On the Feasibility of a User-Operated Mobile Content Distribution Network

Ioannis Psaras, Vasilis Sourlas, Denis Shtefan, Sergi Reñé and George Pavlou
University College London, UK
Mayutin Arumaithurai
University of Goettingen, Germany
Dirk Kutscher
Huawei German Research Center

iCore & CommNet2 workshop on
Content Caching and Distributed Storage for Future Communication Networks
June 20, 2017, Imperial College, London
Data caps cannot keep up with demand for mobile video delivery
Facts I: CDNs focus on the fixed domain
Facts II: Mobile Video will Skyrocket

Given the massive explosion of video content available on the internet, there is a corresponding sharp increase in streamed video viewing, particularly among younger generations. Today’s teens are streaming natives, as they have no experience of a world without online video streaming.

Ericsson Mobility Report, 2016
Mobile Data in terms of Video

One hour of streaming per day (e.g., during commuting) consumes a 2GB data plan in less than 10 days!
Mobile micro-datacentres

All modern smartphones have at least 16GBs of memory.

16 GBs of memory translates to nearly 1,000 minutes of YouTube or 100 10-min YouTube videos.

Modern smartphone devices are always-on, always-connected, mobile data-centres for short audio/video-clips.
Working Example

• Assume:
 ✓ BBC application installed in 10M end-user devices – that’s roughly 1 in 6 devices you see around (in the UK)
 ✓ End-users split in: 1) source, 2) destination, and 3) relay nodes

• Picture this:
 ① Content Providers (CPs), say BBC, publish one new video-clip every 1 hour
 ② CPs push the video to a limited number of source nodes – source nodes have prior agreement with CPs
 ③ Source nodes exploit mobility to update destination nodes
 ④ Once updated, destination nodes can act as relay nodes for a limited amount of time.
Working Example

• Assume:
 ✓ BBC application installed in 10M end-user devices – that’s roughly 1 in 6 devices you see around (in the UK)
 ✓ End-users split in: 1) source, 2) destination, and 3) relay nodes

• Picture this:
 ① Content Providers (CPs), say BBC, publish one new video-clip every 1 hour
 ② CPs push the video to a limited number of source nodes – source nodes exploit mobility to update destination nodes
 ③ Once updated, destination nodes can act as relay nodes for a limited amount of time.

Result: Huge amounts of content is proactively put in users’ devices in an application-centric manner.

Challenge: Can we have every video-clip pre-loaded to the users’ devices before new content comes out (i.e., within 1h)?
ubiCDN
a distributed and ubiquitous content distribution network for data delivery at the mobile domain.

ubiCDN exploits user mobility in urban environments to proactively distribute non-real time content

Content spreads through smart, Information-Centric Connectivity
ubiCDN Components

• **Node Groups**
 – *Source nodes*: get new content pushed to their devices
 – *Destination nodes*: passively wait to receive updates
 – *Relay nodes*: act as source nodes for limited time

• **D2D Information-Aware and Application-Centric Connectivity**
 – WiFi Direct Generic Advertisement Protocol (GAS)
 – Devices advertise services/applications, e.g., *BBC-Sports-11am*

• **Incentives**
 – Source and Relay nodes are compensated
 – Compensation proportional to content distributed

• **Data Integrity/Content authentication**
 – Digital certificates from CPs
 – Digital Signatures based on Public Key Infrastructure (PKI)
 – Source and Relay nodes: Storage Delegates

ubiCDN
ubiCDN
ubiCDN
ubiCDN
Information-Aware and Application-Centric Connectivity
Target of this study
Feasibility of a user-operated CDN

• define “Feasibility”

What percentage of population is updated within reasonable time-frames?*

F1: How many source nodes are needed?
F2: What’s the impact of relaying?
F3: What’s the impact on battery?

• Metrics:
 – **Satisfaction rate**: percentage of nodes updated within update interval
 – **Overhead**: duplicates, messages of no interest or incomplete transfers
 – **Relayed content**: percentage of messages delivered by relay nodes
 – **Energy consumption**: what percentage of battery is consumed for ubiCDN

* We define this as “update interval” and set it to 1 hour.
Evaluation: Setup and Assumptions

- ubiCDN implemented on the ONE simulator.
- Set of 10 applications, Pareto-distributed by popularity and randomly distributed among users (at least one application per user).
- We compare it with Floating Content.

Floating Content
- Messages stay within some area
- Messages live for some specific amount of time

*Joerg Ott et al. www.floating-content.net
Evaluation: Setup and Assumptions

Helsinki simulation area
Evaluation: Setup and Assumptions

• Urban movement: 8.3km x 7.3km area
• Multiple movement patterns map-based defined:
 – **Source Nodes (50):**
 • 18 Buses on predefined routes.
 • 32 working day movement model with 50% evening activity
 – **Destination Nodes (1000):**
 • *Tourists (20% of destination nodes):* Random travel destinations including “points of interest” to which they travel following the shortest path, wait randomly between 2-15 minutes and then move again.
 • *Workers (80% of destination nodes):* Working day movement model: Home to work (for 7 hours) + 50% probability of evening activity, before travelling back home
Evaluation: Setup and Assumptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Applications</td>
<td>10</td>
</tr>
<tr>
<td>Number of Source Nodes</td>
<td>50</td>
</tr>
<tr>
<td>Number of Destination Nodes</td>
<td>1000</td>
</tr>
<tr>
<td>Size of each message</td>
<td>5 MBs</td>
</tr>
<tr>
<td>App. update period</td>
<td>1 hour</td>
</tr>
<tr>
<td>D2D Link Capacity</td>
<td>31.25Mbps</td>
</tr>
<tr>
<td>Radio Range</td>
<td>60 m</td>
</tr>
</tbody>
</table>
Feasibility 1: Number of source nodes

Flooding is more efficient, but...

5% of nodes reach out to 60% of population

Exponential increase
Feasibility 1: Number of source nodes

Less than 10% overhead – mainly due to mobility

Significant overhead – up to 50%
Feasibility 2: Impact of Relaying

Substantial gain (up to 40%) after 5-15 mins

ubiCDN gains from up to 30 mins of relaying
Feasibility 2: Impact of Relaying

- Up to 90% overhead using fltCDN
- Bounded to 20% for ubiCDN
- Space for Optimisation: Least popular applications cause little overhead
Feasibility 2: Impact of Relaying

More than 40% (ubiCDN) / 80% (fltCDN) of distribution comes from relaying
Feasibility 2: Impact of Relaying

Most nodes get updated within the first 20-25 mins
Feasibility 3: Energy – the price to pay

Energy Consumption Source nodes

<table>
<thead>
<tr>
<th>Content update size</th>
<th>ubiCDN</th>
<th>fltCDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 MB</td>
<td>~ 1%</td>
<td>~ 15%</td>
</tr>
<tr>
<td>50 MB</td>
<td>~ 1,5%</td>
<td>~ 25%</td>
</tr>
<tr>
<td>100 MB</td>
<td>~ 2%</td>
<td>~ 30%</td>
</tr>
</tbody>
</table>

15x less consumption

Energy Consumption Relay nodes

<table>
<thead>
<tr>
<th>Content update size</th>
<th>ubiCDN</th>
<th>fltCDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 MB</td>
<td>5 MB</td>
<td>5 MB</td>
</tr>
<tr>
<td>50 MB</td>
<td>50 MB</td>
<td>50 MB</td>
</tr>
<tr>
<td>100 MB</td>
<td>100 MB</td>
<td>100 MB</td>
</tr>
</tbody>
</table>
Conclusions

Data Caps cannot follow demand for mobile video
- Expected to be about 8GBs in 2020

CDNs cannot reach the mobile domain
- Can’t put a server after the BS

Pressing need for a solution to distribute heavy content in the mobile domain.

User devices as micro-data centres: **Opportunity not to be missed**

At least 50% of users updated within 30mins

Energy consumption is as low as 1% of battery capacity per hour.

Information-Centric Connectivity is necessary in this case
Key Publications
ICN Information-Resilience

“Information Resilience Through User-Assisted Caching in Disruptive Content-Centric Networks”
V. Sourlas, L. Tassiulas, I. Psaras, G. Pavlou
IFIP NETWORKING 2015
Best Paper Award

“Opportunistic Off-Path Content Discovery in Information-Centric Networks”
O. Ascigil, V. Sourlas, I. Psaras, G. Pavlou
IEEE LANMAN 2016
Best Paper Award
INRPP: In-Network Resource Pooling

I. Psaras, L. Saino, G. Pavlou
“Revisiting Resource Pooling: the Case for In-Network Resource Sharing”
ACM HotNets 2014
Modelling In-Network Caching

Centrality-Based In-Network Caching

 - Best Paper Award

 - One of top cited COMCOM papers since 2013!!
Probabilistic In-Network Caching

ProbCache: Probabilistic In-Network Caching

\[\text{ProbCache}(x) = \frac{\sum_{i=1}^{c} (x-1) N_i}{T_{tw} N_x} \times \frac{x}{c} \]

Caching Capability of a Path
Weight-based Caching

Cache-aware-/Hash-routing for ICN

Further Paper Highlights