifier), which then becomes the decision-
making point for the next reconfiguration interval, and so on.
The adaptation process terminates if no further adjustments can
be performed or if the algorithm reaches the maximum number
of permitted iterations, which is a parameter of the system.

C. Reconfiguration Algorithm

The reconfiguration algorithm is executed by the decision-
making point at each iteration of the adaptation process. It
follows a greedy process that successively recomputes the
splitting ratios of the local traffic flows of the decision-making
point. Based on information available locally and received from
other nodes in the substrate, the algorithm determines the link
lrem from which traffic should be removed. In case of the LB
approach, this is the link with the maximum utilization, while
for the EM approach, this is the link with the least utilized RLC.
The algorithm then tries to adjust the splitting ratios of the flows
which contribute to the load on lrem to move traffic away from
the link. The outcome of the algorithm at each iteration is either
positive, which means that part of a local flows can be diverted
from lrem, or negative if this is not possible.

The algorithm first identifies the local traffic flows that can
be diverted from lrem. In particular, a flow qualifies if it is
routed over lrem in at least one virtual topology but not all
topologies, i.e., there exists at least one alternative topology
in which the traffic flow is not routed over lrem. Those flows
are then considered iteratively until the first one that can lead
to an acceptable configuration is determined. In this case, the
splitting ratios of the set of topologies in which a flow is
routed over lrem are decreased by a factor δ− while others
are increased by a factor δ+. The process terminates when
no further local adjustments can be performed. The pseudo-
code of the reconfiguration algorithm is presented in Fig. 5. Its
time complexity is theoretically defined by the number of local

Fig. 5. Pseudo-code of the reconfiguration algorithm.

traffic flows to reconfigure and is in the order of O(N2) in the
case of a PoP-level topology with N nodes.

VI. MANAGEMENT APPLICATION REQUIREMENTS

In this section, we show how the requirements of the two
adaptive resource management applications described in the
previous section can be satisfied by the functionalities and
interfaces of the proposed SDN architecture.

A. Local Manager Substrate

As described in Section III-C, short to mid term management
decisions are taken by the LMs organized into a management
substrate. In practice, the range of operations that a LM can
perform depends on the Management Application modules
which the LM implements. Whether a LM should be involved
in the decision-making process of a given application is driven
by the characteristics of the switches (e.g., edge/core switch)
under its responsibility.

To enable the proposed adaptive resource management ap-
proach, two functions need to be supported by a LM. The
first one concerns routing decisions, which are taken by a
Route Management Application (RMA) module and the second
concerns the reconfiguration of splitting ratios, which is im-
plemented by an Adaptive Resource Management Application
(ARMA) module (one instance of RMA and ARMA per appli-
cation). The configuration used in this paper assumes that the
allocation of LMs is driven by the placement of LCs, in which
case each LM is responsible for the set of switches attached to
its peer LC. As such, two scenarios can be considered:

• the switches under the responsibility of a LM are core
switches only. In this case, the LM implements the RMA
module only.

• there is at least one edge switch under the LM respon-
sibility. In this case, the LM implements both the RMA
and ARMA modules and is responsible for configuring
the splitting ratios of the local traffic flows of all the edge
switches to which it is connected.

26 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

Fig. 6. Adaptive Resource Management Application module.

To realize the functionality of a given application, the LMs
involved in the decision-making process may need to communi-
cate through the management substrate. In the case of multiple
applications, a separate management substrate needs to be
computed for each application and implemented in the relevant
ARMA module. Each substrate defines the set of neighbors of
the LMs and their substrate identifier. These identifiers are used
by the ARMA module to compute the ordered list of nodes in
the substrate and to select the decision-making point at each
iteration of the adaptation process (see Section V-B).

B. Management Application Functionality Requirements

Long Term Configurations Long term configurations are
computed by the centralized management system. In the context
of the resource management scenario considered here, these
concern the computation of the MTR planes and the structure
of the substrate associated with each management application.
The MTR plane computation algorithm is executed in an offline
fashion by the Application Orchestrator. Based on information
retrieved from the Global Network View component about
the physical network topology, the algorithm determines the
number and structure of the virtual topologies needed to satisfy
the path diversity requirements. The configuration of each plane
is then passed to the RMA module of all LMs through the O-M
interface. The structure of each substrate is computed by an of-
fline algorithm implemented in the LM Substrate Orchestrator.
The resulting structure information is passed to the RMA and
ARMA modules of associated LMs.

Adaptive Resource Management The logic to execute
the load-balancing and energy management functionality is
implemented by the ARMA module of each involved LM.
As depicted in Fig. 6, the ARMA implements four components.
The Adaptation Process component controls the execution
of the reconfiguration algorithm (see Section V-C), which ad-
justs the splitting ratios of the local traffic flows controlled by
the LM. The Management Substrate Information component
maintains information about the structure of the management
substrate, such as the set of neighbor LMs and their ordered
list. The Link & Flow Information component consists of
multiple tables containing information about the network links
(e.g., capacity, utilization etc.) and characteristics of the local
flows (e.g., splitting ratio configuration, demand etc.). Network

Fig. 7. Example of possible inconsistencies between routing decisions.

statistics are updated based on information received from other
LMs through the substrate or retrieved from the local LM
monitoring module. Based on the ARMA module, the LMs
associated with at least one edge switch periodically (e.g., every
15 minutes) compute the vectors of splitting ratios for every
source-destination pair in the network. These are then sent to
the LCs to which the LMs are connected and stored for future
enforcement.

C. Routing Functionality Requirements

The RMA module interacts with the Routing module which
implements methods to compute routing parameters (e.g.,
Dijkstra shortest path). In the scenario considered here, two
routing configurations need to be computed that we refer to as
traffic engineering (TE) and forwarding (FW). The TE configu-
ration is computed at every LM involved in the splitting ratio
reconfiguration process and represents the full network path
from any source switch controlled by the LM to any destination
switch in every MTR plane. The FW configuration is computed
at every LM and is used to determine the interface on which
packets (received at any network switch) need to be sent to
reach their destination via the shortest path in each MTR plane.
The results are sent by each LM to its attached LC, which then
configures the forwarding policies in all the switches under its
responsibility.

In most network topology cases, the switches along the path
between a S-D pair may not all be under the responsibility of a
single LM. As a result, inconsistencies between the TE and FW
configurations may occur. In particular, this can happen when
multiple equal cost shortest paths exist. To illustrate this issue,
we consider the simple example depicted in Fig. 7. All links
have a weight equal to 1. The full path from S1 to S6 is com-
puted at LM_1. There are two equal shortest paths between S1
and S6: path p11 : {1; 2; 3; 4; 6} and path p12 : {1; 2; 3; 5; 6}.
Assume that path p12 is selected by LM_1. To route packets,
forwarding policies need to be implemented in each of the
switches. Due to its scope of responsibility, LM_1 can only
decide how to forward packets from S1 and S2; it does not
have any control on how the packets for S6 are routed from S3
onwards. Switches S3, S4, S5 and S6 are controlled by LM_2.
There are two equal cost shortest paths from S3 to S6: path
p21 : {3; 4; 6} and path p22 : {3; 5; 6}. To ensure the consistency

TUNCER et al.: ADAPTIVE RESOURCE MANAGEMENT AND CONTROL IN SOFTWARE DEFINED NETWORKS 27

with the TE path considered by LM_1, LM_2 should choose
path p22 when deriving the forwarding policies to apply for
packets from S1 to S6. To avoid inconsistent decisions, all LMs
should therefore apply a common path selection strategy (for
example based on the identifier of the interfaces). This ensures
that the FW decisions are in accordance with the TE decisions.

D. Switch Configuration

To enforce TE decisions at the network level, incoming pack-
ets need to be marked at the network edges with the identifier
of the MTR plane to which they have been assigned based
on the computed splitting ratios. Although OpenFlow does not
currently support MTR, the latest version of the specifications
introduces support for MPLS labeling and VLAN tagging [14].
In addition, a proposal for multipath routing [30], which relies
on the group option defined in the OpenFlow protocol, has
been released by the ONF. As such, we believe that the current
protocol could be easily extended to support MTR.

The TE application requires that traffic splitting happens at
network edges only. Packets that belong to the same TCP flow
are always assigned to the same topology and no further adjust-
ment is permitted along the route. This ensures that all packets
in one TCP flow follow only a single path to the destination, as
such avoiding out-of-order delivery issues that deteriorate the
performance of TCP [31]. As a result, this has implications on
the way incoming packets need to be processed in the different
switches along the path between a S-D pair. More specifically,
switches can act as source or transit depending on how they
process packets. A switch acts as source switch for incoming
packets if a) it is an edge switch, and b) packets belong to one
of the switch’s local traffic flows. In this case, the switch needs
to assign packets to the relevant MTR plane and execute the
following steps:

1) Determine to which local traffic flow the packet belongs.
2) Enforce the relevant splitting ratios to determine the MTR

plane on which to route the packet.
3) Mark the header with the identifier of the selected plane.
4) Forward the packet according to the configuration of the

selected MTR plane.

A switch acts as a transit for incoming packets if a) it is an
edge switch but incoming packets do not belong to one of the
switch’s local traffic flows, or b) it is a core switch. In this case,
packet processing consists mainly in forwarding the packets
according to the configuration of the MTR plane to which they
have been assigned, i.e.,

1) Determine to which local traffic flow the packet belongs
and to which MTR plane it is assigned.

2) Forward the packet according to the configuration of the
relevant MTR plane.

Each packet is processed according to the information re-
trieved from the packet header (e.g., source IP, destination IP,
MTR_ID etc.), which is used to match the packet against flow
entries in the different Flow Tables implemented in each switch.
Table entries are pro-actively configured by the LC to which
each switch is connected based on routing and splitting ratio
configurations information maintained by the Storage module.

In case of a table miss (i.e., no entry for the traffic flow to which
the packet belongs), switches should be configured to send the
packet to their LC, which then decides on the processing to
apply (i.e., to create new table entries).

To balance the traffic across the different MTR planes, a
hashing scheme, such as the one proposed by Cao et al. in [32],
could be implemented in each edge switch and parametrized
for each traffic flow (i.e., S-D pair) according to the values
of the splitting ratios. This, however, suggests the availability
of a mechanism to enable the programmability of the hashing
function, which is currently not possible with OpenFlow. An al-
ternative solution could use a simple hack based on the available
options (e.g., by configuring the bitmasks associated with some
of the flow entry matching fields). Although this may have the
advantage of not requiring any extension to the protocol, it may
not provide the same level of control as the hashing method.

VII. EVALUATION

The logic of the LM and LC Orchestrator Modules and
the Adaptive Resource Management Application Module has
been implemented in a Java-based simulated environment. This
section presents the results of the performance evaluation of
the LC placement algorithm and the load-balancing and energy
management approaches based on real network topologies and
traffic traces.

A. Placement Algorithm Performance

We evaluate the performance of PressureStatic based on the
four network topologies presented in Table II. Given that its
output is affected by the location on which the first LC is added,
we consider, for all topologies, all possible initial locations,
covering as such the totality of the input space.

1) Influence of the Initial and Terminating Criteria: As
described in Section IV-B2, the terminating condition is defined
according to the threshold imposed to the distance reduction
gain improvement. From Fig. 3, it can be inferred that setting
the value of the threshold more than 10% will result, for all
topologies, in the selection of 2 LCs only. To investigate how
the threshold influences the number of selected LCs, we apply
the algorithm using improvement values of 2.5%, 5% and 10%.
The results are presented as boxplots in Fig. 8.

Several observations can be made from the results. It can
first be noted that, for all topologies, the number of selected
LCs decreases as the value of the threshold increases, which is
consistent with the results depicted in Fig. 3. Larger threshold
values force the algorithm to terminate prematurely. In addition,
it can be observed that the size of the network (i.e., number of
nodes) is not the main factor affecting the number of selected
LCs. On average, a similar number of LCs are selected in the
Geant, Germany50 and Deltacom networks for all cases. This
can be explained by the definition of the terminating threshold
which considers distance reduction gain in absolute values.
Finally, the boxplots depict a variation in the number of selected
LCs, which shows that the choice of the first LC location
influences the output of the algorithm.

28 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

Fig. 8. Number of selected local controllers. (a) Threshold 2.5%. (b) Thresh-
old 5%. (c) Threshold 10%.

Fig. 9. Number of selected LCs vs. average distance factor.

To determine how to choose the initial location, we inves-
tigate the existence of a correlation between the number of
selected LCs and the actual topological location of the node
to which the first LC is connected. Given that the objective of
the placement algorithm is to reduce the average LC-switch
distance, we characterize the node location according to its
average distance factor which is defined as follows:

∀ i ∈ N , Δ(i) =

∑
j∈N\{i} di,j

|N |2 (5)

The value of Δ represents the proximity of a node in terms of
average distance to the rest of the network nodes. The smaller
the value is, the closer the node is, on average, to the other
network nodes.3 For each network node i, we calculate its value
Δ(i) and record the number of selected LCs when the first LC is
connected to node i. The correlation between the values of the
average distance factor of the initial LC location and the number

3By definition, the Δ values depend on the size of the network.

TABLE III
PLACEMENT ALGORITHM PARAMETER SETTINGS

of selected LCs is depicted in Fig. 9 for the four considered
networks with a threshold value of 5%.

In all cases, the number of LCs tends to decrease as the value
of Δ increases. In other words, when the initial location is
on average close to every other node, a large number of LCs
tends to be selected by the algorithm. In contrast, if the initial
location is off-centered, a small number of LCs tends to be
selected. As indicated by (4), the value of the improvement
factor τk+1 depends on the previous gain ωk. When the first
LC is attached to an off-centered node, the algorithm tends to
select a more “central” location for the second LC in order to
maximize the distance reduction. As a result, this leads to a
substantial gain improvement. In comparison, the subsequent
additions of LCs produce lower reduction in terms of distance,
and, as such, do not satisfy the threshold constraint. In contrast,
when the initial location is more “central”, the rates of distance
reduction associated with each additional LC tend to be on
average lower but comparable between themselves, which leads
to the selection of a larger number of LCs. Similar results were
obtained with the other threshold values but are not reported
here due to space limitations.

The results demonstrate that the number of LCs selected for
a given network can be tuned by controlling the settings of the
terminating condition and the initial LC placement. In practice,
it is expected that the number of LCs should increase with
the size of the network topology in order to minimize both
the LC-switch and LC-LC distances. This can be translated
into the following parameter settings: low threshold value and
central initial LC position for large scale networks, and high
threshold value and off-centered initial position for smaller
scale networks. The settings for the topologies considered in
this paper are presented in Table III.

2) Heuristic Performance: Clegg et al. showed in [23] that
the placement computed by the Pressure algorithm significantly
outperforms any random configuration in terms of LC-switch
distance. Another factor to consider for evaluating the perfor-
mance of the proposed placement heuristic is to compare its
output to the optimal placement of the same number of LCs
(i.e., optimum average switch-LC distance). In order to derive
the optimum value, we formulate the placement of n LCs as an
Integer Linear Programming (ILP) problem with the followings
parameters. Let NLC be the total number of LCs to deploy. For
all i and j in N , let di,j be the distance between i and j. For
all i in N , let xi be the binary variable equal to 1 if a LC is
attached to i, 0 otherwise. In addition, for all i and j in N ,
let yi,j be the binary variable equal to 1 if node i is connected
to LC attached to node j, 0 otherwise. Finally, for all i in N ,
let li be the distance between node i and the LC to which it is
connected.

TUNCER et al.: ADAPTIVE RESOURCE MANAGEMENT AND CONTROL IN SOFTWARE DEFINED NETWORKS 29

Fig. 10. Performance of PressureStatic with threshold 5% vs. optimum aver-
age LC-switch distance. (a) Abilene. (b) Geant. (c) Germany50. (d) Deltacom.

The objective of the ILP is to determine the values of xi

and yi,j which minimize the average LC-switch distance, i.e.,
formally:

minimize
1

|N | ·
∑

i∈N
li (6)

subject to the following constraints:

∀ i ∈ N ,
∑

j∈N
di,j · yi,j = li (7)

∀ i ∈ N ,
∑

j∈N
yi,j =1 (8)

∀ i ∈ N , j ∈ N , yi,j ≤xj (9)

∀ j ∈ N , xj ≤
∑

i∈N
yi,j (10)

∑

j∈N
xj ≤NLC . (11)

Constraint (7) defines the LC-switch distance. Constraint (8)
ensures that each switch is connected to one LC only. Constraint
(9) guarantees that a switch is associated with a location only
if a LC is attached there and constraint (10) forces the ILP
to position a LC on a location only if at least one switch is
associated with this location. Finally, constraint (11) ensures
that the total number of LCs is at most equal to NLC .

For each network topology in Table II, we apply the ILP
for all values of NLC relevant to that network (derived from
Fig. 9). Based on the algorithm output, we then determine the
optimal LC-switch distance and compare it to the one obtained
with PressureStatic for the same number of selected LCs. The
results are shown in Fig. 10. In the case of PressureStatic,
the best, average and worst distance values recorded for the
considered configuration are reported. It is worth noting that
since switches and LCs can be physically attached to the same
location (distance equal to 0), the average LC-switch distance
can be lower than 1.

As observed, the placement computed by PressureStatic
gives close to optimal performance in terms of average LC-
switch distance. In the case of the Abilene network, the pro-
posed algorithm is able to compute the optimal placement. In

Fig. 11. Standard deviation of the cluster size with a threshold of 5%.

TABLE IV
NETWORK BUNDLED LINKS (BLS) CONFIGURATION

all other cases, the deviation from the optimum decreases as
the number of LCs increases. The highest deviation (16%) is
obtained with Deltacom and 4 LCs.

3) Placement Optimization Objective: The algorithm aims
at minimizing the average LC-switch distance. The number of
LM/LCs, however, may also be driven by other parameters.
In the proposed architecture, each LC is logically connected
to a set of switches forming clusters. In practice, the number
of switches attached to an LC can affect the volume of infor-
mation which needs to be maintained and processed by the
LC. To investigate the effect of PressureStatic on the cluster
size distribution, we compute the standard deviation of the
size of the clusters attached to each LC for each network and
configuration. To account for the variation incurred by the
choice of the first LC location, we plot the results as boxplots
in Fig. 11. The closer the value of the standard deviation is to 0,
the more uniformly distributed in terms of size are the clusters.

The results show that PressureStatic can lead to unbalanced
clusters. The heterogeneity in terms of cluster sizes tends to
increase as the number of nodes in the network increases. The
trade-off between latency reduction and homogeneity of the
volume of information to maintain at each LC could therefore
be taken into account in the placement objective to control the
clustering of switches. Increasing the homogeneity of the clus-
ter size may, however, lead to the selection of a larger number
of LM/LCs, which raises challenges regarding the choice of
the management substrate structure to use to organize the LMs
(Section II-C). In [11], we showed that while simple structures
such as the full-mesh or ring models suit well the case where
a small number of nodes is involved in the substrate, these
have limitations when this number increases. In this case, the
use of a more sophisticated structure such as the one presented
in [9] should be considered. The proposed structure, which is

30 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

Fig. 12. Evolution of max-u. (a) Abilene. (b) Geant. (c) Germany50.

a hybrid model, offers a trade-off between the full-mesh and
the ring models in terms of communication cost and volume of
information that needs to be maintained by each substrate node.

B. Adaptive Resource Management Scheme Performance

We evaluate the performance of the load-balancing (LB) and
energy management (EM) approaches, described in Section V,
under the LM plane configuration determined by the placement
algorithm for the Abilene, Geant and Germany50 networks for
which real data traces are available (this is not the case for
Deltacom). In order to take into account a wide range of traffic
conditions, we consider a period of 7 days for both Abilene [33]
and Geant [25]. In the case of Germany50, a period of one day is
considered given the available data [34]. In all cases, adaptation
is performed at a frequency of 15 minutes. The configurations
used in each topology are summarized in Table IV.

We compare the performance in terms of maximum link
utilization (max-u) and number of active line cards (nbRLCs)
obtained for each traffic matrix (TM) with the five following
schemes:

• Original: the original link weight settings are used in the
original topology and no adaptation is performed.

• Static MTR (MTR-S): static splitting ratios (do not adap-
tively change) are set equal to the inverse of the capacity
of the bottleneck bundled link in each virtual topology.

• Load-Balancing (LB): the considered LB approach.
• Energy Management (EM): the considered EM

approach.
• Optimum Load-Balancing (Opt-LB): the routing prob-

lem is defined as a MultiCommodity Flow problem [35]
and the glpsol GLPK (GNU Linear Programming Kit)
linear programming solver [36] is used to compute the
optimal max-u for each traffic matrix.

The evolution of the max-u at 15 minute intervals obtained
with the five schemes over the time period considered in
each network is shown in Fig. 12. As can be observed, LB
outperforms the Original, MTR-S and EM schemes in all cases
and obtains close to optimal performance. The deviation from
the optimum max-u is equal to 8.78%, 5.6%, and 10.1% in
the Abilene, Geant and Germany50 networks, respectively. In
addition, a deviation of less than 10% is obtained for 96.42%
of the TMs in the case of Abilene, and 98.25% and 92.8%
for Geant and Germany50, which indicates that the proposed
scheme performs uniformly well.

To analyze the performance of the EM approach in terms of
energy gain, we determine the deviation between the number of

Fig. 13. Cumulative frequency graphs of the gain in terms of active line
cards obtained by EM compared to the other schemes. (a) Abilene. (b) Geant.
(c) Germany50.

active line cards used by EM and the one obtained with the other
schemes. The results are shown as cumulative frequency graphs
in Fig. 13. It can first be observed that a positive gain is obtained
in all cases, which shows that EM always uses the lowest
number of RLCs to route the traffic. The best performance
is achieved when compared to the schemes that balance the
traffic (Opt-LB, LB and MTR-S), which can be explained by the
antagonistic nature of the two objectives. The gain compared
to LB is on average equal to 20.90%, 44.82%, and 30.47%
for the Abilene, Geant and Germany50 networks, respectively.
In addition, EM performs better than the Original scheme by
concentrating the traffic on a smaller number of links. In this
case, the gain is equal to 19.21%, 21.05%, and 10.08% for the
three networks, respectively.

The results demonstrate that a significant reduction in terms
of resource utilization can be achieved by the proposed schemes
under the configuration of the distributed management plane
computed by the placement algorithm.

TUNCER et al.: ADAPTIVE RESOURCE MANAGEMENT AND CONTROL IN SOFTWARE DEFINED NETWORKS 31

VIII. RELATED WORK

In contrast to traditional network architectures, local control
functions are moved away from network elements to remote
controllers in SDN. As a result, this can lead to the creation
of new bottlenecks and potentially significant overhead, de-
pending on the type of management applications to consider
[2]. While using a centralized controller with a network-wide
view has the benefit of facilitating the implementation of the
control logic, it also presents limitations, especially in terms of
scalability as the size and dynamics of the network increase.
Different approaches have been proposed in the literature to
overcome the limitations of the single centralized controller
model, e.g., [4]–[6], [37].

The approach presented in [4] by Yeganeh et al. is based on
two levels of controllers. Distributed controllers in the lower
level operate on locally-scoped information, while decisions
which require network-wide knowledge are taken by a logically
centralized root controller. A hierarchical solution for Wide
Area Networks (WAN) has also been proposed by Ahmed et al.
in [6]. In their architecture, the network is divided into multiple
zones of control, on top of which a centralized management
layer implements management operation functionality and ser-
vices. In contrast to hierarchical solutions, fully distributed
designs have been proposed in [5] and [37]. The platform
presented in [5] aims at facilitating the implementation of
distributed control planes by abstracting network resources as
data objects stored in a Network Information Base. In [37],
the authors introduce HyperFlow, a physically distributed but
logically centralized event-based OpenFlow control plane. Due
to its centralized control logic, HyperFlow requires state syn-
chronization mechanisms and targets pro-active management
operations. The impact of control state consistency on the
performance of a load-balancing application has been inves-
tigated by Levin et al. in [38]. While most of the previous
approaches have focused on the interface between the data
and control planes, the policy-based framework developed by
Kim et al. targets the interface between the control platform
and the network management logic [1]. Jain et al. report their
experience in deploying a SDN-based WAN to connect Google
datacenters [7]. Each datacenter site is controlled by a set of
OpenFlow-based network control servers connected to a cen-
tralized SDN gateway which implements a logically centralized
traffic engineering (TE) application.

The approaches described above realize distributed control
planes. Most of them, however, consider a centralized solution
to implement network applications, which is not adequate for
reactive and adaptive functionalities. The framework proposed
in this paper advances the state-of the art by enabling adap-
tive resource management through a distributed management
plane (LMs), while relying on the support of a centralized
management system for long term operations. In addition, it
is interesting to note that most of the SDN approaches ema-
nating from outside the network management community do
not make a clear separation between control and management
functionalities (e.g., [4], [5]) and usually disregard the impli-
cations of management operations (especially dynamic ones).
In this paper, we advocate a model that separates control and

management logic. This distinction was also taken into account
in the approach presented in [6]. However, in contrast to our
framework, this relies on a centralized management plane.

A key issue when deploying a distributed control plane
concerns the controller placement problem. In [39], Bari et al.
proposed an approach to dynamically determine the number
and location of controllers based on the network conditions.
In practice, the allocation of controllers should also be driven
by the requirements of the network applications to implement.
In our algorithm, this is taken into account through the initial
and terminating conditions. A dynamic approach is thus more
geared towards applications sensitive to traffic fluctuations. A
different objective has been considered by Hu et al. in [40]
where the goal is to maximize the reliability in terms control
paths. Their approach assumes that the number of controllers to
deploy is given, which may not be easy to determine a priori
and is considered as a variable in our work.

Another line of research related to the work presented in
this paper concerns network resource management for load-
balancing purposes and energy savings. To overcome the lim-
itations of current offline TE functionality, online approaches
that are able to react to current conditions in short timescales
have been developed [41]. The objective is to dynamically
adapt the settings based on real-time information received from
the network in order to better utilize network resources. Most
of the previous approaches rely on a centralized manager to
compute new configurations (e.g., [42], [43]). While distributed
solutions have been proposed in [44]–[46], these target MPLS-
based networks. In contrast, this paper presents an adaptive and
decentralized approach for IP networks. A decentralized IP-
based TE mechanism has also been proposed in [47]. Com-
pared to our approach, however, decisions are made by each
node in the network and as such, may be associated with a
non negligible signalling overhead. Finally, in the context of
SDN, Agarwal et al. proposed an approach to perform TE in
SDN environments [28] in the case where not all switches are
embedded with SDN capabilities. In this case, SDN-compliant
switches are controlled by a centralized SDN controller while
others implement traditional hop-by-hop routing functions.

IX. CONCLUSION

This paper presents a new SDN-based management and
control framework for fixed backbone networks, which pro-
vides support for both static and dynamic resource management
applications. Its architecture is compatible with the generic
ONF SDN model and consists of three layers which interact
with each other through a set of interfaces. Based on its modular
structure, the framework makes a clear distinction between
the management and control logic which are implemented by
different planes, offering as such improved deployment advan-
tages. To demonstrate the benefits of the proposed framework,
we show how its functionality and interfaces can be used to
support the requirements of two distributed adaptive resource
management applications whose performance is evaluated in
terms of resource utilization reduction. We also present a new
placement algorithm to compute the configuration of the dis-
tributed management and control planes and investigate how

32 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

the degree of distribution can be controlled based on different
parameters.

In future extensions of this research, we plan to enhance
the proposed placement algorithm by considering other costs
and constraints (e.g., maintaining the homogeneity of cluster
size, applying constraint on the volume of information stored
at each LC etc.). We also plan to develop a mechanism to
enable unequal cost splitting in OpenFlow. Finally, future work
will investigate how the proposed framework can be used to
realize other types of management applications (e.g., cache
management).

REFERENCES

[1] H. Kim and N. Feamster, “Improving network management with software
defined networking,” IEEE Commun. Mag., vol. 51, no. 2, pp. 114–119,
Feb. 2013.

[2] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of software-
defined networking,” IEEE Commun. Mag., vol. 51, no. 2, pp. 136–141,
Feb. 2013.

[3] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, future of pro-
grammable networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 3,
pp. 1617–1634, 2014.

[4] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for effi-
cient and scalable offloading of control applications,” in Proc. HotSDN,
Helsinki, Finland, 2012, pp. 19–24.

[5] T. Koponen et al., “Onix: A distributed control platform for largescale
production networks,” in Proc. USENIX, Vancouver, BC, Canada, 2010,
pp. 1–6.

[6] R. Ahmed and R. Boutaba, “Design considerations for managing wide
area software defined networks,” IEEE Commun. Mag., vol. 52, no. 7,
pp. 116–123, Jul. 2014.

[7] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14,
Oct. 2013.

[8] M. Charalambides, G. Pavlou, P. Flegkas, N. Wang, and D. Tuncer, “Man-
aging the future Internet through intelligent in-network substrates,” IEEE
Netw., vol. 25, no. 6, pp. 34–40, Nov. 2011.

[9] D. Tuncer, M. Charalambides, H. El-Ezhabi, and G. Pavlou, “A hybrid
management substrate structure for adaptive network resource manage-
ment,” in Proc. ManFI, Krakow, Poland, May 2014, pp. 1–7.

[10] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang, “Towards de-
centralized and adaptive network resource management,” in Proc. CNSM,
Mini-Conference, Paris, France, Oct. 2011, pp. 1–6.

[11] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang, “DACoRM:
A coordinated, decentralized, and adaptive network resource management
scheme,” in Proc. NOMS, Maui, HI, USA, Apr. 2012, pp. 417–425.

[12] M. Charalambides, D. Tuncer, L. Mamatas, and G. Pavlou, “Energy-aware
adaptive network resource management,” in Proc. IM, Ghent, Belgium,
May 2013, pp. 369–377.

[13] “Software-defined networking: The new norm for networks,” Open
Networking Found., Palo Alto, CA, USA, Apr. 2012. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf

[14] “OpenFlow Specifications v.1.4.0,” Open Networking Found., Palo Alto,
CA, USA, Oct. 2013. [Online]. Available: https://www.opennetworking.
org/sdn-resources/onf-specifications/openflow

[15] “SDN architecture,” Open Networking Found., Palo Alto, CA, USA,
Jun. 2014. [Online]. Available: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.
0_06062014.pdf

[16] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault,
“Internet Engineering Task Force,” Multi-Topology (MT) Routing in
OSPF, RFC 4915, Jun. 2007. [Online]. Available: http://www.ietf.org/rfc/
rfc4915.txt

[17] T. Przygienda, N. Shen, and N. Sheth, M-ISIS: Multi Topology (MT) Rout-
ing in Intermediate System to Intermediate Systems (IS-ISs), RFC 5120,
Feb. 2008. [Online]. Available: http://www.ietf.org/rfc/rfc5120.txt

[18] S. Gjessing, “Implementation of two resilience mechanisms using multi
topology routing and stub routers,” in Proc. AICT-ICIW, Guadeloupe,
French Caribbean, Feb. 2006, pp. 29–34.

[19] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proc. HotSDN, Helsinki, Finland, 2012, pp. 7–12.

[20] R. Cohen and G. Nakibly, “A traffic engineering approach for placement
and selection of network services,” IEEE/ACM Trans. Netw., vol. 17,
no. 2, pp. 487–500, Apr. 2009.

[21] S. Ray, R. Ungrangsi, D. Pellegrini, A. Trachtenberg, and D. Starobinski,
“Robust location detection in emergency sensor networks,” in Proc.
INFOCOM, San Francisco, CA, USA, Mar. 2003, vol. 2, pp. 1044–1053.

[22] D. F. Pellegrini and R. Riggio, “Leakage detection in waterpipes networks
using acoustic sensors and identifying codes,” in Proc. IEEE PerSense,
San Diego, CA, USA, Mar. 2013, vol. 2, pp. 1044–1053.

[23] R. Clegg, S. Clayman, G. Pavlou, L. Mamatas, and A. Galis, “On the
selection of management/monitoring nodes in highly dynamic networks,”
IEEE Trans. Comput., vol. 62, no. 6, pp. 1207–1220, Jun. 2013.

[24] The Abilene Internet 2 Topology. [Online]. Available: http://www.
Internet2.edu/pubs/200502-IS-AN.pdf

[25] The GEANT Topology, 2004. [Online]. Available: http://www.dante.net/
server/show/nav.007009007

[26] The Germany50 Topology, 2004. [Online]. Available: http://sndlib.zib.de/
[27] The Deltacom Topology, 2010. [Online]. Available: http://www.

topology-zoo.org/maps/Deltacom.jpg/
[28] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in

software defined networks,” in Proc. INFOCOM, Turin, Italy, Apr. 2013,
pp. 2211–2219.

[29] IEEE Standard for Local and Metropolitan Area Networks: Link Aggre-
gation, IEEE Std. 802.1AX, Nov. 2008.

[30] OpenFlow Multipath Proposal. [Online]. Available: http://archive.
openflow.org/wk/index.php/Multipath_Proposal

[31] M. Laor and L. Gendel, “The effect of packet reordering in a backbone
link on application throughput,” IEEE Netw., vol. 16, no. 5, pp. 28–36,
Sep./Oct. 2002.

[32] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based schemes
for Internet load balancing,” in Proc. INFOCOM, Tel Aviv, Israel, 2000,
vol. 1, pp. 332–341.

[33] The Abilene Topology and Traffic Matrices Dataset, 2004. [Online].
Available: http://www.cs.utexas.edu/~yzhang/research/AbileneTM/

[34] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib
1.0-survivable network design library,” in Proc. INOC, Spa, Belgium,
Apr. 2007, pp. 1–6.

[35] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Upper Saddle River, NJ, USA: Prentice-
Hall, 1982.

[36] GNU Linear Programming Kit (GLPK). [Online]. Available: http://www.
gnu.org/software/glpk/

[37] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for openflow,” in Proc. INM/WREN, San Jose, CA, USA, 2010,
pp. 3–9.

[38] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-
ically centralized?: State distribution trade-offs in software defined net-
works,” in Proc. HotSDN, Helsinki, Finland, 2012, pp. 1–6.

[39] M. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proc. CNSM, Zurich, Switzerland, Oct. 2013, pp. 18–25.

[40] Y.-N. Hu, W.-D. Wang, X.-Y. Gong, X.-R. Que, and S.-D. Cheng, “On the
placement of controllers in software-defined networks,” J. China Univ.
Posts Telecommun., vol. 19, no. S2, pp. 92–97, Oct. 2012.

[41] N. Wang, K. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for Internet traffic engineering,” IEEE Commun. Surveys
Tuts., vol. 10, no. 1, pp. 36–56, 2008.

[42] N. Wang, K. Ho, and G. Pavlou, “Adaptive multi-topology IGP based
traffic engineering with near-optimal network performance,” in Proc.
NETWORKING, vol. 4982, Lecture Notes in Computer Science, A. Das,
H. Pung, F. Lee, and L. Wong, Eds., Berlin/Heidelberg, 2008, pp. 654–
666, Springer.

[43] M. Zhang, C. Yi, B. Liu, and B. Zhang, “GreenTE: Power-aware traffic
engineering,” in Proc. ICNP, Kyoto, Japan, 2010, pp. 21–30.

[44] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
tightrope: responsive yet stable traffic engineering,” in Proc. SIGCOMM,
Philadelphia, PA, USA, Aug. 2005, vol. 35, pp. 253–264.

[45] F. Cuomo, A. Cianfrani, M. Polverini, and D. Mangione, “Network prun-
ing for energy saving in the Internet,” Comput. Netw., vol. 56, no. 10,
pp. 2355–2367, Jul. 2012.

[46] V. Foteinos, K. Tsagkaris, P. Peloso, L. Ciavaglia, and P. Demestichas,
“Operator-friendly traffic engineering in IP/MPLS core networks,” IEEE
Trans. Netw. Serv. Manag., vol. 11, no. 3, pp. 333–349, Sep. 2014.

[47] S. Fischer, N. Kammenhuber, and A. Feldmann, “REPLEX: Dynamic
traffic engineering based on wardrop routing policies,” in Proc. CoNEXT ,
Lisboa, Portugal, 2006, pp. 1–12.

TUNCER et al.: ADAPTIVE RESOURCE MANAGEMENT AND CONTROL IN SOFTWARE DEFINED NETWORKS 33

Daphne Tuncer received the “Diplôme d’ingénieur
de Télécom SudParis” in 2009. She received the
Ph.D. from the Electronic and Electrical Engineering
at University College London, U.K., in November
2013. She is a postdoctoral researcher in the Depart-
ment of Electronic and Electrical Engineering at Uni-
versity College London, U.K. Her research interests
are in the areas of software-defined networking, net-
work self-management, adaptive network resource
management, energy efficiency and cache/content
management.

Marinos Charalambides received the B.Eng. de-
gree (First Class Hons.) in electronic and electrical
engineering, the M.Sc. degree (Distinction) in com-
munications networks and software, and the Ph.D.
degree in policy-based management, all from the
University of Surrey, U.K., in 2001, 2002 and 2009,
respectively. He is a senior researcher at University
College London. He has been working in a number
of European and U.K. national projects since 2005
and his current research interests include software-
defined networking, in-network caching, energy-

aware networking and on-line traffic engineering. He is on the technical
program committees of the main network and service management conferences.

Stuart Clayman received the Ph.D. degree in com-
puter science from University College London in
1994. He has worked as a Research Lecturer at
Kingston University and at UCL. He is currently a
Senior Research Fellow at UCL EEE department. He
co-authored over 30 conference and journal papers.
His research interests and expertise lie in the areas of
software engineering and programming paradigms;
distributed systems; virtualised compute and net-
work systems, network and systems management;
networked media; and knowledge-based systems. He

has been involved in several European research projects since 1994. He also
has extensive experience in the commercial arena undertaking architecture
and development for software engineering, distributed systems and networking
systems. He has run his own technology start-up in the area of NoSQL
databases, sensors and digital media.

George Pavlou received the Diploma in engineering
from the National Technical University of Athens,
Greece, and the M.Sc. and Ph.D. degrees in com-
puter science from University College London, U.K.
He is a Professor of Communication Networks in
the Department of Electronic and Electrical Engi-
neering, University College London, U.K., where
he coordinates research activities in networking and
network management. His research interests focus
on networking and network management, including
aspects such as traffic engineering, quality of service

management, autonomic networking, information-centric networking, grid net-
working and software-defined networks. He has been instrumental in a number
of European and U.K. research projects that produced significant results with
real-world uptake and has contributed to standardization activities in ISO,
ITU-T and IETF. He has been on the editorial board of a number of key journals
in these areas, he is the chief editor of the bi-annual IEEE Communications
network and service management series and in 2011 he received the Daniel
Stokesbury award for “Distinguished technical contribution to the growth of
the network management field”.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

