
-- --

.

IMPLEMENTING OSI MANAGEMENT

A TUTORIAL

for the 3rd International Symposium
on

Integrated Network Management

April 1993

George Pavlou
Senior Research Fellow
Dept. of Computer Science
University College London
Gower Street
London WC1E 6BT

e-mail: gpavlou@cs.ucl.ac.uk

-- --

-- --

.

OBJECTIVES

g to show that the OSI management power can be efficiently
exploited through well thought-out implementations

g to explain how this power can be harnessed and re-used by
hiding complexity behind objet-oriented Application
Program Interfaces (APIs)

g to decompose the whole implementation problem into
smaller ones and solve each - a modular approach

g to highlight difficult issues and suggest workable solutions

g to suggest optimizations that will result in efficient
implementations

-- --

-- --

.

REQUIRED BACKGROUND

g A basic understanding of the OSI Management architecture
- an short overview is given here

g An understanding of modular and object-oriented design
methodology - the basic principles are introduced here

g Some familiarity with C/C++ terminology and syntax
- this is not essential

TUTORIAL FORMAT

g Informal - questions may be asked at any time

-- --

-- --

.

TUTORIAL STRUCTURE

g Introduction to OSI management

g Object-Oriented Design Methodology

g Communication Services
- the Common Management Information Service

g General Infrastructure
- Support for Asynchronous Event-Driven Applications
- Transparent Abstract Syntax Handling

g Management Agent Infrastructure and Realization
- Real resource access policies
- Managed Object Support
- the Generic Managed System

g Manager Infrastructure
- High-Level Methods for Remote MIB Access
- Graphical User Interface Integration

g Summary and Information

-- --

-- --

.

INTRODUCTION TO

THE OSI MANAGEMENT MODEL

-- --

-- --

.

INTRODUCTION

g OSI Management provides rich and powerful management
mechanisms

g These can be used to provide powerful, extensible and
scalable management solutions

g There has been a belief, amplified by the lack of
implementations, that OSI management facilities are
difficult to implement

g It will be shown that this is not true, at least not if a
modular (object-oriented) approach is followed

g The solutions suggested will be based on object-oriented
design methodology

-- --

-- --

.

THE OSI MANAGEMENT MODEL

g OSI Network Management follows an object-oriented
model - physical or logical real resources are managed
through abstractions of them known as Managed Objects
(MOs)

g Management systems need also MOs that do not represent
anything real but exist for the needs of the management
system itself (control MOs)

g MOs are handled by applications in agent roles and are
accessed by applications in manager roles in order to
implement management policies

g The global collection of management information is termed
the Management Information Base; each agent handles a
part of it in its Management Information Tree

g Information in manager-agent interactions is conveyed
through the management service / protocol CMIS/P

g Agent, managed system and managed node are
synonymous; the same holds for manager, managing
application, management station

-- --

-- --

.

MANAGEMENT FUNCTIONAL AREAS

g Fault management - generate notifications, maintain error
logs and transmit error reports. perform tests

g Configuration management - configuration of parameters,
state and relationship information, software distribution,
inventory

g Security management

a. management of security - password control,
cryptographic key distribution

b. security of management - authentication, access
control

g Accounting management - measurement and data
collection, usage reporting

g Performance management - workload monitoring,
measurement summarization, capacity planning

-- --

MOs

MANAGEMENT PROTOCOL

notifications

operations

event reports

operations

Manager Agent

MANAGEMENT INTERACTIONS

THE MANAGED OBJECT ABSTRACTION

REAL WORLD VIEW

MO RR

operations

notifications
interaction

MO RR

object boundary

operations

notifications

ABSTRACT VIEW

- ATTRIBUTES, ACTIONS, NOTIFICATIONS, BEHAVIOUR
- ENCAPSULATION

-- --

.

MANAGEMENT INFORMATION MODELING

g There are two basic aspects in management information
modeling

- inheritance

- containment

g Every class is derived from the Top one which contains
self-describing information for an object instance

g All specified managed object classes form a global
inheritance tree

g In all managed systems, managed object instances are
organized in a Management Information Tree (MIT)
according to containment relationships for the purpose of
naming

g Properties of managed object classes are formally specified
in a ASN.1 template language known as Guidelines for the
Definition of Managed Objects (GDMO)

-- --

Top

LogRecordDiscr Connection

EventForwDiscr TransportConn

AlarmRecord

EventLogRecord

AN EXAMPLE INHERITANCE TREE

AN EXAMPLE CONTAINMENT TREE (MIT)

systemId=athena
system

connId=5678
tpConntpConn

connId=1234

entityId=isode
tpEntity

unix
unixId=test

evForwDiscr
discrId=5

subsystem
subsystemId=4

{ subsystemId=4 @ entityId=isode @ connId=5678 }
class:
instance:

tpConn
example of a class and (local) instance (name)

-- --

.

MANAGEMENT PROTOCOL OPERATIONS

g The management protocol primitives express operations
that convey the information of messages to managed objects

- Get - read management information (attributes)

- Set - write management information (attributes)

- Action - perform an action,
a general method on a managed object

- Create - create a managed object

- Delete - delete a managed object

- Cancel-Get - cancel a previously issued get operation

- Event-Report - send an event report

-- --

-- --

.

SCOPING, FILTERING, SYNCHRONIZATION

g Get, Set, Action and Delete may be performed on many
objects through scoping; the operation is addressed on a
"base" managed object and can be performed on objects of
that subtree

g The selection of objects can be controlled through filtering
on the managed object attributes; this may be used
independently of scoping

g All or no operations can be requested to succeed by
specifying the synchronization parameter to be atomic - the
default is best effort

-- --

-- --

.

EVENT REPORTING AND LOGGING

g Event reporting is fundamental to the nature of the OSI
model which supports an event-driven approach

g Logging is a complementary function and also essential

g MOs emit notifications; these may be converted to event
reports and/or log records according to the event reporting
and logging function

g Special managed objects of class Event Forwarding
Discriminator and Log control this activity

g These may be created / deleted / manipulated through
management to control the level of reporting / logging

-- --

-- --

.

PROXY MANAGEMENT

g Full OSI agents are impossible to run on small network
elements

g Moreover, a lot of network elements that support another
management model / protocol exist already

g All these elements still need to be managed - this can be
done through proxy agents that translate between the OSI
and the "foreign" protocol

g The nature of the translation varies:

- if the foreign agent supports the same protocol over a
different stack e.g. CMOT, CMOL, the translation is
simple

- if it supports a different protocol e.g. SNMP or other,
translation is difficult and some functionality may be
lost

g CMIS to SNMP translation for existing SNMP MIBs that
have been translated to equivalent OSI ones is deterministic
and can be automated

-- --

PROXY MANAGEMENT

Agent
Foreign

Agent
Foreign

Agent
ProxyManager

OR MANAGEMENT PROTOCOL
OTHER TRANSPORT MECHANISM

PROTOCOL
MANAGEMENT

-- --

.

OBJECT-ORIENTED DESIGN METHODOLOGY

-- --

-- --

.

MODULAR DESIGN METHODOLOGY

g A Module is a piece of code with well defined functionality

g Its functionality is made available through well-defined
entry-points, implemented as procedure calls

g Any internal data are "invisible" from outside the module

g Drawback: modules are single-instanced, functionality
cannot be extended / modified from outside

g Widely used programming languages supporting modules:
C (implicitly), ADA, Modula

-- --

declarations
procedure

data structures
argument

publicprocedures

static data

.h header file.c source file

A module in C

An Example of a Module

A whole protocol layer can be a module

Layer N

indications from layer N-1

requests from layer N+1

code + data

-- --

.

OBJECT-ORIENTED DESIGN METHODOLOGY

g An Object is similar to a module, a collection of procedures
("methods") and data

g These are more tightly coupled and belong to the same
structure ("class")

g Many objects of a class may exist at any time ("instances")

g A class behavior can be modified, extended or even
restricted by simply deriving another ("inheritance")

g Objects of different derived classes may be treated as
objects of a common parent class ("polymorphism")

g Widely used object-oriented programming languages:
C++, Objective-C, Eiffel, Smalltalk

-- --

MO

Top

LogRecordDiscr Connection

EventForwDiscr TransportConn

AlarmRecord

EventLogRecord

AN EXAMPLE INHERITANCE TREE

-- --

.

EXAMPLE OF POLYMORPHISM

g The demonstrated inheritance hierarchy is related to an
OSI management implementation - note the
implementation specific "Managed Object" (MO) root

g Instances of class Event Forwarding Discriminator, Alarm
Record and Transport Connection can be treated in the
software just as managed objects i.e. MO instances

g Performing a "get attribute(s)" operation on a managed
object may mean completely different things with respect to
the real resource the managed object represents

g Through polymorphism, knowledge of the specific class is
NOT needed in order to perform the operation as the MO
class provides the stubs for all the management operations

g The "get attribute(s)" method is redefined by every specific
class to respond appropriately but the interface remains the
same ("virtual method")

-- --

-- --

.

POLYMORPHISM THROUGH VIRTUAL METHODS

g Common behavior to classes of an inheritance tree is
expressed through "virtual methods" - these may be
redefined in derived classes

g Inherited behavior may be modified, extended or restricted
by simply changing the code of virtual methods

g When treating objects as if they were instances of a
common "base" class, the correct virtual method according
to the actual class is invoked.

g Polymorphism through virtual methods can be emulated in
languages like C that enable function pointers to be
members of structures

g An object-oriented language though will do the job for you,
C++ is known to be efficient, even compared to C, and has
additional useful features

-- --

-- --

.

COMMUNICATION SERVICES

-- --

-- --

.

COMMUNICATION SERVICES

g In the OSI Management model, communications services
are provided by the Common Management Information
Service (CMIS)

g This service is realized through the Common Management
Information Protocol (CMIP) over an full or lightweight
OSI stack

g In the OSI world there are two mappings defined: a service
over a full OSI stack (CMIP) and a connectionless one over
Logical Link Control class 1 (LLC1)

g In the Internet world there is a third mapping to provide
the service over TCP/UDP using a lightweight presentation
protocol (CMOT)

g These do not interwork with each other; CMOT and CMIP
applications are portable on each other’s stack with the
same API but will not work over the CMOL stack

g Proxy systems with full CMIP may be used for CMOL
agents while management bridges may be constructed
between CMIP and CMOT

-- --

THE CONCEPT OF SERVICE-PROTOCOL

time

called service usercalling service user

SAPSAP

confirmation

response

indication

request

CMIS

CMIP

Service

Protocol

FULL OSI STACK

ACSE ROSE RTSE

OSI TS

TCP/IP X.25

TP4

CLNP

USER SPACE

TP0

OSI PRESENTATION

OSI SESSION

KERNEL

APPLICATIONS

ASN.1
TOOLS

RFC1006

TRANSPORT - SERVICE BRIDGE

Example TS-Stacks

8802

8881

TP0

CLNP

TP4

IP

TCP

RFC1006

X.25

TP0

OSI TS OSI TS
TS-BRIDGE

TS-STACKTS-STACK TS-STACK TS-STACK

A BA B

CMIP, CMOT & CMOL STACKS

CMOT
CMIS

TCP/UDP

Internet TS
LPP

ROSEACSE

CMIP

CMOL

PP

ROSE

CMIP

MACS

LLC1

CMIS

CMIP

ACSE ROSE

OSI PP

OSI SP
OSI TS

OSI TP

CMIS

CMIP

extendedService: access to all PSAP services

multipleObjectSelection + multipleReply = scoping

CMIS FUNCTIONAL UNITS

kernel

object
selection

multiple multiple
reply filter confirmed

cancelGet
extended
service

-- --

.

CMIP STACK OPTIMIZATION

g When the extended service functional unit is not provided,
the OSI session layer services are not used (ACSE / ROSE
do not use them)

g A minimal session layer can be provided with no
functionality i.e. a simple pass through to the adjacent layer
service - this may minimize drastically the program size

g If only the Basic Encoding Rules are to be used, the whole
ASN.1 manipulation in upper layers can be have two only
steps: internal representation <-> BER stream

g When using upper OSI layers over TCP/IP through the
RFC 1006 method or the CMOT approach over TCP, the
stream-oriented nature of TCP can be exploited for linked
replies

g These can be deferred at the packetization level (RFC 1006
code) until the optimal subnet datagram size is all used

-- --

-- --

.

MANAGEMENT SERVICE API
IMPLEMENTATION MODELS

g A typical way to provide a management service API is as a
library of procedures implementing all the requests and
responses

g In the case of CMIS, these should be Get, Set, Action,
Create, Delete, CancelGet and their results (GetRes, SetRes
etc.)

g Special parameters in the results can be used to indicate
error conditions or linked replies

g For "reading" requests or indications, a common call can
be provided to fill in a data structure, the latter being the
union of all possible requests, results and errors

g Additional calls will be needed for establishing, releasing
and aborting a management association; the association
descriptor in most environments can simply be a file
descriptor

g The interface can be both synchronous and asynchronous;
most operating systems provide support for listening on a
number of external data entry points (file descriptors)

-- --

-- --

.

AN EXAMPLE API TO REALIZE A CMIS GET

int M_Get (msd, invoke, objClass, objInst, scope, filter,
access, sync, nattrs, attrs, mi)

int msd, invoke;
MIDentifier* objClass;
MName* objInst;
CMISScope* scope;
CMISFilter* filter;
External* access;
CMISSync sync;
int nattrs;
MIDentifier attrs [];
MSAPIndication* mi;

int M_GetRes (msd, invoke, linked, objClass, objInst, curTime,
nattrs, attrs, error, errorInfo, mi)

int msd, invoke, linked;
MIDentifier* objClass;
MName* objInst;
char* curTime;
int nattrs;
CMISGetAttr attrs [];
CMISErrors error;
CMISErrorInfo* errorInfo;
MSAPIndication* mi;

int M_WaitReq (msd, secs, mi)
int msd, secs;
MSAPIndication* mi;

-- --

-- --

.

THE USE OF ASN.1 THROUGH THE CMIS INTERFACE

g The CMIP protocol layer may encode / decode most of the
parameters in CMIS primitives; language data structures
can be used through the interface

g The only parameters that need to be encoded / decoded by
the service user are these are these whose type is unknown
(ASN.1 ANY):

- attribute, action and event report values

- access control information

g ASN.1 compilers may be used to encode / decode both the
CMIP Protocol Data Units (PDUs) and the above values
when passed through the service interface

-- --

-- --

.

THE XOM / XMP MANAGEMENT SERVICE API

g There are many ways to implement a management service
API

g The X/Open XOM/XMP API (OSI-Abstract-Data
Manipulation / Management Protocols) is a common
interface for both CMIS and the Internet SNMP

g As the latter is connectionless, the CMIS API has a
connectionless orientation with a separate object providing
association management

g The use of separate ASN.1 manipulation API (XOM) and a
common CMIS/SNMP one results in a lot of work left to the
service user - programming at this level can be tedious

g Applications using XOM/XMP will be portable across
stacks providing this API; this is important as XOM/XMP
tends to become the standard CMIS API

-- --

-- --

.

GENERAL INFRASTRUCTURE

-- --

-- --

.

GENERAL INFRASTRUCTURE

g This general infrastructure has two aspects:

- support for polling in real-time

- support for fully asynchronous event-driven
applications

- support for transparent abstract syntax handling

g The second aspect is not specific to management, it could be
relevant to any real-time application with external
communications needs

g The third aspect is again not specific to management, it
could be relevant to any other OSI or other application that
uses ASN.1

-- --

-- --

.

POLLING SUPPORT

g By polling support is meant the capability to request
"wake-ups" in real-time

g Management applications need polling support for two
reasons:

- managers may need to poll agents periodically to detect
changes in the absence of notifications

- agents may need to poll "dump" real resources in order
to support notifications

g This needs a common mechanism because of the way most
operating systems support this facility i.e. only one wake-up
may be pending for each process at any time

-- --

-- --

.

COMMUNICATION NEEDS

g Management applications have external communication
needs:

- managers need to talk to agents

- agents need to talk to managers, "loosely coupled" real
resources, systems for which they act as proxy and
subordinate agents

g Activities triggered through these communications may
coincide with internal polling requests

g There are two ways to organize internally a complex
management application with respect to external
communications:

- service every external request immediately using a
concurrent execution paradigm (threads, tasks)

- serialize all external and internal requests and take each
to completion

g The former is suitable for a synchronous while the latter
should be used with an asynchronous remote execution
paradigm

-- --

-- --

.

CONCURRENT EXECUTION PARADIGM

g Concurrent execution paradigms allow to service
immediately every external request

g This is achieved through concurrent tasks or execution
threads within the same process

g Every new activity triggered from an external or internal
event constitutes a new task or execution thread

g The remote execution paradigm can be synchronous i.e.
having remote procedure call semantics as this will not
prevent other activities (remote operations take usually
much more than local ones to complete)

g The problems with this approach are:

- internal locking is needed to maintain information
integrity and consistency

- this may lead to deadlocks so deadlock avoidance
mechanisms are needed

- debugging real-time concurrent applications is very
difficult

- finally, there is no task/thread mechanism supported by
commonly used operating systems =>
impact on portability

-- --

-- --

.

ASYNCHRONOUS EVENT-DRIVEN
EXECUTION PARADIGM

g In an asynchronous, event-driven execution paradigm,
external or internal requests are serialized and taken to
completion on a first-come first-served basis

g This is achieved through a central coordinating mechanism
that undertakes all external listening and the
scheduling/servicing of timer events

g The remote execution paradigm should be asynchronous in
order not to delay other pending activities

g This approach does not need a task/thread facility but relies
on a mechanism that enables to block on external
communication endpoints and unblock only on external or
timer events

g Such mechanisms are provided by most operating systems
and this enhances portability

g The only problem with this approach is that asynchronous
remote operations should be used for efficiency -
this introduces the notion of state

-- --

-- --

.

THE COORDINATOR - KNOWLEDGE SOURCE
MODEL

g A fully asynchronous event-driven scheme can be realized
through the Coordinator - Knowledge Source abstraction

g The Coordinator is a central application object that
receives all external events and schedules/services timer
alarms

g The Knowledge Source is a general application object that
is capable of registering external communication endpoints
on which is is told when events occur and of requesting
"wake-ups" (timer alarms) in real-time

g The relationship of those is one to many: there is always one
only Coordinator while there may be many Knowledge
Sources in an application.

g The model assumes that other application objects should
NOT do blocking listen on external communication
endpoints as they will block the whole application

g In such a scheme it is easy to introduce concurrent
execution if desired as the Coordinator exercises
centralized control

-- --

THE COORDINATOR - KNOWLEDGE SOURCE MODEL

Messages to

C: Coordinator
KS: Knowledge Source

other processes

C

KS

KS

KS

...
communications

entry-point

external

-- --

.

THE KS -> COORDINATOR INTERFACE

KSCoord

g Register / deregister a communication endpoint:

- coord -> registerCommEndpoint (ks, cepId)

- coord -> deregisterCommEndpoint (ks, cepId)

g Schedule / cancel real-time wake-ups (possibly many for
eack KS, distinguished through a "token"):

- coord -> scheduleWakeUps (ks, token, interval,
forNotifications)

- coord -> cancelWakeUps (ks, token)

-- --

-- --

.

THE COORDINATOR -> KS INTERFACE

KSCoord

g Callbacks for activity (i.e. data waiting) on a
communication endpoint, a timer event or application
shutdown:

- ks -> readCommEndpoint (cepId)

- ks -> wakeUp (token)

- ks -> shutdown (cepId)

-- --

-- --

-- --

.

OPTIMIZING POLLING

g In management agents, polling is mostly used to support
notifications for "dump" real resources

g Notifications should only be generated if the event reporting
and logging action is active i.e. if there are event
discriminator and log managed objects in the local MIB

g These objects could notify the Coordinator of their
presence through register/deregister methods

g The scheduleWakeUps call contains a boolean
"forNotifications" argument which, if true, will result in
waking-up the knowledge source only if needed

g That way, unnecessary processing and possibly bandwidth
consumption are avoided

-- --

-- --

.

THE COORDINATOR - KS INTERACTION

g After all initialization in an application has finished, the
Coordinator listens for all external or internal (timer
events) activity

g In applications acting as agents, there is a special
knowledge source that understands the CMIS management
service - its communication endpoints are the application
PSAP and established management association endpoints

g There may be other knowledge sources in agents for talking
to "loosely coupled" resources or subordinate agents and in
managers for talking to other agents

g During the lifetime of an application, more communication
endpoints may be registered/deregistered and timer events
scheduled/cancelled

g Before an application exits, knowledge sources with
registered communication endpoints are notified in order to
release them gracefully

-- --

-- --

.

THE COORDINATOR MAIN LOOP

g The Coordinator has methods to act as timer and terminate
signal handlers and also a method serving as the central
listening loop

g The logic of the latter is to serialize all activities due to
external or internal events

g timer or terminate signals are disallowed when something
else is in progress

g The main loop is shown next in C-like pseudo-code notation

-- --

-- --

.

THE COORDINATOR MAIN LOOP

for (ever)
block at all external communication endpoints

if (unblocked because of timer event)
continue

for (all the external communication endpoints)

if (there is data waiting on this endpoint)
block signals
notify the related knowledge source
unblock signals

-- --

-- --

.

TRANSPARENT ASN.1 HANDLING

g In OSI management, attribute, action and notification types
are ASN.1 object identifiers

g Their values may be instances of any ASN.1 syntax
according to the type

g ASN.1 compilers convert internal to external syntax
representations and vice versa i.e. programming language
structures <-> abstract syntax ones

g When programming management applications, it would be
nice to avoid the explicit use of such conversions and
program in terms of language structures

g These conversions can be handled transparently through a
table-driven approach and a generic ASN.1 type
("attribute")

-- --

-- --

.

SYNTAX MANIPULATION METHODS

g Such tables can be parsed and build an internal
representation that maps object identifiers to friendly
names and syntax

g A set of methods for every syntax should be provided that
will enable to manipulate instances of it generically:

- an encode method, converting an internal to the
abstract representation

- a decode method, performing the opposite conversion

- a parse method, converting a string to the internal
representation

- a print method, performing the opposite conversion

- a free method, freeing an internal representation

- a compare method, comparing two instances of the type

- a get-next-element method, returning the next member
of multi-valued syntaxes

-- --

-- --

.

THE OID - SYNTAX TABLES

g It is possible to deal with ASN.1 generically if a mapping is
provided between attribute, action and notification
identifiers and related ASN.1 syntax

g Two tables are needed:

- a general object identifier table used to convert
identifiers to friendly names (e.g. the last textual
component)

- an object identifier / syntax table used as above and also
for a mapping to the syntax associated with the type

g The former should be used for general tags, classes, name
bindings and packages (no associated syntax) while the
latter for attributes, actions and notifications

g These are parsed and internal representations of the
mappings are built, "pointing" also to the syntax
manipulation methods

-- --

-- --

.

HOW THE TABLES ARE USED

g The tables are used first to convert object identifiers to user
friendly names and vice-versa e.g.

2.9.3.2.3.13 <-> system

g For every type with associated syntax, the syntax methods
can be manipulated:

- encode/decode for manipulating values to be sent or
received through the network

- parse for parsing string representation of values in
manager GUIs

- print for printing values in manager GUIs or elsewhere

- free for freeing values when no longer needed

- compare for filtering

- get-next-element for add/remove and filtering of multi-
valued attributes

-- --

-- --

.

AN EXAMPLE OID TABLE

#format
#
name: OID

joint: 2

general management tags

ms: joint.9
smi: ms.3
part2: smi.2

smi2ManagedObjectClass: part2.3
smi2Package: part2.4
smi2Parameter: part2.5
smi2NameBinding: part2.6
smi2AttributeID: part2.7
smi2AttributeGroup: part2.8
smi2Action: part2.9
smi2Notification: part2.10

managed object classes
top: smi2ManagedObjectClass.14
system: smi2ManagedObjectClass.13
discriminator: smi2ManagedObjectClass.3
eventForwardingDiscriminator: smi2ManagedObjectClass.4
log: smi2ManagedObjectClass.6
logRecord: smi2ManagedObjectClass.7

conditional packages
allomorphicPackage: smi2Package.17

name bindings
discriminator-system: smi2NameBinding.1
log-system: smi2NameBinding.2
logRecord-log: smi2NameBinding.3

-- --

-- --

.

AN EXAMPLE OID / SYNTAX TABLE

#format
#
name: OID :syntax

discriminatorConstruct: smi2AttributeID.56 :CMISFilter
administrativeState: smi2AttributeID.31 :AdministrativeState
operationalState: smi2AttributeID.35 :OperationalState
availabilityStatus: smi2AttributeID.33 :AvailabilityStatus

objectClass: smi2AttributeID.65 :OID
allomorphs: smi2AttributeID.50 :OIDList
nameBinding: smi2AttributeID.63 :OID
packages: smi2AttributeID.66 :OIDList

discriminatorId: smi2AttributeID.1 :Integer
destination: smi2AttributeID.55 :DestinationAddress

logId: smi2AttributeID.2 :Integer
logFullAction: smi2AttributeID.58 :LogFullAction
maxLogSize: smi2AttributeID.62 :Integer
currentLogSize: smi2AttributeID.54 :Integer
numberOfRecords: smi2AttributeID.64 :Integer

logRecordId: smi2AttributeID.3 :Integer
loggingTime: smi2AttributeID.59 :UTCTime

managedObjectClass: smi2NameBinding.60 :OID
managedObjectInstance: smi2NameBinding.61 :DN
eventType: smi2NameBinding.14 :OID
eventTime: smi2NameBinding.13 :UTCTime

-- --

-- --

.

AUTOMATING SYNTAX METHOD GENERATION

g Most of the ASN.1 syntax manipulation methods can be
automatically generated using an ASN.1 compiler

g These can be encode, decode, free and get-next-element

g Pretty-printers and parsers can be automatically produced
but as they are bound to produce ugly string
representations, it is better to be hand-coded

g The compare method could be automatically generated in
most cases but buried-in semantics may necessitate hand-
coding

-- --

-- --

.

THE GENERIC ATTRIBUTE

g All the functionality provided by the syntax manipulation
methods could be encapsulated by a generic ASN.1 object,
to be called Attribute

g This can be instantiated with knowledge of its syntax, so it
could automatically provide support for
encoding/serializing, decoding, pretty-printing, filtering,
set/add/remove

g This type of object can be used for representing attribute,
action and notification values in both agents (MOs) and
managers (access APIs)

g It may perform a table look-up at instantiation to get access
to its syntax methods, or alternatively, specific objects for
every syntax could be derived with built-in knowledge

g The latter can inherit behavior from the generic class and
they can be automatically produced through an attribute
compiler

-- --

-- --

.

THE GENERIC ATTRIBUTE INTERFACE

g The main methods of the generic attribute type which
provide an interface for manipulating ASN.1 syntaxes
generically are:

- encodedValue = attr -> encode ()

- decodedValue = attr -> decode (encodedValue)

- stringValue = attr -> print ()

- attr -> clear ()

- copyValue = attr -> copy ()

- value = attr -> get ()

- result = attr -> set (newValue)

- result = attr -> setDefault (dfltValue)

- result = attr -> add (addValue)

- result = attr -> remove (remValue)

- result = attr -> filter (filterType, assertedValue)

- attr = construct (syntaxName, initialValue)

- attr = construct (typeOid, encodedValue)

-- --

-- --

.

THE GENERIC ATTRIBUTE INTERFACE

g The generic attribute type enables to program in terms of
language structures while it also enables to encode and
decode values

g The copy method can be realised by using encode/decode at
a moderate performance cost - the provision of a syntax
specific copy method is avoided

g The get and set methods could be redefined in derived
attribute types specific to a resource

g There are two ways to construct an instance, using the
syntax name and initial value or the type object identifier
and encoded value

g All this functionality can be fully automated through ASN.1
compilers

-- --

-- --

.

MANAGEMENT AGENT INFRASTRUCTURE

-- --

-- --

.

THE NATURE OF MANAGED
REAL RESOURCES

g The managed real resources may be either physical or
logical

g They may reside in an operating systems kernel, in
communication boards, in user-space processes or even in
remote systems managed in a proxy fashion

g A two-way communication is needed between managed
objects and the resources they encapsulate: access for
monitoring and control and also asyncronous reporting of
events (for "clever" resources)

g The managed object should always provide an up-to-date
and consistent view of the corresponding resource through
the management interface

-- --

-- --

.

REAL RESOURCE ACCESS METHODS

g For access purposes, real resources fall in the following two
categories with respect to the corresponding managed
objects / agent:

a. "tightly coupled" - resources that reside in a common
address space e.g. in local memory, shared memory,
kernel’s virtual memory etc.

b. "loosely coupled" - resource that are not in a common
address space e.g. in other user space processes,
subordinate agents etc.

g Access to them from the managed object can be:

a. "upon external management request" - the values are
fetched only if requested through the management
protocol

b. "cache ahead" - the managed object polls the resource
periodically and updates itself with fresh values

c. "through asynchronous reports" - these are sent from
the resource to the managed object according to activity

-- --

-- --

.

ADVANTAGES / DISADVANTAGES

g "upon external management request" - induces the least
overheads, response time may be slow for loosely coupled
resources and cannot support notifications for "dump"
ones

g "cache ahead" - incurs processing even when no managers
are interested, response time is fast but looses in
information timeliness, necessary to support notifications
for "dump" resources

g "through asynchronous reports" - again incurs processing
even when no managers are interested, best if it can be
tailored and useful mostly for notifications

g The OSI management model veers more towards the
event-driven approach, so processing in agents/resources to
support it is necessary

-- --

AGENT APPLICATION DECOMPOSITION

CMISAgent

MIB

...
KSs

CMIS
RR

CMIS: Front-end management interface

RR: Back-end loosely coupled real resource interface

KSs: Knowledge Sources

-- --

.

THE CMIS AGENT OBJECT

g Every agent application needs an object that understands
the management protocol, exercises access control, passes
requests to the managed objects and returns replies

g In an OSI agent, such an object will handle association
establishment and release, receive CMIS requests, address
the right managed objects through scoping and filtering,
exercise access control, handle synchronization and
eventually return the results/errors

g It will also receive event reports from the notification
function which it will forward to the specified destination
after exercising access control

g This object is a specialized knowledge source whose initial
endpoint is the application Presentation Service Access
Point (PSAP) and subsequent ones relate to management
associations

-- --

-- --

.

OPERATION PROCEDURES

g Get, Set, Action and Delete requests may involve scoping
filtering and synchronization. The agent object does exactly
the following:

g Checks the managed object class against the set of classes it
knows - noSuchObjectClass is returned on error

g Checks the instance (managed object name) against the
local containment tree - noSuchObjectInstance is returned
upon error, a managed object pointer otherwise

g Checks the specified class is the instance class or any of its
allomorphic classes - classInstanceConflict is returned upon
error

g If scoping is other than baseObject, it applies scoping to
find the scoped objects

g If a filter has been specified, this is applied to the selected
object(s) to find those on which to perform the operation -
access control rules apply with respect to read access to
attributes

-- --

-- --

.

OPERATION PROCEDURES (cont’d)

g Access control rules apply for the operation:

- If synchronization was requested to be atomic and
access to at least one of the objects is denied, an empty
reply is returned

- Otherwise, for every object for which access is denied, a
response with accessDenied error is returned

- for Get and Set, this may be only a partial error in
which case the operation should be performed for the
attributes that access was granted

g If more than one objects have been selected and
synchronization was requested to be atomic, there are two
options:

- a syncNotSupported error is returned if
synchronization is not supported

- if the operation cannot succeed for all the objects, an
empty result is returned (see later on synchronization)

g Finally the requested operation is applied to the managed
object(s) and a single reply or a series of linked replies
followed by an empty reply is returned

-- --

-- --

.

CREATE PROCEDURES

g For a Create request, the agent may do the following:

g Check the class and return noSuchObjectClass if unknown
and accessDenied if known but cannot be created through
CMIS

g Apply access control rules and return accessDenied if the
manager has no create rights

g If the object or the superior instance has been supplied,
check that the object instance does not exist (possible
duplicateInstance error) and/or the superior instance does
exist (possible invalidObjectInstance error)

g If a reference instance has been supplied, check if it exists
(possible noSuchReferenceObject error)

g Perform the Create operation by requesting the class object
to create the instance (see later) and return the result/error

-- --

-- --

.

EVENT REPORT PROCEDURES

g As the real resources modeled by the managed objects in
the agent operate, notifications may be generated

g These may be converted to event reports of log records
according to the presence of event forwarding
discriminators and/or logs in the local MIB

g Before a record is logged and/or before the agent is
requested to forward an event report, access control rules
apply

g If the agent is requested to forward an event report, it has
to check first if it already has an association open to that
destination [through the Application Entity Information
(AEI) / Presentation Address]

g If it does, it should just send the event report on that
association while if not, it should establish a new one to
send the report

g If the confirmed service is requested, the agent should wait
for an event report reply and possibly resend the event
report after a time-out until it receives the reply

-- --

-- --

.

CANCEL GET PROCEDURES

g A manager may request the immediate termination of a
series of linked replies through a Cancel-Get request
referencing the invoke id of a previous Get request

g In a single-threaded execution paradigm, while servicing
the Get request and before sending back each reply, the
association should be checked for a pending Cancel-Get
request

g If requests other than Cancel-Get are found, they should be
queued for subsequent processing

g If a Cancel-Get request for the currently serviced or any of
the queued Get requests is found, an operationCancelled
error should terminate the Get request, followed by the
Cancel-Get reply

g If the Cancel-Get request does not correspond to any Get
request, a noSuchInvokeId error should be returned

-- --

-- --

.

LOOSELY COUPLED RESOURCES

g A request for an operation to a managed object modeling a
loosely coupled resource with a "get-upon-management-
request" scheme will result in interprocess or network
communication

g The interface between the agent and managed object / real
resource can be either synchronous or asynchronous

g In the case of a synchronous interface and a single-threaded
execution paradigm the whole agent will block until the
reply is received

g An asynchronous interface is needed to overcome this
limitation, which means that both the managed object and
the agent should maintain state information

g The agent needs in particular to maintain state of which
operations are pending and introduce time-outs ("wake-
ups") to avoid waiting for ever

-- --

-- --

.

THE CONTAINMENT HIERARCHY

g The containment tree can be represented internally as a
physical binary tree of managed object instances

g Every object needs to keep sibling, subordinate and
superior pointers

g It should also keep its relative distinguished name in order
to make possible the addressing of managed object through
their distinguished name

-- --

INTERNAL BINARY REPRESENTATION

CONTAINMENT HIERARCHY

N-ARY ABSTRACT TREE

A

B C D

E F G

G

A

B

C

D

E

F

-- --

.

MANAGED OBJECTS

g Managed objects are represented internally as language
objects that contain data (attributes) and offer a well-
defined method interface

g In fact, attributes are themselves language objects,
subclasses of the general Attribute class

g The managed object code has three parts:

- generic code that enables object and attribute
addressing, scoping, filtering etc. and also keeps handles
to attribute and class information

- code specific to the managed object classes that
constitute the instance; this may be produced by a
GDMO compiler

- code specific to the real functionality of the object i.e.
code that interacts with the corresponding real resource
or the rest of the MIB for control objects

-- --

-- --

.

MANAGED OBJECTS (cont’d)

g In every managed object there is both instance and class
information

g Instance information is its data i.e. attributes and any other
instance specific information

g The class information is common to all instances of a class
and therefore it is internally represented as a separate
object instance

g A managed object instance will contain code for at least two
separate object classes (Top and the specific class realized)

g This code has access to the class object and instantiates the
attributes of the basic and any conditional packages

g Handles to the class and attribute information are passed to
the generic code which uses them to automate a lot of tasks

g An example of this internal organization is shown for an
instance of the Event Forwarding Discriminator class

-- --

specific code
Real Resource

produced code
GDMO Compiler

Generic Code

A MANAGED OBJECT INSTANCE

An EventForwardDiscriminator Example

Top part

Discr part

EventForwDiscr part

Generic MO part

Top

Discr

EFDiscr

class

class

class

Class Information ObjectsAn Object Instance

(cont’d)

An Object Instance and its Attributes

An EventForwardDiscriminator Example

Top part

Discr part

EventForwDiscr part

Generic MO part

-- --

.

MANAGED OBJECT CLASSES

g Every managed object class is represented internally as a
separate object instance

g This is static i.e. it exists even if no managed object
realizing the functionality of the class exists

g The agent object knows of all managed object classes
supported in the managed system through a class table

g Class objects point to their parent in the inheritance
hierarchy to form an internal representation of the
inheritance tree

g This is in order to have access to full class information
when the creation of an instance is requested through
CMIS

-- --

-- --

.

MANAGED OBJECT CLASSES (cont’d)

g Class objects hold the following information about a class:

- the class name/oid

- name binding information

- attribute and attribute group names/oids

- information on which attributes are settable and the
default value (if any)

- notification names/oids and encoding information

- action names/oids and decoding/encoding information

- package information

- allomorphic class information

- name binding information

g Most important, integer tags are held for attributes, actions
and notifications; object identifiers in CMIS operations are
automatically mapped on those for the resource-specific
API

-- --

-- --

.

THE AGENT - MANAGED OBJECT INTERFACE

MOAgent

- mo = root_mo -> Find (objInst)

- result = mo -> CheckClass (objClass)

- moList = mo -> Scope (scope)

- result = mo -> Filter (filter)

- result = mo -> Get (class, attrIdList)

- result = mo -> Set (class, conf, attrId/value/modify list)

- result = mo-> Action (class, conf, actionType, actionInfo)

- result = mo-> Delete ()

- result = classObj -> Create (superior, rdn, reference,
initialAttrList)

-- --

-- --

.

THE MANAGED OBJECT - AGENT INTERFACE

MOAgent

- sendEventReport (objClass, objInst,
eventType, eventTime, eventInfo,
destination, backUpDestinationList)

- agent -> asynchronousOperationResult (operation)

-- --

-- --

.

THE REAL RESOURCE ACCESS API

g Every managed object instance has some code specific to
real resource access

g There is an internal API through which this hand-written
code is invoked

g This is a simple API as all the possible checks have already
been done by the generic code

g In particular, attributes, actions and notifications are
referred to through integer tags while only language data
structures are passed across (instead of encoded ASN.1
values)

g That way, the amount of code that needs to be written by
MIB implementors is absolutely minimized

-- --

THE MANAGED OBJECT INTERNAL INTERFACE

A MANAGED OBJECT INSTANCE

Generic Code

Real Resource
specific code

(inherited)

(hand-written)

(GDMO Compiler produced)

API

-- --

.

THE MANAGED OBJECT INTERNAL INTERFACE

From the generic to the resource specific part:

- get (attrIdList)

- set (attrId/value/modify list)

- result = action (actionType, actionInfo, actionResult)

- result = delete ()

- result = buildEventReport (notificationId)

- refreshSubordinate (rdn)

- refreshSubordinates ()

From the resource specific to the generic part:

- asynchronousOperationResult (operation)

- notification (notificationId)

-- --

-- --

.

REFRESHING TRANSIENT MANAGED OBJECTS

g Transient managed objects are these that can be created
and deleted according to the operation of the underlying
resource e.g. table entries, connections etc.

g If there are no notifications associated with their creation
and deletion, the managed system does not have always an
up-to-date image of them

g When such an object is referenced through its name in a
management request or through scoping, the managed
system should get an up-to-date image

g This can be achieved through a refresh method in the
(non-transient) containing object

g Partitioning the knowledge that way accords to the nature
of the classes in the containment relationship e.g. table and
table entry, protocol machine and connection etc.

g It is noted that this may not be needed if notifications for
creation and deletion are supported for those classes as the
MIB image may then be up-to-date

-- --

-- --

.

REAL RESOURCE INTERACTION

g When a managed object needs to do periodic polling in
order to support notifications or to implement a "cache-
ahead" strategy, it can simply inherit the knowledge source
functionality

g In the case of a "loosely-coupled" resource, it is likely that
many managed objects will need to share the same
communication channel

g In this case, a separate object i.e. a knowledge source is
needed to handle that communication

g This involves initializing and terminating communication,
understanding the protocol used, de-multiplexing messages
and delivering them to the appropriate managed object

g This type of object constitutes the back-end of an MIB part,
implementing the communication to the associated "loosely
coupled" resource

-- --

-- --

.

ADDRESSING A MANAGED OBJECT

g In all the management requests through CMIS to the agent
(with the exception of Create), a base managed is
referenced through a distinguished name.

g This may be a global name i.e. from the Directory root to
the object or a local name i.e. from the first object below
system

g The validity of the non-local part of a global name can be
checked against the value of the systemTitle system
attribute

g In both cases, addressing the correct object in software is a
matter of checking the components of the distinguished
name against objects in the local containment tree

g A simple recursive algorith for doing this is shown next -
note the refresh subordinate call to cater for transient
objects

-- --

-- --

.

THE ADDRESS METHOD

FindSubordinate (rdn)

refreshSubordinate (rdn)

for (all the first level subordinates)
if (the rdn is equal to that of the subordinate)

return subordinate

return error

Find (dn)

if (no dn)
return this object

subordinate = FindSubordinate (rdn of the first
dn component)

if (no such subordinate)
return error

return subordinate -> Find (next dn component)

-- --

-- --

.

CMIS SCOPING

g The containment tree (Management Information Tree -
MIT) is represented internally as a binary tree

g Evaluating scope is trivial and simply relegated to a pre- or
post-order MIT search

g The only tricky aspect relates to non up-to-date instances of
transient objects - the refresh subordinates method takes
care of that

g A simple recursive algorithm for a pre-order search is
shown next

-- --

-- --

.

THE SCOPE METHOD

Scope (scope, moList, level)

switch (scope)
case wholeSubtree

add this object to the list
refreshSubordinates ()

case individualLevel
if (level > level in scope)

return // level exceeded
if (level = level in scope)

add this object to the list
else

refreshSubordinates ()

case baseToNthLevel
if (level > level in scope)

return // level exceeded
add this object to the list
if (level < level in scope)

refreshSubordinates ()

if (there is a subordinate)
subordinate -> Scope (scope, moList, level + 1)

if (there is a sibling)
sibling -> Scope (scope, moList, level)

Its internal representation

AN EXAMPLE FILTER

(A or B) and (not C)

A B C

and

or not

-- --

.

CMIS FILTERING

g A CMIS filter is represented internally as a tree of objects
that are either filter types (and, or, not) or filter items

g Evaluating a filter is trivial if the actual item eveluation is
done by the attributes that have the syntax knowledge
("compare" method)

g Evaluation can be done through a simple recursive
algorithm as shown next

g Before evaluating the filter, the object is told to refresh its
attribute values

g If the filter evaluates to True and the subsequent operation
is Get, the refreshed values should be used; this stateful
approach is necessary for consistency and also also as an
optimization

-- --

-- --

.

THE FILTER METHOD

Boolean Filter (filter)

switch (filterType)
case filterItem

if (the attribute in the assertion does not exist
or is not readable)

return False
if (itemType = present)

return True
if (attr -> decode (assertedValue) fails)

return False

status = attr -> filter (itemType, decValue)
free decValue and return status

case filterAnd
for (all the filters in filter)

if (Filter (thisFilter) is False)
return False

return True

case filterOr
for (all the filters in filter)

if (Filter (thisFilter) is True)
return True

return False

case filterNot
return Not (filter in filter)

-- --

.

SYNCHRONIZATION

g Implementing synchronization is very tricky

g There are two possible approaches:

- a managed system internal two-phase commit with two
passes

- keeping previous values and restoring in case of error

g The second approach requires idempotency of operations
but may still disrupt provided services

g The internal two phase-commit one is impossible to
implement for managed objects representing resources in
subordinate agents

-- --

-- --

.

EVENT REPORTING AND LOGGING

g The event reporting function can be implemented as part of
the generic managed object

g Of course, it should make use of the necessary management
control object classes (Discriminator,, Event Forwarding
Discriminator, Log, Log Record etc.)

g A simple "notification" method call can be provided as a
handle to trigger a notification

g This may be converted to an event report and/or logged

g Encoding the event report should be done only if a
destination is found

g The ASN.1/BER representation is excellent support to
implement easily managed object persistency (necessary for
logs/log records and other objects)

-- --

-- --

.

OTHER SYSTEMS MANAGEMENT FUNCTIONS

g Any other systems management functions can be provided
through the relevant management control managed objects

g Additional logic in the agent or the generic part will be
needed to make use of them e.g. to support access control
etc.

g For functionality that can be initiated by the specific
managed object code, simple handles can be provided
hiding realization details

g A good practice for the systems management functions is to
be conditionally compiled / linked to reduce the size of
agents

g The same holds for the CMIS functional units multiple
object selection / reply (scoping), filter and cancel get

-- --

-- --

.

THE GENERIC MANAGED SYSTEM

g All the generic functionality described can be provided by a
generic managed system platform which will provide a
plug-in facility for new managed object classes

g The following should be provided:

- the Coordinator / Knowledge Source and Generic
Attribute infrastructure described

- the CMIS agent object

- the generic managed object and top classes

- the SMI generic attribute types (counter, gauge,
thresholds, tide-mark)

- the DMI object classes for the systems management
functions

- functionality for the latter

- a GDMO compiler to produce run-time support for
managed objects, including specific new attribute types

g With this functionality in place, producing new agents
means writing only the specific code for interaction with the
underlying real resource

-- --

-- --

.

MANAGER INFRASTRUCTURE

-- --

-- --

.

GENERIC MANAGER INFRASTRUCTURE

g Managers may need to poll remote agents periodically and
also to receive asynchronous event reports

g The general Coordinator - Knowledge source
infrastructure may be used to provide this facility

g The centralized control of such a coordination mechanism
may conflict with the requirements of a Graphical User
Interface - an integrated approach is needed

g A raw procedural CMIS API, though adequate, requires
explicit ASN.1 manipulation

g Higher-level object-oriented interfaces can be built using
the general infrastructure described

g Two approaches, a "Remote" and a "Shadow MIB" are
described

-- --

-- --

.

INTEGRATING GRAPHICAL USER INTERFACES

g Most manager applications with graphical user interfaces
use simply synchronous management communications - in
this case there is no problem

g The problem begins when asynchronous operations are
needed as most GUI mechanisms (X Windows etc.) use
their own coordinating mechanism

g The solution is to make the management coordinating
mechanism (the Coordinator object) able to export its
communication enpoint mask

g In this case the GUI coordinating mechanism can be used
as the central one with an additional adaptation object to
pass events to management

g The same holds for the timer events in the case the
"foreign" mechanism (GUI or other) needs to take control
over these

-- --

adaptation

external

entry-point

...

KS

KS

GUI Coord

Coord

mgmt comms

external
GUI comms
entry-point

MANAGEMENT AND GUI INTEGRATION

Coord: Coordinator
KS: Knowledge Source

-- --

.

THE REMOTE MIB MODEL

g The abstraction of a management association object can be
provided through a RMIBAgent object

g A manager object is also needed to provide callbacks for
asynchronous results or event reports (RMIBMgr)

g The RMIBAgent can provide the following functionality:

- handle association establishment and release

- hide ASN.1 manipulation through the generic attribute

- hide object identifiers through friendly names

- hide distinguished name and CMIS filter complexity
through a string-based notation

- assemble linked replies

- provide a high-level interface to event reporting, log-
control or other functions

- provide both a synchronous (RPC-semantics) and
asynchronous service interface

g Any application object may use the synchronous interface
while RMIBMgrs are needed for asynchronous callbacks

g A manager application needs at any time a number of
RMIBAgents according to the number of remote MIBs
(agents) it needs to access

-- --

THE REMOTE MIB MODEL

. . .RMIBMgr

CMIS

RMIBAgentRMIBAgent . . .

API

General
Object

-- --

.

AN EXAMPLE EVENT REPORT INTERFACE

RMIBMgr RMIBAgent

g Requesting or stopping event reporting:

- rmibAgent -> receiveEvent (eventType, objClass,
objInst, manager)

- rmibAgent -> receiveEvent (filterConstruct, manager)

- rmibAgent -> stopReceiveEvent (eventType, objClass,
objInst, manager)

- rmibAgent -> stopReceiveEvent (filterConstruct,
manager)

g Receiving event reports:

- rmibManager -> eventReport (objClass, objInst,
eventType, eventTime, eventInfo)

-- --

-- --

THE SHADOW MIB MODEL

MA

Managing Application

RR

Real Resources

Agent

API

MIB

A RR

Manager

MMA

MMA
SMIB

API

Shadow MIB

MS

Managed System

?

CMIS

CMIS

a)

b)

c)

-- --

.

THE SHADOW MIB MODEL

g In the "Shadow MIB" model the abstraction of managed
objects in the local address space is provided

g These are handled by a SMIBAgent while a SMIBMgr
provides the interface for asynchronous callbacks

g Some of the CMIS power such as scoping and filtering is
lost but it can be a good paradigm for rapid prototyping

g The local shadow managed objects can be updated through
fetch-on-request, cache-ahead or event report schemes

g The use of a management protocol is almost completely
hidden

g By adding location transparency through a "broker", the
abstraction of a locally accessible global management
information tree can be provided in true ODP fashion

-- --

CMIS

THE SHADOW MIB MODEL

SMIBAgent

SMIBMgr

SMIBAgent

. . .

. . .

API

General
Object

-- --

.

THE GENERIC TMN APPLICATION

g OSI Network Management provides the model for network
management interactions but says nothing for the
organization of network management systems

g The CCITT Recommendation M.3010 is based on the
principles of the OSI model to provide a model for higher-
level management system organization

g In this management functionality is decomposed following a
hierarchical layered approach as follows:

- Network Element Management

- Network Management

- Service Management

g In this model, pure agents operate only at the lowest level of
the hierarchy (network elements) with hybrid units in the
other layers in hierarchical manager-agent relationships

g Following the object-oriented model described for
decomposing OSI agents and managers, the structure of the
generic TMN application is shown next

-- --

CMIS

CMIS

Other
RMIBMgrs
KSs

THE GENERIC TMN APPLICATION

. . .RMIBAgentRMIBAgent

MIB

CMISAgent

-- --

.

SUMMARY AND INFORMATION

-- --

-- --

.

SUMMARY

g The OSI Management model offers powerful solutions that
can be efficiently implemented

g It is though necessary to hide complex aspects behind well
thought out APIs

g Object-oriented design methodology and implementation
technology offer the solution to this problem

g Object-oriented management platforms can offer a very
simple interface for MIB realization and access

g The same technology can be used to automate conversion
between the OSI and Internet management approaches

-- --

-- --

.

ACKNOWLEDGEMENTS

g The research work presented has been carried out under
the auspices of the RACE and EPSRIT European research
programmes

g In particular, it has been carried out in the following
projects:

- RACE-II ICM - Integrated Communication
Management

- RACE-I NEMESYS - NEtwork Management using
Expert SYStems

- ESPRIT-III MIDAS - Management In a Distributed
Application and Service Environment

- ESPRIT-II PROOF - Primary Rate ISDN OSI Office
Facilities

- ESPRIT-I INCA - Integrated Network Communication
Architecture

-- --

-- --

.

THE OSI MANAGEMENT INFORMATION SERVICE
(OSIMIS)

An openly available OSI management platform, implementing
most of the infrastructure described and including applications

Uses the ISODE implementation of the OSI upper layers

Latest release 3.0 includes:

g A full OSI CMIS/P based on the IS2 1991 standards version
(in C) - interoperates with the Retix and NetView
implementations

g General infrastructure for fully asynchronous event-driven
applications and transparent ASN.1 manipulation - the
Kernel (in C++)

g Generic Object-Oriented infrastructure to implement MIBs
supporting ALL the functional units and the event report
and log control functions - the Generic Managed System
(GMS) (in C++)

g Generic Object-Oriented infrastructure to implement
managers through the Remote MIB model (RMIB) (in C++)

-- --

-- --

.

THE OSI MANAGEMENT INFORMATION SERVICE
(cont’d)

g A Generic X-Window based MIB browser application
(in C++)

g Generic managers for all management operations
(in C/C++)

g A full implementation of the OSI Internet MIB as in RFC
1214 in a non-proxy fashion (in C++)

g An experimental implementation of the ISO Transport
Layer MIB (in C++)

They will appear in the future:

g A proxy implementation of the OSI Internet MIB

g A GDMO compiler

g Generic support for CMIS->SNMP conversion using the
IIMC approach

g More systems management functions

-- --

-- --

.

HOW TO GET AN OSIMIS COPY

g There is the discussion forum <osimis@cs.ucl.ac.uk>
to request information

g In order to subscribe send a request to
<osimis-request@cs.ucl.ac.uk>

g If you simply want to get a copy:

- use anonymous FTP to cs.ucl.ac.uk [128.16.5.31] or

- use anonymous FTAM to 23421920030013 through IPSS
or 20433450420113 through IXI with TSEL 259 (ASCII
encoding) and

- look in the directory osimis/

-- --

