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Abstract

In this thesis, a comprehensive analytical and numericalysvf optical non-linear ef-
fects in plasmonic metamaterials is presented. The nevitsesported and described
in this work can potentially have a significant impact on onderstanding of electro-
magnetic phenomena in artificial optical materials, andifate the design and fabri-
cation of new active optical devices with new or enhancedtionality. Equally impor-
tant, these results could lead to deeper physical insigtdaghe fundamental properties
of these metamaterials.

To this end, a new analytical formalism based on the multgkgtering theory
has been developed, a theoretical framework that allowd@hdly characterise the
linear and non-linear electromagnetic properties of eabytdistributions of metallic
nanowires. This formalism is unique in allowing readilyrietal of the spatial distri-
bution of the electromagnetic field both at the fundamem&jdency (linear analysis)
and the second harmonic (non-linear optical response)fdrhealism also allows for
both frequency- and time-domain investigations.

Based on this work, a new software tool with unique featuras leen imple-
mented and used to achieve a better understanding of theaietrelectromagnetic
phenomena occurring in nano-structured plasmonic systemgarticular, this tool
has been used to design and investigate numerically sevarahon-linear plasmonic
structures and nanodevices with remarkable propertieangst them were non-linear
plasmonic cavities with high quality factors, plasmonieitias that support non-linear
whispering gallery modes and sub-wavelength non-lineasmbnic sensors with en-
hanced sensitivity and reduced device volume.

Several other plasmonic systems that show tremendoustadtiem the develop-
ment of advanced metamaterials-based devices have alsekglered. Specifically, it
was demonstrated that nano-patterned metasurfaces campb®yed to achieve polar-
isation controlled electromagnetic response in arrayswfiform apertures and mag-
netisation induced second harmonic generation in chirédiiestructures. The numer-
ical investigation of photonic superlattices exhibitirega effective index of refraction
has also been discussed.



It's still magic, even if you know how it's done.
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Chapter 1

Introduction

Photonics has established itself as one of the leading fiéldssearch in physics and
engineering. Nowadays, our ability to manipulate light amafter far surpasses any-
thing that was considered possible only a few years ago. dinedation of these inno-
vations lies in the advances made in nanotechnology andfatanaation. It is possi-
ble today to fabricate structures with characteristic digi@ens much smaller than the
wavelength at which they operate. As a result, these basictstes can be designed
to act as “meta-atoms” leading to effective material prpsmot available in nature.
The end result is a new type of material, a metamaterial, evtteg properties of the
medium can be artificially engineered and controlled at Witle emergence of this new
paradigm in materials design has led to the development tdnmats with remarkable
physical properties, including media with negative or Zadex of refraction, photonic
bandgaps, photonic anisotropy and magnetism at teralmegudncies. Equally impor-
tant, metamaterials have been shown to have extraordimaeyntial applications, such
as optical cloaking, superlensing below the diffractionitji nano-scale sensors, sub-
wavelength lasers and perfect absorption. It is thus clestrghotonic metamaterials
possess the potential needed to tackle some of the maindlegfcal requirements of
modern society. Major breakthroughs in photonics are dirdming employed in de-
signing and building new applications in fields as variededscommunications, high-
performance computing, medicine or renewable energy.

This great potential for innovation, however, brings witmew challenges in
photonics research. Understanding the behaviour of thereteagnetic field at the
nanoscale becomes a crucial factor in discovering and dyaigt the relation be-
tween the inner workings of metamaterials and their progeidnd applications. At
sub-wavelength scale, there are a series of intriguing megtremagnetic phenomena
that occur in artificial media. Two of them, in particular|Mbe the main focus of this
work. The first is related to the excitation of bound surfacve@s at metal-dielectric
interfaces, known as surface plasmons. The resonant ganite# plasmon modes can
lead to very large field enhancement at sub-wavelength.staéesecond phenomenon



is the generation of non-linear optical harmonics in asdbjtrdistributions of metallic
nano-particles, and, more specifically, the generatiom@fstecond-harmonic. Second
harmonic generation is an important optical process, wbhiturs at half the wave-
length (double the frequency) of the input radiation andndp@ non-linear process,
its intensity depends on the fourth power of the electridfi€onsequently, second
harmonic generation can, as will be shown in this work, alloiow-power operation
of nano-devices and reduced, sub-wavelength device vollhese two characteristics
are also directly correlated and the possibility of conitnglthe former can lead to the
ability to manipulate the latter.

The importance of understanding these fundamental eleeyoetic phenomena
and how they influence the optical properties of metamdsecannot be understated.
In order to be able to employ these effects in enhancing thetifonality of current
optical devices and designing new ones for advanced apiphsa a solid, compre-
hensive, theoretical background of the physical propedfenetamaterials is required.
Several components of this background are already beimgiigated by the scientific
community with remarkable advances occurring in analijtisamerical simulations
and experimental areas. Nevertheless, many unknowneestiflin. Specifically, in the
context of this work, there is, to the best of my knowledg#ielinformation available
on surface second harmonic generation in structured plaismuaterials. It is thus the
main objective of this work, to help further understand tios-linear optical process,
its properties and how it influences, and can be influencethbynvironment in which
it occurs. This information can then be used to design anesinyate new non-linear
optical devices and extend the range of applications of matarials as will be shown
in the work at hand. The next section will describe theseatives in more detalil.

1.1 Main Objective of the Work

The objectives of this work can be combined in four main alty integrated thrusts,
with each of them building upon and extending the previowes émthis section, these
four thrusts will be described in more detail.

The first objective, of analytical nature, is to develop acuaate theoretical model
for non-linear optical effects in plasmonic nanostrucsui@pecifically, | will demon-
strate that by employing multiple scattering theory, one darive a comprehensive
model of linear and non-linear light scattering from two dimsional distributions of
metallic nanowires. The model will take into account both shurface and bulk contri-
butions to second harmonic generation from arbitrary ithstions of metallic objects.
This phenomenon has not been, thus far, described, nor tsaveny potential appli-
cations been investigated. | will also show that this thecaémodel lends itself well
to an efficient numerical implementation and provides thesfmlity to accurately map
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the linear and non-linear electromagnetic field at any gpeimt in the system. Sec-
ondly, | will explain how several other important physicarpameters can be extracted
from this model, including far- and near- field electromagneesponses.

In the second stage, this analytical model of light scattem metallic nanowires
will be implemented in a new numerical algorithm. The endiltesf this work is a pow-
erful new software tool, named OPTIMET (OPTIcal METamatks). This unique tool
will be able to efficiently solve the linear and non-lineaeduency domain, scattering
problem in arbitrarily distributed, finite arrays of pasdlmetallic cylinders with arbi-
trary geometrical and electromagnetic properties. Futit¢his, | will show how, by
extending the mathematical formalism developed in thestesh of the project, OPTI-
MET’s capabilities can be augmented to include solving kimtie-domain problems,
as well as the possibility to simulate resonant non-lineades that possess angular
momentum.

Using this tool, in the third phase of this work, | will use aied numerical sim-
ulations to illustrate how resonant non-linear plasmotrgcsures can be employed to
study complex optical effects, such as plasmon couplingsmpbn waveguides, sub-
wavelength light focusing and light localisation. Using timsights into second har-
monic generation from metallic structures gained in thepsthe focus of the work
will shift towards resonant nonlinear plasmonic cavities @aheir applications. | will
investigate plasmonic cavities that can be tailored so gsdeide very high quality
factors and to support non-linear whispering gallery mddasity modes that possess
angular momentum). Finally, a new design for a non-lineasiplonic sensor will be
proposed, a design based on the previously investigatsdplaic cavities. These de-
vices have sensitivities well in line with currently avéila plasmon sensor designs, but
allow for device volumes up to several orders of magnitudalkemn

In the fourth and final stage of the work, several ideas rdl&devhat will have
been discussed previously will be considered. The objedivthis stage will be to
explore other potential areas of interest pertaining templanic metamaterials, so as to
better understand how plasmon-enhanced devices can beyadph new applications
and how non-linear effects can be effectively integratéa these devices. Specifically,
I will be discussing the possibilities offered by nano-pated metallic surfaces, known
as metasurfaces, in polarisation sensitive devices, eelasurface second harmonic
generation in chiral materials and magnetically enhancaedlimear effects. Also, |
will demonstrate that, by using photonic crystals, a metane with zero effective
refractive index can be achieved. Throughout this part@ftbrk | will be considering
several other numerical methods employed in the study atrelmagnetic effects. |
will discuss how these methods can be used to further exgendriderstanding of
the linear and non-linear optical effects in structured @medth focus on plasmon-
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enhanced effects. Finally, | will give an overview on the n§@umerical methods to
help design, tune and validate several experimental firsdingsented at this stage.

1.2 Outline

In Chapter 2, an overview of the main concepts and ideas whiithe used in further
chapters is given. This overview is based on both histodndl current scientific liter-
ature. At the same time, a detailed review of the currenesiéthe-art in the field will
be given with relevant references to the large body of phbtisvork. Throughout the
following chapters, this parallel to existing studies vii# extended in each case and
the need for and contributions of this work will be highligdt

Chapter 3 consists of a comprehensive description of a netlmameatical for-
malism based on multiple scattering theory, which acciya@dels second harmonic
generation in arbitrary distributions of metallic nancegr This new method takes into
account both the surface and bulk non-linear contributicth@ nanowires and allows
one to extract accurate linear and non-linear field profdssyell as total, scattering
and absorption cross sections. In this chapter, the extendithis model to allow for
time-domain studies will also be presented.

The software implementation of this new formalism as pathefOPTIMET tool
will be discussed in Chapter 4. The logical and technicalemgntation of OPTIMET
will be explained in detail. The work flow of the numerical el will also be linked
to the relevant parts of the numerical algorithm so as to giwear picture of the
implementation. The technical presentation will inclutle various input and output
options supported by OPTIMET, details about the architedtuwas implemented and
used on, as well as its performance as a parallel algorithm.

Following this, in Chapter 5 a detailed analysis of lineast ann-linear wave scat-
tering in arrays of metallic nanowires is given. The resiitshis chapter, obtained
using the OPTIMET tool, show how plasmon enhanced surfacenseharmonic gen-
eration leads to exciting new phenomena in a wide array atstres such as single
cylindrical scatterers, metallic dimers, nanowire chand 2D ordered random distri-
butions of metallic cylinders. These phenomena will be aghly discussed and the
findings put into the wider context of the research area.

In Chapter 6 the design and numerical investigation of mo@al plasmonic cav-
ities will be discussed. To this end, the chapter will comt@étails on how the time-
domain capabilities of OPTIMET can be used to tune thesetsiress, so as to excite
modes with very high quality factor. The properties of thesmles and their increased
sensitivity to geometrical changes will be elaborated ugdso, the major potential ap-
plications of these designs will be analysed and discussgdther with a quantitative
characterisation of their performance.
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A detailed presentation of how beams carrying angular monmecan be used to
excite non-linear whispering gallery modes in plasmoniatess is given in Chapter
7. Specifically, it will be shown how by analysing the compuatseof the incoming
and scattered fields, one can find a close relation betweénsgmametries and the
symmetries of the cavity being excited. This relation canded to determine whether
a given incident beam will couple with a specific whisperirdiery mode. The effects
of the structural properties of the cavity on the behaviduthe modes will also be
discussed in this chapter.

A new design for a non-linear plasmonic sensor will be pregos Chapter 8.
Here, it will be discussed how non-linear plasmon cavity egodan be used to obtain
a very high sensor sensitivity, which equals that of curigasmon based devices,
but with a much smaller volume. To this end, several of theaadtaristic properties
associated with a sensor, such as sensitivity, detectib dnd signal-to-noise ratio,
will be analysed and compared with existing designs.

In Chapter 9, the rigorous coupled wave analysis methodwillsed to investigate
nano-patterned metallic surfaces. The results given btrate how these metasur-
faces can be employed to design plasmonic devices whosmbgsponse is strongly
dependent on the polarisation of the incoming light. Thesidgl phenomena leading
to this effect will be thoroughly investigated and explain&€he findings will also be
compared to, and shown to be in very good agreement withriexeetal results.

Plasmonic metasurfaces are also the focus of Chapter 16, Ri@merical simu-
lations will be used to validate and further enhance theltestithe experimental in-
vestigation of metallic metasurfaces with chiral patte8ecifically, it will be proven
that, using surface second harmonic generation, it is plessd accurately map the
non-linear field distribution, and that it corresponds te thstribution of the field at
the fundamental frequency. Finally, the effects of magrieids on second harmonic
generation in metasurfaces will also be discussed.

Chapter 11 consists of an analysis of a photonic crystatistre with alternating
positive and negative refractive index layers. Numerigalusations using the finite-
difference time-domain algorithm will be employed to comfithe experimental find-
ings of a new type of photonic band-gap, which correspondsziero refractive index.
Also, the same numerical method will be used to show thatrtéhizarkable property
is not affected by random geometry variations incurredrduthe fabrication process.
The possible applications of this photonic structure walldiscussed as well.

Finally, the main conclusions of this work and its contribas to the field are
outlined in Chapter 12. Ideas for extending this work andifeitprospects are also
presented in this concluding chapter.

22



Chapter 2

Background

2.1 Introduction

Electromagnetic effects are closely tied to the internapprties of the materials in
which they occur. As was pointed out in the introductory dbgghese properties can
now be artificially engineered to produce new types of makemot readily available
in the natural world. A common classification scheme forfiaréil media takes into
account the size of their characteristic features relativéhe wavelength region in
which they operate. Figure 2.1 illustrates this concepusTelectromagnetic materials
can be split into three broad groups. In the first group, tlaéufe size is much larger
than the wavelength of incident light, which is the well knovegime of geometrical
optics. In the second case, the feature size is comparalthe tawavelength and this
category of materials is known @éotonic crystal{PhCs). Finally, in the third group,
we havemetamaterialsmaterials whose characteristic feature size is much small
than the wavelength, allowing thus for effective linear awath-linear electromagnetic
properties. In this chapter, the latter two types of medit g presented and their
fundamental properties analysed.

At the same time, we will look here at the various electronetigreffects which
take place both in natural and artificial media. Specificalythis chapter, surface
plasmon resonances, surface second harmonic generatiomagmnetisation induced
non-linear effects will be presented. The fundamental ayprinciples behind these
phenomena, their properties and the relations between wikine discussed. At the
same time, the various influence of these effects on the giepand applications of
artificial materials will be considered. Throughout the ies, the discussion will be
accompanied by specific examples from the state-of-theesgarch in the field as well
as details regarding the historical evolution, currentagibn and future challenges re-
lated to each particular topic.
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Fig. 2.1: Types of matter categorised by the size of theirattaristic feature relative to the
operating wavelength.

2.2 Fundamentals of Plasmonics

Several electric and magnetic phenomena have been knoam ainiquity. However,
the modern field of electromagnetism can be said to have bdignimg thel9*" century
with the publication of Maxwell’'s seminal papé&rDynamical Theory of the Electro-
magnetic Field which first suggested that light is an electromagnetic wave also
laid out the well known Maxwell equations as a mathematicahkework to describe
the dynamics of the electromagnetic field [1]. Since theweisd new areas of research
in electromagnetism have emerged which draw upon, and @&xiaxwell’s theory of
electromagnetism. Among these, one field which has seerrkabia growth in recent
years is that oplasmonicsPlasmons have been known for some time; however, only
in recent years has their great potential application tacsefiteen brought into focus.
Before moving on to discuss how plasmons are used in modditsgnd photonics
and the possibilities they offer for future technologiéss important to understand the
fundamental physical concepts which describe plasmongreidproperties. This is
the objective of this section. The discussion here will hdg examining Maxwell’s
equations and showing how, by combining them with the mateuations describing
the properties of metals, plasmon solutions can be founthésame time, examples
will be given of how plasmons can be practically excited intatie structures and of
some of the state-of-the-art applications of plasmonicadsy

2.2.1 Maxwell's Equations and Electromagnetic Field Dynarnts

Due to their nature, most of the physical properties of ptassrcan be fully described
within the framework of classical electrodynamics. Thessleal equations of electro-
magnetism are the well known Maxwell’'s equations, whichhieit macroscopic form
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are written as [2]:

V.-D=p (2.1a)
V-B=0, (2.1b)
0B
VXE——E, (21C)
VXH:J+08—I;, (2.1d)

whereE andH are the electric and magnetic fields, respectivBlys the electric dis-
placement, or electric inductioB, is the magnetic induction, andandJ are the charge
and current densities, respectively. In the case of a honemes isotropic medium,
Maxwell’'s equations are complemented by a set of materiahtons, which relate
the macroscopic fieldE, H, D, B to the electric polarisatioR and magnetisatioivl
inside the material:

D=¢E+P (2.2a)
1

H=—B-M, (2.2b)
Ho

whereg is the electric permittivity ang, the magnetic permeability of free space. The
polarisationP can also be related to both theundcharge and current densiia:

V-P=—p, (2.3a)
)
J="7 (2.3b)

The total charge and current density are constrained by hhege conservation, or
continuity, equation:
dp
V-J+X2=90 2.4
arelation that can be easily derived from Maxwell’'s equati(?.1). Moreover, in linear
and isotropic media, the electric fiekiland the magnetic fielt can be related to the

electric and magnetic inductiod3 andB by the constitutive relations:

D = ¢y, E, (2.5a)
B = poprH, (2.5D)

wheree, andu, are the relative permittivity and permeability of the mediuwespec-

tively. Equations (2.5), in conjunction with the materigu@ations (2.2), also show that
the electric polarisation and magnetisation are propoalito the electric and magnetic
field, respectively. This can be expressed by introduciegetactric and magnetic sus-
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ceptibilitiesy. andy,,, respectively, namell? = ¢,x.E andM = px.,,H. From Egs.
(2.5), the relative permittivity and permeability can tHs:related to the susceptibili-
ties by:

6 =1+ e, (2.6a)
e =14 Xom. (2.6b)

Itis worth noting here that a non-magnetic material, naraghedium in whichM = 0,
is characterised by,, = 0 andu, = 1.

One of the most important features of Maxwell’'s equatiornthag they allow for
travelling wave solutions that carry energy. Consider foraicity an infinite medium
with no sourcesife. p = 0 andJ = 0), which has a constant spatial distribution of the
permittivity e and permeability:. Then, taking the curl of Eq. (2.1c) leads to:

VXVXE:—M%VXH, (2.7)

which according to Eq. (2.1d) without sources can be written

0’E

VxVxE= _MEW (28)
Finally, using the vector relatiolf x (V x A) = V(V - A) — V2A, whereA is any
vector function ofr, Eq. (2.8) can now be written:

0’E
2 —

which is the electromagnetic wave equation for the eledteid. Here, we have also
made use of the fact that the divergence D = 0 when no sources are present. For
the magnetic field, the same line of reasoning can be follpthedresult being that the

dynamics ofB can be described by Eq. (2.9), too.

One of the simplest solutions for EqQ. (2.9) is the transvplare wave. Assuming
a harmonic spatial and temporal dependence of the figlds,e'® <% Eq. (2.9) can
be rewritten as:
V?E — pew’E = 0, (2.10)

which is the Helmholtz equation. The wave vedkais related to the frequency and
properties of the medium by* = pew?, which implies a phase velocity of= w/k =
1/\/ep. The phase velocity can also be expressed in terms of thactiefe indexn,
and the speed of light in vacuum,asv = ¢/n, which leads to the expression for the
refractive indexn = /€ ;.
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2.2.2 Electrodynamics of Plasma Oscillation

A plasmon is commonly defined as a quanta of plasma oscillstibthe free electron
gas [3]. The plasmon can thus be viewed as a quasi-particdsavbhysical properties
strongly depend on the electromagnetic characteristidheinedium in which it is
excited. It can be described in simpler terms as the odoiatf the electrons in a
free electron gas against the positive charge backgroumddad by the fixed ions in

a metal. In an ideal metalle. a metal with no optical losses (damping), and with no
external sources, this oscillation occurs at the plasmguérecy associated with the
metal.

In dispersivemedia,c andu are dependent on the frequencyf the electromag-
netic wave propagating in the medium. Assuming the caseminagnetic metals.é.
i, = 1) one can easily derive a general expression for the frequaispersione(w).
One simple model which explains the behaviour of metals a\®oad frequency range
is the free electron model. In this model, a metal is viewedasisting of a classical
gas of non-interacting electrons, which exhibit free mogatrwithin the confines of
the material boundaries. The equation of motion for an edeawhich is acted upon by
an electric fieldE can be written as:

mr 4+ myr = —ekE, (2.11)

wherer is the electron displacement, is the damping coefficient (frequency) due
to electron-ion collisions and is the electron charge. Assuming an harmonic time
dependence foE andr, E(t) = E¢e™" andr(t) = rye™!, wherer, and E, are the
amplitudes ofE andr, respectively, the solution to Eq. 2.11 is:

e
g =

——E,. 2.12
m(w? —iyw) (2.12)
The displacement of the electrons in the metal will inducelansationP = — Ner,
whereN is the electron density. By using this expression for thapsétion, Eq. (2.2a)
becomes:

2
D=e¢|l— N g (2.13)
eom(w? — inw)

where, for simplicity, the subscript of the fields was dragppBy denotingwf, =

(Ne?)/(egm), the plasma frequency, and using Eq. (2.5) it becomes eaisiemtify
in Eq. (2.13) the expression of the dielectric functidn) of the free electron gas as:

€(w) = € <1 — wig) . (2.14)

w? — iyw
Expression (2.14) is known as tBeude modebf the permittivity of metals [4].
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Equation (2.14) leads to an interesting observation. Tkkediric functione(w)
is a complex quantity, which means that an electromagnetievinteracting with the
medium experiences absorption and thus its energy is digsipnto the medium. The
attenuation of the wave by an absorbing material can be sgpdeby using a complex
wave vectork:

k=8+is, (2.15)

wherea is the absorption coefficient, that is to say, the wave anngditdecreases with
the propagation distancé,ase %2, also known as Beer’s law. Moreovérrepresents
the propagation constant of the wave. Assuming a compldedie functione =
€1 + i€y, the real and imaginary components can be expressed as tofun€ the

components ok. By taking into account thadt = , /¢, 1, (w/c), these components can
be written as:

€ 02 042

é = (52 — I) , (2.16a)
2

E—z - %m. (2.16b)

In the same manner; ande; can be related to the complex index of refraction

€1 2

— =n?— K% (2.17a)
€0
2 _ ong, (2.17Db)
€0

wheren = n + ix and we employed the relation betweeandk, k = n(w/c).
Equation (2.14) has a series of important consequencdse Mety low frequency
regime, wherev < w, andw < +, the imaginary part of the dielectric function is

dominant and metals are highly absorbent. In this case,liberption coefficient can
be written as:

o = +\/20pcwlig, (2.18)

whereope = wyep/7 is the DC electrical conductivity. From Beer’s law it is pitde
to relate the dc conductivity with the characteristic degitthe penetration of an elec-
tromagnetic wave inside a metal, also know asgkia depthy. The definition of the
skin depth implies that the field intesity inside the metaltienuated by~%?, which

implies:
2 [ 2
0=—= . (2.19)
«Q 0 pcW o

As w approaches,, opc is no longer sufficient to describe the electromagnetic
response of the metal. Instead, a complex conductiuity) is required. The method
of obtaining the expression for the frequency dependerdwctivity is similar to that
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used to obtain Eq. (2.14). The frequency dependent expressiv), also know as
Drude’s law of conductivity [2], can then be cast as:

ag
o(w) = T2, (2.20)

wherer = ~~! is the mean time interval between electron-ion collisidbguations
(2.20) and (2.14) can be used to find the relation betweenighectric function and
the complex conductivity:

(2.21)

For most metals, whew approachesy,, w becomes much larger than and
damping effects can be neglected. To give an example, focdke of goldw, =
13.72 x 10" rad /s andy = 4.05 x 10'3 s~! [5]. Equation (2.14) can then be simplified

to:

w2

ew)y=1--2 (2.22)

w?’
with the dielectric function becoming purely real. The waeetor can then be written
as:
w2 _ WQ
k=Y"2 (2.23)
C
or, alternatively:

w? = w2 + k7. (2.24)

This equation describes the frequency dispersion of tiagelvaves in a free electron
gas. Figure 2.2 plots this dispersion relation. For fregigsw < w, the wave number
k is purely imaginary and thus no waves can propagate. In tiimeewherev > w,,
the dispersion relation shows that electromagnetic waaesptopagate. The group
velocity of these waves, defined@s= dw/dk, is smaller tham and the metal behaves
as a transparent dielectric. Finally, when= w,, one has(w) = 0. Inserting this
expression into Eq. (2.5a) and using Eq. (2.2a), the etefietd inside the free electron

gas becomes:
P

E=—, (2.25)
€o

which is a depolarisation field [3]. Physically, this can belerstood in terms of the
oscillation of the free electrons in the plasma. A static=£ 0) electric field induces
the polarisation of the plasma gas. If the field is turned i, electrons will feel a
restoring force which will lead to the excitation of a colige longitudinal oscillation
against the positive background of the fixed ions in the mé&tat oscillation will occur
at a frequencyw = w,, which is the natural resonant frequency of the plasma fas, t
reason for which it is called the plasma frequency. The quahtoscillations of the

plasma gas is known as a plasmon or, to distinguish it fronergptasmonic effects
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Fig. 2.2: Dispersion of an electromagnetic wave propagafima free electron gas (“plasmon
dispersion”) and in free space (“light line”).

occurring at the surface of the meta@ume plasmon

It is worth mentioning that in the case of metals the freetedecmodel becomes
less accurate as the frequency approaches the near-thffidris is especially impor-
tant in the case of noble metals such as Au and Ag, as they asewndely used in
plasmonic applications. The source of this discrepanclgasthe free electron model
does not take into account the inter-band effects whichlteeedsult of the excitation
of electrons from the filled bands below the Fermi surface mgher level bandsia
photon absorption. This effect can be modelled by addinggta(ZE14) a second term
corresponding to bound electrons with specific oscillatoergyths and frequencies.
Formally, this additional term is expressed by rewriting thelectric function as:

W) _ e +é. (2.26)

Here,¢/ is the dielectric constant of free electrons, or intra-bamwtribution described
by EqQ. (2.14) and can be written as:

2
QP

f—1_
o =1 w? —dwy’

(2.27)

This is the Drude model of the dielectric function with replaced by the plasma
frequency of an oscillator with strenggh, 2, = v/ fow,. The second term in Eq. (2.26)
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Fig. 2.3: Comparison between the Drude and Lorentz-Druddetsofor Au (a) and Ag (b).

accounts for the contribution of the bound electrons (ariiand contribution) and is

of the form:

N fw2
J:Ej' i B (2.28)

Here NV is the number of oscillators with frequeney, strengthf; and damping fre-
quencyy; where(j = 1,---, N) [6]. This model is also known as therentz-Drude
model Figure 2.3 shows a comparison between the Drude and thetzebrude mod-
els for Au and Ag. At the near-infrared and higher frequesictee Drude model no
longer accurately describes the complex behaviour of thleclric constant of metals.
At lower frequencies, however, the Drude and Lorentz-Dimadeels lead to similar re-
sults. Therefore, the Drude dielectric function can be sssfully employed to model
the various electromagnetic phenomena which can occuasnpbnics, but care must
be used, particularly when considering the frequency ramgédich these phenomena
are studied. Throughout this work, both the Drude and thehizrDrude models will
be employed depending on the particular application thatvestigated. The use of
one formalism over the other will be clearly specified in ales.

This section has given a brief overview of the principal pbgisconcepts used
in plasmonics, as well as an explanation of the origin of iplaiss in metals. Volume
plasmons are not, however,the only possible type of plasmsorthat the next section
is devoted to the plasmonic effects that are observed antbgace between a metal

and a dielectric.
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2.2.3 Surface Plasmon Polaritons at Metal-Dielectric Intfaces

Plasmonic effects do not occur solely in bulk metals. Firseestigated in the late
1950s [7], surface plasmons are a type of electromagnetresvahich propagate at
the surface of a conductor embedded in a dielectric. Sugasmons are evanescent
waves which exhibit exponential decay in the direction ralrta the metal-dielectric
interface, leading to a very high field concentration witbirb-wavelength regions [8].
Because surface plasmons are a direct consequence of fhlengoef the electromag-
netic foeld with the plasma oscillations of a metal, they highly sensitive to the
properties of the background and conductive environmenivedl as the shape of the
interface at which they occur [9].

To better understand how plasmon surface waves can be loe$@s solutions
to Maxwell's equations, consider the simple geometry in. Rig consisting of two
semi-infinite planar media: a linear, loss-less dieleatiit ¢; > 0 and a non-magnetic
metallic region withRe[e,, (w)] < 0. The interface between the two mediais assumed to
be located at = 0. Assuming as well that there is no spatial variation of thedatitric
properties in the: andy direction , the dielectric function of the entire system camw
be written as = €(z). With these conventions, a propagating wave in:ttdirection
can be described ad(r) = E(z)e** wherek = (k,,k,,k.) is the wave vector.
Coupled with Eq. (2.10), this leads to the desired form ofwhge equation:

O?E(z)
072

+ <k§€i . k2> E=0, (2.29)
0

wherek is the free-space wave vector. A similar expression can bgetefor the
magnetic fieldH. The wave equation (2.29) supports two solutions represgniaves
propagating in the direction and bound to the metal-dielectric interfaice. xponen-
tially decaying in thez direction, away from the metal-dielectric interface). Ti®

waves correspond to the TE and TM polarisations [10].

Fig. 2.4: Interface between a dielectric and a conductoofagation of surface waves is as-
sumed to be in the direction. Inset shows 2D view of surface wave propagation.
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In the TM polarisation, also called thepolarisation case, the electric field has
no components on theaxis and the magnetic field is oriented along #hexis. Then,
simple calculations show that, assuming a harmonic tenhdependence of the fields,
the field components are given by:

H2(z) = Ageth=akez (2.30a)

El(z) = —iwA—;kgeim—'f?Z (2.30b)

El(z) = id—fjei’w—’f?a (2.30c)
in the dielectric regionA > 0) and:

H(2) = Ape™=r=he (2.31a)

E™(z) = z'%k;”e“w—’% (2.31b)

E™(2) = Mei’fﬂﬂﬂ—’f'z"%, (2.31c)

WEpm,

in the metallic region{ < 0), where A, and A,,, are the field amplitudes in the di-
electric and metallic regions, respectively. The contynaonditions of the fields at the
metal-dielectric interface are:

Hy(z)
Ey(2)

I
T

3
O

(2.32a)
(2.32D)

I
S

E
X

Equation (2.32a) implies that, = A,,, while from Eq. (2.32b) it is easy to see that:

ék‘j — _ﬂ

€d €m

k. (2.33)

z

In addition, the field components expressed by Eqgs. (2.30)(2:31) must obey the
wave equation (2.29), which leads to the following relasion

k4 = \/k2 — k3eq/eo, (2.34a)
kT =/ k2 — k2em/co. (2.34b)

Combining the continuity conditions with Eq. (2.34) yielth® dispersion relation of
the surface wavek, = k,(w), of the form [11]:

ko(w) = —, [—4m (2.35)
ceg \ €4+ €m
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Fig. 2.5: Dispersion relation of a surface plasmon polantawave at the interface between air
and a loss-less metal with plasma frequengy The dashed line indicates the limiting surface
plasmon frequency;,.

Before further analysing the propertiessafrface plasmon polaritonSPPs) it is
relevant to point out one important property of these bourfase modes. Equation
(2.33) can be satisfied only in the case in whighnde,, have opposite signs as surface
confinement require®e(k?) > 0 and Re(k™) > 0. Assuminge, > 0, which is true
in the case of dielectrics, it becomes necessary faét,,) < 0, that is, the defining
property of a metal. In conclusion, SPP waves can only odctireainterface between
a metal and an insulator, typically a metal-dielectric iftee. Moreover, Egs. (2.30)
and (2.31) describe a surface mode with evanescent decayhirdivections normal to
the interface. The decay length of the surface wave is defineéle reciprocal value of
kdm, thatisly,, = 1/|k%™|. It should be noted that the decay lengths in the two media
are different.

The dispersion relation (2.35) reveals several of the nmapbrtant characteris-
tics of surface plasmons. Figure 2.5 plots the dispersisudbice plasmon polariton
waves at the interface between air and a metal with plasmadrecyw,. The metal is
assumed to be described by the Drude model; with dampingédreryy = 0. Under
these cicumstances, the dielectric constant has reals/éluge,,(w)] = 0). The dis-
persion curve of SPPs lies to the right side of the light lieéired byw = kc\/e, /e,
which implies that SPPs in this particular configurationra@ndirectly couple with,
nor radiate, a free-space photon.
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Figure 2.5 also illustrates that for very low frequencies{(< w,), the dispersion
of SPPs approaches that of a free propagating light wavéismegion, SPPs become
indistinguishable from grazing-incidence light waves.higher frequencies, whete
approaches,, the SPP dispersion curve levels offlas— oo and the group velocity
of the surface wave goes asymptotically to zero. In thismegiSPPs are calleslr-
face plasmonand are similar to aelectrostaticsurface wave [11]. The electrostatic
character of the wave stems from the fact that it can be aobda@is a solution to the
Laplace equatioV?¢ = 0, ¢ being the electric potential( = —V ¢). The solution of
the Laplace equation that describes a wave propagating indirection and decaying
exponentially in the: direction is [10]:

$(2)g = Agetherhez, (2.36)

for z > 0 and
G(2)m = Ayt (2.37)

whenz < 0. The boundary conditions at= 0 can now be written as:

¢a(2) = dm(2), (2.38a)
€1 doq(z)  €m ddm(2)
P i (2.38b)

corresponding to the continuity of the tangential and néroaponents of the elec-
tric field, respectively. Finally, for Egs. (2.36) and (2)3@ be solutions to a Laplace
equation, it is necessary that ¢, , = 0, which requires that! = k" = k,.

One of the characteristics of surface plasmons inithe— oo limit is that the
evanescent decay length= 1/k%™ is the same in both media. Combining the conti-
nuity relations with the Laplace solutions (2.36) and (2.8@d the above conditions
yields:

Ag= A, (2.39a)
€4+ €n = 0. (2.39b)

Since in the case of dielectrics; > 0, Eq. (2.39b) can only be satisfieddf, < 0,
which is a characteristic shared with SPPs. Inserting EQ9{® into Eq. (2.35) leads
to the conclusion that a surface plasmon is the limit casesafi@ce plasmon polariton
with &k, — oo. Assuming a metal described by Eq. (2.22), the limitingacefplasmon
frequencyw,, can be expressed in the well-known form:

Y
\/ed/60+1.
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Fig. 2.6: Dispersion relation of a surface plasmon polantwave at the interface between air
and Au in the Drude model. The dashed line indicates theitigmgurface plasmon wave vector
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The region in whichv — wj, is also known as thaon-retartedregime (.e. the
speed of light can be considered to be infinite), and it istagranethod of defining the
regime in which surface plasmons exist [10]. Consequesiiiiface plasmon polaritons
are said to exist in the retarted regime, where the finiteokts® speed of light is taken
into consideration.

In the case of a real metal with# 0 and described by the Drude model (2.14), the
dispersion curve of SPPs changes significantly. Figuretfthés the dispersion relation
of SPPs at the interface between air and Au. The main diféeréetween this case and
a loss-less metal is that the SPP wave vektas now bound by a maximum valuk,,,,
which occurs as approaches,. One important consequence of this fact is that SPPs
with a wavelength smaller thaxy, = 27 /Re(k,,) cannot be excited in real metals.

The decay length of a surface plasmon, on either side of tieeface, can be
calculated by inserting the dispersion relation (2.35) t&¢]. (2.34). The-component
of the wave vector, which is also equal to the decay condtaatymes:

L Ry e (2.41)
= ceé \ €atem )

The decay constant determines the attenuation length,hwikiclefined ad,,, =
1/k%™. This is the characteristic length after which the field dases td /e. In the
dielectric medium it is larger than the wavelength of pragaw wave, ag; > 1/k,. In
the metallic region the attenuation length (skin depth)atetmined by Eg. (2.19). At
high frequencies, where the surface plasmon is in the niamteel regime, the skin
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depth becomes ~ 1/k, so thatl,, is comparable to the wavelength of the plas-
mon [11]. This leads to a very strong localisation of the fiatdhe interface which
is one of the most important characteristics of surfacenptassresonances in terms of
possible applications.

In the case of the TE polarisation, also called skpolarisation case, the solution
of Maxwell’s equations are similar to Eqgs. (2.30) and (2,31¢ non-zero components
of the electromagnetic field being given by the following egsions:

Bl(z) = Agett=rhe (2.42a)
A )
HY(z) = i L pdeihar—hez (2.42b)
WHo
Agky
Hi(z) = -2 gikar—hiz, (2.42¢)
Who
for z > 0, respectively:
EM(z) = Apeh=rhe (2.43a)
A o m
H™(2) = —i— L gmethar—h"2 (2.43b)
Whto
Apky o o gm
HM(2) = — L etherhiz (2.43c)
Whto

for z < 0. The continuity conditions for the TM case are:

El(z) = E}'(z) (2.44a)

HY(z) = H™(2) (2.44b)
which as before imply thatl; = A,,, and:

Ag(kE+ k™) = 0. (2.45)

Because for waves bound to the metal-dielectric surfagé?) > 0 and Re(k™) > 0,
Eq. (2.45) can only be satisfied whely = A,, = 0. Consequently, for this type of
geometry, surface plasmon polaritons cannot exist for ta@dlarisation.

Finally, a third type of surface plasmon excitations carseixi several other ge-
ometries, such as metallic particles. These excitationsad@ropagate but are bound
to the surface of the particle; they are calledalised surface plasmor{tSPs) [12].
Localised surface plasmons, like SPPs, can only occur quémcies smaller than a
certain threshold frequenay;,, which can be determined in the electrostatic regime
by solving the Laplace equation with appropriate boundandations. For example, in
the case of a metallic sphere embedded in air and describe@®byde model, the LSP
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frequencies can be written [10]:

m [ m
wlsp = Wp om + 1’ (246)

wherem is the order of the plasmon mode. For small spheres, the orgdgitant con-
tribution is that of the dipole mode given by = 1, in which case the LSP frequency
approaches the well known valug,, = w,/+/3. For largerspheres, higher order mul-
tipole modes become significant and in the limit— oo, relation (2.46) approaches
the frequency of surface plasmons at a planar interfage~ wp/ V2.

In the case of a cylindrical geometry, due to the symmetrighe structure, the
LSP frequency depends on the polarisation of the electiid fi3]. In the high fre-
quency regime, for an electric field normal onto the intesfag,, approaches the fre-
quency of surface plasmons at a planar interfagg, = w,/v/2. When the system
consists of several cylinders with a filling fractighdefined as the ratio between the
volume occupied by the metal and the total volume, the LSg§ugacy becomes the
reduced plasmon frequenay= /fw, [11]. If the electric field is parallel to the axis
of the cylinder, it does not induce surface charges at tlegfarte and the only possible
plasmon modes are volume plasmons.

Localised surface plasmons differ from surface plasmoantohs by being re-
stricted to small objects and having a discrete set of fregies, which depend on the
shape and size of the confining geometry. Unlike propag&#igs, localised plasmons
can be excited by light of appropriate frequency and pa#os. For LSPs with fre-
quencies close to that of an SPP it is also possible for a L8Bday into, or be excited
by, a surface plasmon polariton.

2.2.4 Excitation of Surface Plasmon Polaritons at MetallicSur-
faces

The wave vector of a surface plasmon polariton at a flat nobééctric interface is

larger than that of a photon with the same frequency, whielvgnmts direct coupling
between incoming photons and SPPs. Therefore, specialiteas are required in or-
der to match the wave vector of the incoming radiation antidhthe surface plasmon.
These techniques involve coupling through prisms, cogplia surface features, as
well as coupling using optical near-field effects.

Prism based coupling of light to surface plasmon polarit@des is based on the
fact that the wave vector of a beam of light passing throughisnpis modified as
follows:

Fprism = — 4 | 275" sin 6, (2.47)
c €0
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Fig. 2.7: Geometries for prism based coupling of incideghtito SPP modes. Panels a) and b)
show the Kretschmann configuration and panel c) shows thedtifiguration.

wheree,, s, IS the permittivity of the material of the prism adds the angle of inci-
dence of light. By carefully adjusting the angle of incidenit is possible to fulfil the
condition for SPP-photon coupling,,is,, = ksp,(w), at a particular frequency. The
three main configuration for this technique are shown in Eig. In the Kretschmann
configuration, a dielectric prism is placed on top of a matélim and illuminated at an
angle greater than the angle of internal reflection [14héf incidence angle leads to a
k,rism that obeys the SPP coupling condition, resonant light tlimmen the metal film
occurs and a surface plasmon is excited on the opposite bithe dIm. A dielectric
layer of refractive index.; > n,,is, placed between the prism and the metal film can
lead to the formation of a SPP on the metallic side closerd@ttsm. In such cases two
SPP modes can be achieved, on either side of the metalp¢isyrivarying the angle of
incidence. In the third configuration, known as the Otto gunfation [15], the prism
is placed at a specific distance above the metal layer. Inctge, tunneling occurs
through the medium between the prism and the conductorinigad the excitation of
surface modes on the latter.

Diffraction and scattering based coupling mechanisms oalyhe fact that light
impinging onto a surface can be decomposed into componethiyarying wave vec-
tors. Some of these components can satisfy the SPP couplhtition and give rise
to a surface resonance. Figure 2.8 illustrates the two neminniques used to excite
SPPs. In couplingia diffraction gratings, a diffraction pattern etched inte tburface
of the metal can lead to diffracted wave components whichgearerate a SPP mode
on the smooth region of the metal [8]. By tailoring the sizd pattern of the diffraction
grating, it is possible to achieve SPP coupling at diffefesduencies. Alternatively, it
is well known that in the near-field domain, light scatteresii a surface defect con-
tains field components with a broad spectrum of wave vec&rE]]. In this case, the
components with wave vectoks, will excite SPP modes at the metal interface. This
process, however, cannot be easily controlled and, as ®gdtas a low conversion
efficiency.

Surface plasmon polariton coupling on planar metal intmsacan also be
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Fig. 2.8: Geometries for surface feature based couplingaitient light to SPP modes. Panel a)
shows the surface grating configuration and panel b) showR &Ripling via scattering from
surface defects.

achieved in the near-field domain by optical focusing of tieoming radiation on the
metal surface [17] and by using surface near-field opticarosicopy (SNOM) [18].
The latter approach is of particular interest as it alsovadlthe probing of the near-
field and direct observation of surface plasmon modes.

2.2.5 Applications of Surface Plasmons

Due to their ability to concentrate light on a very small scahd high degree of tun-
ability, structures employing surface plasmon resonaoar$e used for crucial appli-
cations in the fields of optics, telecommunications, etatts, medicine and many oth-
ers. For example, it is well known that photonic componengssaperior to electronic
ones in terms of usable bandwidth. Optical device desigwgkier, is constrained by
the diffraction of light. Through the use of plasmon basedas, this limit has been
shown to be surpassable [19]. As a result, several basiceeWiave been designed
and demonstrated, devices which can be employed in on-tloifpic systems. These
include sub-wavelength plasmonic waveguides, bent wastegusplitters and on-chip
resonators [20,21]. The ability to increase the propagdéngth of SPPs in plasmonic
devices, allowing for more efficient on-chip device couglithas also been investi-
gated [22].

The strong field enhancement associated with plasmon neses@an be used to
increase the optical absorption in nano-patterned metalliers. As a result, plasmons
have been shown to have great potential in designing new amd gfficient photo-
voltaic devices [23]. In parallel to this, strong field enbement can lead to resonant
structures with high quality factors, which is the fundama¢feature required in order
to build sub-wavelength surface plasmon lasers [24—-263igdes for plasmon struc-
tures which act as light-driven motors [27] have also beep@sed.

The unique characteristics of resonant excitation astautiaith the formation of
LSPs have also led to many exciting applications. As plasnaoe highly sensitive to
the medium in which they are excited, several chemical aothbdical sensors based
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Fig. 2.9: Applications of surface plasmons: a) SPP desigriédd focusing [19]; b) waveguide
plasmonic ring resonator [19]; c) novel SPP design for phatitaic cells [23]; d) nano-pillar
plasmonic laser [26].

on surface plasmon resonances have been reported [28a3@]ation to this, it has
been shown that surface plasmons can be used in surfaceesthBaman excitation
spectroscopy [31-33], leading to very high detection kniiicluding the possibility
to detect single molecules. At the same time, LSPs can beogexgblto concentrate
light around nano-scale structures, with many excitingliappons such as metallic
nano-tips for near-field optical microscopy [34—36] or optinano-antennae [37—-39].

Moreover, electromagnetic coupling [40—-43] induces theriuysation of LSP res-
onances of closely-spaced interacting nano-particlegiB}4leading to complex plas-
monic resonance spectra [46—48]. This strong interactidheanano-scale can have
major implications in designing materials with new optipabperties. Some of these
application are illustrated in Fig. 2.9.

2.3 Non-Linear Optical Effects in Plasmonic Structures

So far, we have considered only electromagnetic phenonmeliagiar materials, that
is to say, materials which have a linear response to thereteegynetic field. The use
of such materials that support surface plasmon resonaasasden shown to produce
enhanced electromagnetic effects with far ranging apipdica. These phenomena can
be further enhanced, and new ones made possible, by emglmedia with a non-
linear optical response to light. These non-linear optefédcts, specifically second
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harmonic generation in metallic structures, are the maictof this section.

2.3.1 Non-Linear Optical Effects

The electromagnetic phenomena covered in the previousmsedsumed that ligh in-
teracted with a linear medium. That is to say, the polawsd? is of the form:

P(w) = eoxVE(w), (2.48)

wherey is the first-order electric susceptibility. Equation (2.4®scribes the po-
larisation induced in a medium where the displacement aftrelas is assumed to be
small [49]. This model can be extended by considering thatréstoring force also
has a non-linear component, that is, it depends on the igléetid E in a non-linear
fashion. In this model, also known as tae-harmonic classical oscillator modehe
polarisation can be expanded in a Taylor series in the a&duid:

P(r) = eoxVE(r) + eox@ : E(r)E(r) + eox P E(r)E(r)E(r) + .. .. (2.49)

Here x(® andy(® are the second- and third- order non-linear susceptislitiespec-
tively. The non-linear susceptibilities define the cormuting non-linear polarisation
componentP @ = y? : EE andP® = y®):EEE. The polarisation®®(r) and
P®)(r) are known as the second-order and third-order non-linekaripations, re-
spectively. The higher-order non-linear polarisatiores several orders of magnitude
smaller than the linear one, which implies that non-lineptical effects are much
weaker than the linear ones. In fact, only with the inventibthe laser in the 1960s the
observation of non-linear optical effects has become ptesssecond harmonic gener-
ation was experimentally demonstrated by using a ruby lasam at94.3nm, which
induced the generation of the second harmonizla2nm in a quartz crystal [50]. The
laser was required in order to generate a very strong atefoetd in the crystal of a
magnitude which had not been possible before.

Based on the definition of the second-order non-linear Ealion, it is possible
to investigate the various non-linear effects that can oatien one or more beams of
light interact with a quadratically non-linear medium. &g 2.10 illustrates some of
these phenomena. Thus, assuming a beam of light with hacrtiome dependence of
the electric field:

E(t) = Ege™" +c.c., (2.50)

the second-order polarisation becomes:
P (1) = egxPE2e¥! + YD Ei2e 29 1 2¢ iy P EES. (2.51)
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Fig. 2.10: Schematic representation of second-order mogakr effects: a) sum frequency gen-
eration , b) difference frequency generation , ¢) secondrfwgnic generation.

The first two terms in Eq. (2.51) correspond to a radiated vadviee second-harmonic
frequency2w and is the source adecond harmonic generatiq®HG) in non-linear
media. The third term has no time dependance and thus doesmespond to a wave-
like solution. This term is the source of a static electritdfgenerated within the non-
linear medium, a process known@stical rectification[51].

A more complex case arises when the optical beam interasfihghe non-linear
medium has two distinct frequency componentsandw,. The electric field in this
case can be written as:

E = E; ™" + E2e™? + c.c., (2.52)

which leads to a second-order polarisation of the form:

P(2) (t) :EOX(Q) (E%€2iw1t + Ege%wzt + E>{2€_2iw1t + E;26_2iw2t)
+ 2e0X P [E  Ege’ @1 192)t | BrEyei@i—w2)l | ErEje /@it (2.53)
+ E B’ @2 4 2¢0y @ (B, Ef + ELE}).

The first term in the r.h.s of Eq. (2.53) corresponds to the Sitithe two second har-
monic frequenciefw; and2w,. The second term corresponds to non-linear processes
processes known &sim frequency generatig8FG) andlifference frequency genera-
tion (DFG). The final term is the optical rectification in the namelar medium.

Sum frequency generation occurs.at+ w, and can be viewed as a more general
version of the SHG process with # w,. It can be used to obtain optical signals with
finely tuneable frequency, by simply fixing one of the two fregcy components and
tuning the other one. Moreover, difference frequency geiar occurs at the frequency
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equal tow; — wo. ASsumingw; > wo, in this process, the medium absorbs a photon of
frequencyw; which emits two photons with frequencies andw; — ws.

When the third-order optical non-linearity is considerseleral other effects are
possible. Among these are phenomena such as third-harrgeneration or inten-
sity dependent refractive index. Several other complexlm@ar effects such as two-
photon absorption and four-wave mixing are also possil2¢ [bhese effects are be-
yond the scope of this work and will not be discussed further.

2.3.2 Physical Properties of the Non-linear Susceptibiljt

Optical non-linear effects can be described mathemayibglitreating the electrons in
a medium as an-harmonic oscillators. As such, the stromgestinear effects should
occur in media in which the electrons are tightly bound toitmec lattice. The most
common class of such materials are crystals. The opticglepties of crystals are a
direct result of their intricate ionic structure. It is thageful to investigate how such
a structure can affect the non-linear polarisation andlimear susceptibility. Specifi-
cally, because the second order non-linear susceptitsléytensor, it becomes neces-
sary to examine its components.

If the total field incident on a non-linear crystal considts@veral frequency com-
ponents, it can be expressed as:

E(r,t) =Y E(w,)e™", (2.54)

where the spatial dependence of the amplituBés,,) has been dropped. The total
second-order non-linear polarisation arising from thiklfean be written:

P(r,t) =) P(w,)e“". (2.55)

Because of the vector nature of this polarisation, the sstooder susceptibility is ex-
pressed as a tensqtﬁ,l wherei, j, k represent the cartesian components. With this
notation, the second-order polarisation becomes:

Piwn +wm =w) = > X0y (wn) Bi(wm) (2.56)

i,k nm

where the summation overandm is performed while keeping,, +w,, fixed. Equation
(2.56) can be viewed as the general form of the second-owtetinear polarisation.
With this definition, for lossy materialsgg,l becomes complex, while for dispersive
media,Xf.f,l is frequency dependent. Because in the general case difismeponents
of the electric field have different contributions to thealq:uolarisationxg,l will be a
tensor that depends on the symmetry of the crystal lattice.
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Another important property of the second-order non-lingalarisation we men-
tion here is its behaviour in centrosymmetric media, thatiedia which are invariant
to the inversion symmetry transformatian,— —r. One example of materials with
inversion symmetry is that of noble metals. In a centrosytnmmedium, one has:

P(2w) —» —P(2w) = x?@ : E(W)E(w) = x? : (-E(w))(~E(w)). (2.57)

This implies that:
—P(2w) = P(2w), (2.58)

which can only hold ifP(2w) = 0 and, implicitly x? = 0. It thus becomes apparent
that for media with inversion symmetry, no second-order-ioear effects can occur
in the bulk of the material. From a physical point of view then be understood by
the fact that in a centrosymmetric medium a second-harmeane generated atwill
always be accompanied by a wave generatedraieading to an overall cancellation
of the non-linear field.

2.3.3 Phase Matching in Optical Non-linear Effects

One important factor to consider when working with opticahdinear effects in bulk
non-linear crystals is that of phase matching. In the casF@, whenus = w; + wo,
the intesity,/, of the non-linear output beam can be expressed as [52]:

sin?(AkL/2)

I:Ima:v (Ak‘L/2)2 )

(2.59)
whereL is the effective optical path length through the crystal &id= k; + ky — k3.
It is easy to see from Eg. (2.59) that maximum intensity oga@urly in the case for
which Ak = 0, also known as thphase matching condition

Achieving phase matching in bulk non-linear systems is Hugnportant step in
ehancing non-linear effects. However, it is very difficolfind cases in whickh\k = 0.
For example, for isotropic bulk crystals in the normal dispen regimei(e. the refrac-
tive index increases as a function of the frequency), phastiehimg is impossible.
Considering that, < wy < w3, the condition for perfect phase matching can be
written:

1w + NoWs = N3wWs. (260)
In the case of SHG, whete, = w, andws; = 2w1, EQ. (2.60) can be rewritten as:

n(wy) = n(2w). (2.61)

It thus becomes clear that under normal dispersion comditiphase matching can-
not occur for second harmonic generation. Similarly, whemstdering sum frequency
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generation, the phase matching condition becomes:

ng — N9 = (n1 - ng)ﬂ (262)
]
Here,n; > n,, but at the same time,, > n;. As a result, no solution can be found for

EqQ. (2.62) under normal dispersion conditions.

One method of achieving phase matching is to employ the ptiep®f anomalous
dispersionice. the decrease in refractive index with increasing frequgnafiich oc-
curs in the spectral regions near strong absorption. Howeneemost common method
for phase matching is the use of crystals which exhibit peddion dependent refrac-
tive indices, also know dsirefringence In uniaxial birefrigent materials, the refractive
index has two possible values, the ordinary refractivexndgeand the extraordinary
refractive indexn.. The actual value of the refractive index depends on whetieer
polarisation is perpendicular to the plane formedkbgnd the crystal’s optic axis (or-
dinary polarisation), or parallel to this plane (extraoatly polarisation). Several types
of phase matching can be achieved depending on how the gatians of the incident
beamsw; andw,, are taken relative to each other and the nature of the igiegite the
crystal exhibits. A detailed discussion of these types tside the scope of this work
and will not be elaborated upon further [see Ref. [52] andréfierences within for a
detailed explanation of the phenomena].

We do mention here two methods of achieving phase matchirmgréfringent
crystals. The first makes use of the fact that the refraatiglex of a birefringent crystal
depends on the angtebetweenk and the optic axis. This relation can be expressed

mathematically as:
1 _ sin? @ N 003297 (2.63)

n.(0)? n? n?

wheren, is the principal value of the refractive index. The value:pff) becomes:,

for # = 90° andn, for # = 0. Consequently, by carefully adjusting the valuedof
one can find a situation in which the phase matching condifién= 0 is satisified.
The second method of obtaining phase matching relies orattiaifat certain crystals
exhibit varying amounts of birefrigence, depending onrttegnperature. Consequently,
one can keep the angldixed at a specific value and vary the temperature of the dsysta
SO as to satishAk = 0.

2.3.4 Second Harmonic Generation at Metal-Dielectric Intefaces

As discussed in a previous section, second harmonic gémem@nnot occur inside
centrosymmetric media, due to the symmetry propertieseofithterial. This statement
is only valid, however, for the case in which only the electtipole contribution to

the non-linear field is considered. Shortly after the experital demonstration of SHG
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Fig. 2.11: Interface between a dielectric and centrosynnimebaterial. The thin layer where
the second harmonic is generated is represented by the geay a

in a non-linear crystal, it was shown that a centrosymmetrédium can support a
non-vanishing, second-order non-linear polarisatiore thuthe electric quadrupoles
and magnetic dipoles in the bulk of the material [53]. Furthethe interface between
two media with inversion symmetry a surface second-ordarlim@ar polarisation can

arise owing to the breaking of the inversion symmetry at thendary between the
two materials [54]. These ideas can be expressed formallyrtiyng the total second

harmonic polarisation as [55]:

Pioa(20) = 0x? : E(W)E(w) + eox” : E(w)VE. (2.64)

Here,Xf) is the electric-dipole (surface) second-order suscdiyibnd Xf) is the bulk
susceptibility.

Let us assume now that a 2D metallic (centrosymmetric) reggosurrounded
by an infinite dielectric and consider that a monochormatwevwith frequencyw
impinges on the metal. Then, a second harmonic (SH) field atill be generated, the
source of which being the second-order non-linear polaoisaAccording to the model
that we just described, this non-linear polarisation carségarated in two distinct
components. First, the (local) dipole-allowed surfacelinear polarisationP,(r; 2w),
whose support is a surface layer sevekafstroms thin [the first term in the r.h.s of
Eg. (2.64)] and second, the (nonlocal) bulk nonlinear psdaion, Py (r; 2w), which is
generated inside the nonlinear medium by electric quadiespEnd magnetic dipoles
[the second term in the r.h.s of Eq. (2.64)].

The surface polarisation vector is defined as:

P,(r;2w) = ex'? : E(r;w)E(r;w)é(r — ry), (2.65)

s
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wherer, defines the surfacex?’ is the surface second-order susceptibility tensor,
and the Dirac function shows the surface characteristitisfgource non-linear po-
larization. Unless the surface contains structural festwvith intrinsic chirality, the
metal/background interfaces possess an isotropic msgnametry plane perpendicu-
lar to the interface. Under these circumstances, the surfac-linear susceptibilitxﬁz)

has only three independent components, nanxéﬁu, Xf)um’ andxffmL = XSI)\LH’
where the symbold. and || refer to the directions normal and tangent to the surface,
respectively. The individual components of the non-lingaiface susceptibility have
been experimentally measured for several metals. As an @earthe independent
components oft” for Ag are:x\?) || = 2.79 x 107" m?/V, Xfﬁm = Xf|)|¢|| =
3.98 x 102 m?/V, andy?) |, = 0[56].

From the symmetry properties of the surface susceptih:é'mysorxgz) one can de-
rive the polarisation characteristics of the field at the $#ich is generated by the
surface nonlinear polarisation. There are two polarisat@ses which need to be con-
sidered. In the first, the electric field has no component mbtma plane tangent to
the interface. In this case, no surface second harmoniaagoe can occur for mate-
rials with x, 1 = 0. In the second polarisation case, the electric field at tteface
between the metal and the background contains both a nomdad é&angent compo-
nent [see Fig. 2.11]. In this case, the nonlinear surfacargaition has the following
components:

Ps1= EOXSJ_J_J_EJQJ (2.66a)
P, = 260X\, ELE). (2.66D)

The nonlinear bulk polarisation in an isotropic centrosyetme medium has the
following general expression [57]:

Py(2w) = a[E(w) - VIE(w) + SEW)[V - E()] + 7V[Ew) - Ew)],  (2.67)

whereq, 8, andy are the bulk nonlinear coefficients of the material. For exayif we
assume that the electrons in the metal are described byabefectron model, these
parameters are:

a=0, (2.68a)
N €p€

B = T (2.68b)

v = g[l — €. (w)], (2.68c)

with e andm, being the electron charge and mass, respectivelyednd = e(w)/eg
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the relative permittivity of the metal. As it will be shown subsequent chapters, the
SHG is dominated by the surface component. Furthermorboiild be noted that the
free electrons in the metal also contribute to the nonliseaface susceptibility (pri-
marily to the componenxf)lu), but this contribution is accounted for by using the
experimentally determined values of the components of timdimear surface suscepti-
bility [56].

The nonlinear boundary conditions obeyed by the electromtagfields at the SH,
are given by [55]:

AB, =0 (2.69a)

AH” = % X I‘AH (269b)

AD, = -V, PS(I'H) (269C)
1 /

AE| = (V)P - P}). (2.69d)

wheree' is the permittivity of the thin layer supporting SHGis time,V, = (V,0.)
[see Fig. 2.11]AB, = B,, — B, and the permittivities are evaluated at the SH
frequency) = 2w. The approach by which Eg. (2.69) can be obtained is given in
Appendix A.

It may at first seem counter-intuitive to use metallic sugfato design and build
optical non-linear structures, as in this case only surédfaxts contribute to the non-
linear optical response of the system. However, when cerisigl that metal-dielectric
interfaces can support SPPs and LSP modes, the advantaties adsign choice be-
come clear. Plasmons have the ability to concentrate tic&reteagnetic field in a very
small region leading to strong local field enhancement. ifhisrn leads to strong SHG
due to the surface component of the non-linear polarisafidthe same time, unlike
bulk crystals where the SHG is mostly determined by the ptegseof the crystal, non-
linear plasmonic devices are highly susceptible to both #tepe and the surrounding
environment. Several important practical applicationseloleon the combination of the
two phenomena have been reported including, surface-eatld&aman scattering [32],
enhanced non-linear plasmonic effects at metal-dietectrérfaces [58,59] and in gain
media [60], sub-wavelength, optically active, guiding astnuctures [61, 62], high-Q
factor optical cavities [63, 64] and sub-wavelength senfgB].

2.3.5 Second Harmonic Generation in Chiral Materials

Second harmonic generation upon interaction with metsitiectures is particularly of
interest because of its sensitivity to changes of the sefifsterface properties down
to the atomic level [66]. More generally speaking, this @anty is also present in

the case of higher-order harmonics, as long as their ordevas and the medium
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Fig. 2.12: Second harmonic generation methods for studyhigality were developed in
organic molecules before being applied to metamateriais(d), illustration of SHG from
supramolecularly ordered chiral helicenes moleculesbniflustration of SHG from G-shaped
nanostructures, arranged in a chiral unit cell [74].

is centrosymmetric; this latter condition is satisfied bystmetals used in practical
applications. Besides its surface/interface sensiti8iG is also dependant on the
symmetry properties of the crystalline lattice [67], gedmcefeatures [68], as well
as the presence of externally applied electric [69] and ratgifi70, 71] static fields.
More specifically, local or externally applied static etextand magnetic fields can
break the symmetry of the material at the interface; conseilyy SHG can be used
effectively for imaging ferroelectric [72] and ferromagieg 73] domains. In addition
to rotation and time reversal symmetry transformationgase SHG is also sensitive
to mirror symmetry transformations. This effect occurs imaterial which lacks an
internal plane of symmetry and so it cannot be superimposéis oirror image. Such
materials are known ashiral materialsand the phenomena associated with them are
known aschiral effects

From a historical perspective, SHG studies of chiral symyrtateaking have been
chiefly associated with chemistry and biology. Specificatiyany organic molecules
are chiral and thus their handedness plays an importantrraeemical reactions. It
has been demonstrated that the SHG equivalent of opticatiorgtdispersion (ORD)
and circular dichroism (CD), designated as SHG-ORD [75]@H&-CD [76], respec-
tively, is typically several orders of magnitude more sewsithan their linear coun-
terpart. Consequently, SHG techniques constitute péatiguvaluable spectroscopic
tools for investigating the physical properties of thindes, including molecular mono-
layers, fibres, surfaces, and membranes [77]. In such stas;tsupramolecular order-
ing can further increase the SHG signal; Fig. 2.12a illdssdhis concept. The role
of supramolecular ordering has been demonstrated in dmdladene molecules [78],
where the SHG-ORD and SHG-CD spectra yield very large s&fi7dl]. Viewing chi-
ral plasmonic resonators (meta-molecules) as the magrmscounterpart of chiral
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molecules (see Fig. 2.12b) [80], it is expected that the SH@Ilevbe significantly en-
hanced upon distributing chiral plasmonic structures stoderm a supramolecular
chiral patterned surface, which are also called cimratasurfaces

2.3.6 Non-linear Magneto-optic Effects

In the preceeding section we have assumed that the matexdlich the second har-
monic is generated is a non-magnetic medium={ 1,). However, a series of new
phenomena occur when non-linear optical effects are ceresidin a material with
non-zero magnetisationl. These effects are further ehanced when coupled with the
excitation of propagating or localised surface plasmorge hfluence of magnetic
fields on surface plasmons combines aspects of photonicslectlomagnetism at the
nanoscale [81]. Because surface plasmons are collectov@agans of electrons under
the influence of an external electromagnetic field, in magmeaterials these electrons
can experience the effects induced by externally appliegheiéc fields. Recently, this
area of research has attracted intense interest as it wasighat plasmons can be
controlledvia externally applied magnetic fields [82]. In order to bettederstand the
behavior of surface plasmons in magnetic media it is importa consider surface-
specific non-linear magneto-optic phenomenona knownagnetization-induced sec-
ond harmonic generatio(MSHG) [70, 83, 84].

As previously shown, in the dipole approximation, in cesyrmmetric materials
second harmonic can originate only from regions where thergion symmetry is bro-
ken, for example, at surfaces and interfaces. Due to symroetrsiderations, MSHG
has the same requirements for structural symmetry breakingsequently, MSHG
can be used to probe the magnetisation at surfaces andacgsréiown to an atomic
monolayer [66]. More specifically, a contrast in the MSHGeimgity is recorded upon
switching the sign of the magnetisation in the material hiis tonnection, it has also
been demonstrated that this reversal can be achieved irrésenee of surface plas-
mons [85, 86]. The latter could also cause a general enhamtenhthe MSHG sig-
nal. Additionally, such enhancements were reported irfeagnetic gratings [87] and
granular films [71, 88].

In the presence of the magnetisation, the second orderinear|polarisation
P(2w) includes an additional term [70, 83, 89], such that:

P(2w) = eox P : E(W)E(w) + ox ™ : E(w)E(w)M, (2.70)

where Y™ is the third rank (polar) non-linear susceptibility of a Amagnetic
medium, whilexy®¢ is a fourth rank axial tensor associated with the magnéisaf
the medium. This additional term gives rise to magnetisatimluced SHG. Because
the direction ofM can be fixed by an external magnetic field, Eq. (2.70) redures t
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third rank polar tensor ani(2w) can be written in the compact form:

P(2w) = cox'py : E(w)E(w), (2.71)
Wherexgﬁf is an effective non-linear susceptibility. Its componeattan isotropic in-
terface with incidence plane: are given by [70]:

2),m 2),m 2),m 2),m 2),e 2),m
o o ch:r?:c (My) ngy)y (My) chz)z (My) chz)y (M) chz)x chm?y (M)
2 2 2),m 2),m 2),m 2),e 2),m 2),m
Xeff = Xijk(Ml) = X;:v):v (Mx) X?(Jy)y (Mx) ng)z (Mx) X;z)y X;z):v (Mz) X;:v)y (My)
2),e 2),e 2),e 2),m 2),m 2),m

In the above it can be seen that t;dé,)f components have avencontribution to the
effective susceptibility with respect to the the magnéiosa 1/;. On the other hand,
xg,l’m(Ml) is odd with respect to the magnetisation. As a result, the geng:issteond
harmonic produced will depend on the magnetisalband can consequently be tuned
using an external magnetic field.

For example, assuming that the magnetisation has been $eatsonly the),
component is non-zero and that the the electric field is giwgi| = E,, the only non-
zero contribution to the second harmonic field will be givgm(@?f andxfy)g;m(My).
The intensity of the MHSG wave, or the period averaged entugythen becomes:

I(£M) ~ By[xGy° £ x5, (M), (2.72)
leading to a change in the MHSG intensity due to the changeacttbn of M. Alter-
natively, when the magnetisation is such thét is the only non-zero component, the
odd componenj(ﬁ)@;m(Mx) will produce ay-polarised output wave, which combined
with the even contributio;&,)y’e will lead to an overall non-linear polarisation that again
depends on the direction .

It is worth noting that the direction of the magnetisationdd the only externally
controllable parameter which can influence MHSG. As meiibearlier, the presence
of surface plasmons, which can also be controlled by extenagnetic fields, can
have a strong effect on the generation of surface secondomécnm metals. Moreover,
when normal incidence is no longer assumed, the angle afencie upon the surface
of a magnetic material will have a direct influence on the MS&tGhat surface [85,
86]. Equally important, extending the MSHG model to inclutie bulk non-linear
contributions of the metal can also lead to additional ceaxplon-linear phenomena
[70].
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2.4 Introduction to Metamaterials and Metasurfaces

Electromagnetic phenomena in readily available naturaérads lead to a large num-
ber of optical effects with several interesting applicasipas it was illustrated in the
previous sections. Nevertheless, there are certain lwhish, natural media impose
on photonic devices. With the recent tremendous advanceario-fabrication, it has
now become possible to overcome these limitations. In thapter, it will be shown

how artificially engineered materials can be used to alterellectromagnetic proper-
ties of matter and design effective parameters which gotydhat the natural world
offers. At the same time the applications of such artificialdm will be discussed.

2.4.1 Effective Properties of Electromagnetic Media

Maxwell’'s equations (2.1), coupled with the constitutiedations (2.5) fully describe
the interaction of electromagnetic waves and matter. htsresting to note that these
equations do not impose any restrictions on the electrostagproperties of the
medium characterised by the parametersy and the higher-order susceptibilities.
There is, for example, no physical reason why a material With negativer and

1 would not exist. In such a material, the refractive inadex ++/(eu)/(eop0) would
become negative [90]. Aegative index materigNIM) was first theoretically studied
in the late 1960s by Veselago [91]. Maxwell's equations in edmam with negative
index of refraction lead to some intriguing phenomena,udirig negative refraction,
inverse Doppler-shift and perfect lensing. Neverthelidggese effects were not validated
experimentally for a long time, primarily due to the lack attaral materials with both
negative: andy.

In recent years, however, major advances in micro- and saal® fabrication
technologies have brought about the possibility of aréflgi engineering materials
with optical properties not readily available in natureeTrinciple behind this concept
is the fact that the material optical constants are of a ns@oquic nature. For example,
in naturally occurring materials, as well as some artifigiahgineered ones, the index
of refraction is given by the distribution of the atoms atthieroscopic level, molecules
and the way they interact with electromagnetic waves. lerotords, the refractive in-
dex characterises the overall (effective) response of tha@ium. Because, in most ap-
plications at optical frequencies the wavelength of lightiuch larger than the charac-
teristic inter-atomic distances, the light samples lgcalhomogeneous medium whose
response is characterised by a permittivity and a permigakiktending this reasonon-
ing to artificially engineered materials whose buildingdis are much smaller than the
operating wavelength, one can introduce the conceptatdmaterialsThese are mate-
rials whose primary , predesigned, constituents are muetienthan the wavelength,
their electromagnetic properties being described by tffeparameters determined by
field averaging over the basic unit cell of the metamatendl@ot at microscopic level
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Fig. 2.13: Parameter space faerand . in electromagnetic media.

as is the case with regular materials. The first experimetgaionstration of such a
metamaterial employed interspersed split-ring resoretdrmetallic wires, to obtain
an effective medium with negative index of refraction [92].

This new class of materials is known in the literature as matarials [93], mainly
because they are seen as materials with properties “beybadé available in nature.
Metamaterials can be viewed as structures with internapomants much smaller than
the operating wavelength. This concept was illustratedgnZE1.

Another type of classification which can be applied to opticadia is based on
their electromagnetic properties, specifically, the sifjp ande. This classification is
illustrated in Fig. 2.13. Quadrants | and Il consist of mitls that allow propagating
waves {.e. have a real index of refraction) either in the “normal” rigtgnded configu-
ration, where the Poynting vectSrand the wave-vectdk are in the same direction, or
the left-handed region in which the two vectors are oppgpsiteresponding to a neg-
ative refractive index medium. The remaining quadrantsespond to media where
no propagating waves can exist, the index of refractiondeurely imaginary. Met-
als are the best known example of materials withk 0 andp > 0, while examples
of matter with negative: have only been found in some ferromagnetic substances at
resonance [94].

2.4.2 Applications of Electromagnetic Metamaterials

Because of their properties not readily achievable in matoretamaterials have been
proposed and successfully demonstrated for a broad arragpications. For exam-
ple, by a proper design of the primary unit cell of metamatsrit has been pos-
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Fig. 2.14: Metamaterial designs: a)NIM metamaterial basedsplit-ring resonators [92], b)
frequency-agile terahertz metamaterial [120], ¢) 3D mesdenial [101], d) polarisation tun-
able metasurface [121]

sible to demonstrate, theoretically and experimentallgtamaterials that are mag-
netically active at terahertz and optical frequencies $§93-3D [98-101] and 2D
[102, 103] materials with negative index of refraction,gfuency-selective surfaces
[104], transformation-optics electromagnetic media R10®%/], low-index of refraction
materials [108—-111], optical cloaks [112,113] or sup@sks [114]. It has also been
demonstrated that the “meta-toms”, which are the primaiiding blocks of meta-
materials, can be designed so as not only to emulate lingesiqath properties of reg-
ular atoms, such as magnetic moment [115] or electric Eabiiity [116] but also
to possess nonlinear optical properties, such as secal®il-[#8, 59, 117] and third-
order [118, 119] nonlinear optical response. Some of thppaations are illustrated
in Figure 2.14.

One important property of many metamaterial designs isttigt employ only
classical electromagnetic phenomena. The most imporfahiese in terms of meta-
material applications are surface plasmon effects. Fomel& in recent years much
attention has been focused on optical properties of natterpad metallic films. One
particularly intriguing characteristic of these plasnmomanostructures is their ability to
resonantly trap and tightly confine light in spatial domaiosmparable or smaller than
the optical wavelength, leading thus to the formation oalsed surface plasmon res-
onances. Because the frequencies of LSPs are stronglydEmem the shape and size
of the plasmonic nano-patrticles, as well as the properfigseadielectric environment,
they can be tuned over the entire visible and infrared dosnHif, 122]. Plasmonic
nanoparticles can be assembled in one-dimensional (10)p02BD periodic struc-
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Fig. 2.15: Photonic crystal designs: a)2D photonic crysteveguides [127], b) 3D layered
photonic crystal structure (wood pile geometry) [128].

tures, the corresponding interacting LSPs leading to phasorchains, metasurfaces, or
metamaterials with remarkable properties. For exampleggstbeen demonstrated that
chains of resonantly interacting LSPs can be used to cafiiedlow of optical power
at deep-subwavelength scale, [123] whereas, in the namlnegime, these same struc-
tures can be used for all-optical signal processing at the-saale [61]. Furthermore,
by engineering the optical response of LSPs one can providdfient mechanism
to enhance the optical transmission of metallic films [124],well as achieve plas-
monic metasurfaces with large surface chirality [125] aptoal non-linearity which
could have major applications in designing integrated @leitironic devices for optical
signal processing [117].

2.5 Photonic Crystals: Definition and Basic Properties

Another class of artificial material which has attractedhgigant interest in recent
years arghotonic crystal§PhCs). Photonic crystals are periodically structuredimed
wherein the characteristic spatial period is comparabléhéooperating wavelength
[126] [also see Fig. 2.1]. Owing to their periodical struetuphotonic crystals can be
used to manipulate the propagation of light and give riseptcal effects not possible
in natural materials. In this section, an introduction to@famic crystals will be given

and some of the optical phenomena associated with PhCsendlhblysed.

2.5.1 Wave Propagation in Periodically Structured Media

In many respects, photons propagating in photonic cryktale similar properties with
those of electrons in crystalline materials. In particutais similarity between PhCs
and regular crystals extends to properties such as theapgistof Bloch modes and
energy (frequency) bands whose properties are determingtelyroup symmetries of
the lattice [126].

Photonic crystal designs vary greatly according to thegnded applications. Pos-
sible structures can be periodic in either one, two or thireedsions. One-dimensional
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(1D) PhCs have been known for a few decades and are employadrny optoelec-
tronic devices such as optical filters or isolators [129)otBhic crystals are relatively
easy to fabricate in the microwave domain but this becomeshnmuore difficult as
the wavelength approaches the optical spectrum, primaeitause of the small size of
the required lattice constant. Although the majority of BraZe based on dielectrics
and semiconductors, there has also been extensive resg@rphotonic crystals made
of metallic structures [130], also callgdiasmonic crystalsTwo examples of practical
implementations of these designs are presented in Fig. 2.15

One of the main reasons photonic crystals have garnered sb mierest in re-
cent years is the high degree to which the dispersion of wangsagating in a periodic
structure can be engineered. Unlike the case of a bulk diedePhCs exhibit an intri-
cate photonic band-structure which can be tuned by simpyngimg the structure of
the PhC. To better understand this phenomenon, considemiglicity the 1D struc-
ture in Fig. 2.16a. Assuming a linear, non-magnetic, napelisive dielectric medium,
the permittivity of the systems is= ¢(x). According to the definition of a photonic
crystal, the dielectric function is periodic with peridgde(z) = ¢(x + d). The dielectric
function can then be expanded in a Fourier series:

[e.e]

e(r) = Z P (2.73)
wherea,, are the Fourier coefficients of the series expansion. Frasréation, one
can infer thatu_,, = a}, ase(x) is real for all values of:. In a structure with a peri-
odic dielectric function, a propagating electromagnetave/can be considered to be
a photonic eigenmode which experiences a periodic “pakntiue to the periodi-
cally modulated dielectric function. This implies that czen use Bloch’s theorem to
describe the photonic eigenmodes [131]. The solution ferelectromagnetic wave
equation (2.9) in one dimension can then be written as a Biotition:

Ep(z,t) = uperriont (2.74)

where k is the Bloch wave vector of the eigenmode at the eigen-freque, and
up(x + d) = ui(x) is a periodic function. Expanding in Fourier series the fiorc
ur(x), EQ. (2.74) can be rewritten:

Euw,t) = Y A (5 )otiad (2.75)

where A,,, are Fourier coefficients. Combining Eqgs. (2.73) and (2.7 mserting
them into the wave equation (2.9) leads to the dispersiatioel for the 1D photonic
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Fig. 2.16: Geometry of a 1D photonic crystal (a) and the cepending band diagram (solid
lines) (b). The dashed lines in (b) correspond to the liglediin a uniform material while the
two solid vertical lines show the boundaries of the firstIBtiln zone [126].

crystal structure in Fig. 2.16a. In the limit of small modida of ¢, this dispersion
relation can be written as:

Wi~ o /a j:|a|j:L a2—|a1|2 h? (2.76)
=~ TV 1 Tlarlvas \% 1 , :

wherec is the speed of light in vacuum and= k — 7 /d [126]. This solution is valid for
|h| < 7w /d and if only them = 0, £1 contributions to (2.73) and (2.75) are considered.

Figure 2.16b plots the dispersion relation (2.76). Theelisijon lines for the pho-
tonic crystals are folded into the first Brillouin zokec [—x/d,n/d] as outside of
this region, they differ only by a multiple &r/d. For a weekly modulated crystal, in
most regions, the mode dispersion approaches the dispafdight in a material with
uniform e. However, when two dispersion lines cross each other, aopimband-gap
opens up and light can no longer propagate through the pieatoystal (such as the
Bragg gap in the 1D case).

2.5.2 Photonic Band Structure of 2D and 3D Photonic Crystals

The concept of calculating the band structures of a 1D photogstal introduced in
the previous section can be expanded to two and three diovaisstructures. In a
periodic three dimensional, non-dispersive and isotrepstem, the dielectric function
depends on the position vectorase(r) = ¢(r + d;), where{d,}, (i = 1,2,3) are
the elementary lattice vectors of the photonic crystal. Byoducing the elementary
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reciprocal lattice vector§e; } and the reciprocal lattice vectof&s }:

G = l1e1 -+ l282 -+ Z3e3, (277b)

wherel; are integers, the dielectric function can be expressed amiagF expansion
[126]:
€(r) = Z a(G)e'¢T, (2.78)

G

where the Fourier coefficients have the property G) = a*(G), due toe(r) being
real. The expansion coefficients for a given geometry cawiwed by using the inverse
Fourier transform of Eq. (2.78):

1

a(G) = (—:OV/Vdre(r)e_iG'r, (2.79)

whereV is the volume of the unit cell. The integral (2.79) is usuaWaluated numeri-
cally, although analytical solutions exist for simple gesiries.

Using Maxwell’'s equations (2.1) and the dielectric funatio Eq. (2.78), we can
write, as before, a double curl expression for the electid finamely:

1 1 02
@V X [V X E(r)t)] = —gﬁE(I‘,t). (280)

The equation above can now be re-written as an eigenvalusiequyl32]:

w2
OpE(r) = C—2E(r), (2.81)

where the differential operat@iy is:

Op = 1V x [V x E(x)]. (2.82)

€p

Equation (2.80) supports time harmonic solutions of the®fr, t) = E(r)e™?, where
w is the eigen-frequency arfd(r) are the eigen-functions.

As before, the plane-wave solutions to the wave equatioherphotonic crystal
are described by eigenfunctions of the type

Ekn(r) = ukn(r)eik.ra (283)

whereuy, (r) = uyg,(r + d;) is a vectorial periodic functiom is known as the band
index, k andw are the eigenvector and eigen-frequency, respectivetytlantime de-
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Fig. 2.17: 2D photonic crystal geometry consisting of inérods: a) schematic of the structure,
b) photonic band structure and density of states [134].

pendence is assumed to be harmohig;, t) = E(r)e™'. The same line of reasoning
can also be applied to the magnetic fiéld Equation (2.83) can be expanded into a
Fourier series, which leads to:

Ein(r) = ) Ei(G)e! DT, (2.84)
G

Introducing (2.78) and (2.84) into the wave equation (29)its in an eigenvalue equa-
tion for the Fourier coefficient§E,,(G)}. This equation needs to be solved numeri-
cally [133]. The same reasoning can be applied to obtain thei&r coefficients for
the magnetic field Hy,,(G)}. With one of the two sets of Fourier components known,
the photonic band structure (dispersion relation of thergodes), can be calculated.

An example of a simple 2D photonic crystal structure, cdimggof dielectric rods
embedded in a dielectric medium, is given in Fig. 2.17. Eveugh the geometry of
the PhC is relatively simple, it presents a complex photbaird structure with several
band-gaps present. The band-gaps can also be identifiechbyirdrg the photon den-
sity of statesD(w), in the crystal. The density of states is definedds) = w*V/m*v]
whereV is the volume of the unit cell and, is the group velocity. It is important to
note that these band-gaps are ooinpletein the sense that the dispersion relation in
Fig. 2.17 considers only the TE polarisation; eigenmodesecast in the TE band-
gap regions for the TM polarisation or for waves with off{pdawave vectors [134].
The dispersion relation also shows another interesting@inenon which can occur in
photonic crystals. The slope of the third or fourth lowestdsin thel’X region, for
example, is very small, which translates into a very smalligrvelocityv,,, defined as:

o
9 9k’
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Physically, a very low group velocity translates into anr@ased optical path length
and a longer time of interaction between the radiation aedriedium of propagation.

This leads to increased coupling between the two and cait neshhe enhancement of

several optical effects [135, 136] including optical namehrities [137]. Note also that,

similar to the case of electrons in a crystalline medium,déesity of states becomes
infinite at frequencies at which, = 0. This effect is the optical equivalent of the
Van Hove singularities, which are discontinuities in theatlon density of states of
solids [4].
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Chapter 3

Theory of Linear and Non-Linear
Scattering of Electromagnetic Waves
from Two-dimensional Systems

3.1 Introduction

As discussed in the previous chapter, one of the main coesegs of the plasmon-
induced resonant enhancement of the electromagneticgigtdi strong non-linear op-
tical effects can be achieved at relatively small optical@o In particular, the strength
of second-order non-linear optical effects, such as therskbarmonic generation, is
proportional to E|*, and therefore an enhancementdf0-100 of the local field at the
fundamental frequency, easily achievable by using metalinoparticles, leads to an
increase of up ta0® of the intensity of the light generated at the second harofdri3].

It should therefore be clear that in order to achieve a cohgsive characterisation of
the SHG in metallo-dielectric structures one has to emgieptetical methods and/or
numerical simulations that enable one to accurately deterthe spatial distribution

of the electromagnetic field at the FF.

Since most metals are centrosymmetric media, it is of pdatidnterest to develop
robust theoretical models that describe the generatioheo$H upon the scattering of
light from ensembles of nanoparticles made of centrosymmetaterials. Recently,
significant progress towards this goal has been made, witie smtable examples be-
ing the theory of SHG from spherical [4] and cylindrical [&rticles of low-index con-
trast centrosymmetric materials or, more generally, SH@&fa metallic cylinder [6].

It should be noted that in the former case the theoreticalcga is valid only within
the Rayleigh-Gans-Debye approximatiam,, it is assumed that the field at the FF is
not perturbed during the scattering process, whereasttiee épproach only applies to
a single scatterer.



8y

o6

Fig. 3.1: Geometry of a single cylindrical scatterer. Thdirger is assumed to have radius
and permitivittye..

This chapter will present a theoretical formalism basedhr@multiple scatter-
ing matrix (MSM) algorithm, which can rigorously describe the geneesde, namely,
the SHG from a collection of cylinders with arbitrary electpermittivity, which are
made of centrosymmetric materials. Importantly, this te&oal approach enables one
to account for the contribution to the SH field of both the acef and the bulk non-
linear polarisations. Using this formalism, it is possitderetrieve the full linear and
non-linear field distribution, as well as the linear and hiaear total, scattering and
absorption cross sections.

3.2 Formulation of the Scattering Problem for Two-
dimensional Geometries

The scattering of electromagnetic waves by materials islbkwewn problem in elec-
tromagnetism. Given an object or system of objects thatusihated by an electro-
magnetic wave, the question arises as to how the systemmvatiict with the incoming
light and what are the effects of this interaction, both i iear- and the far- field. The
focus of this chapter will be on introducing a new numericatihod which allows one
to study both the liner and non-linear scattering from aayaaf arbitrarily distributed
parallel cylinders. Nevertheless, it is useful to begirhvaitsimpler case, that is, finding
the analytical solution to the scattering problem from ak&nlinear, non-magnetic,
infinite cylinder in air.
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To begin with, we define the geometry and the physical camttiof the sys-
tem. For simplicity, we assume an infinite cylinder centretha origin of a system of
cylindrical coordinatesp, ¢, z), with (0,0, z) being the cylinder axis. The cylinder is
illuminated by a monochromatic wave, normal onto its swefddis setup is illustrated
in Fig. 3.1. In this configuration, two polarisation cases ba identified. In one case,
the electric field is parallel to the-axis, thus it has a single non-zero compongnt
and the magnetic field is perpendicular to the axis of thendgi. We call this the TM
polarisation. In the second case, the TE polarisation, thgnetic field is parallel to the
z-axis and the electric field has two non-zero componeitand £, . In what follows,
the TM case will be considered in detail with the extensianshe TE polarisation
being given at the end of the analysis.

In the free space around the cylinder, theomponent of the incoming plane wave
can be expanded in a Fourier-Bessel series as [7]:

o0

Er(ro) = > anJu(kr)e™?, (3.1)
wherek is the transverse component of the wave vecigr,are the Fourier-Bessel
coefficients of the incoming wave ang, is Bessel function of the first kind. Equation
(3.1) is evaluated at a poiit(r, ¢). In the case considered here, of normal incidence
and TE polarisation, the Fourier coefficients can be wrigen

Uy = Ege™ w0 tm/2) (3.2)
where I, is the wave amplitude ang, is the angle between theaxis and the wave

vector of the incoming wave.

To understand the origin of EqQ. (3.1), let us now consideiHbBbnholtz equation
(2.10) in cylindrical coordinates:

PU 10U 19U  &°U

- J— R —_— 2 =
or? + r Or + r2 0p? + 022 pew U =0, (3.3)

whereU can be any of the electromagnetic field components. It careparated as
U(r,p,z) = R(r)Q(p)Z(z). This leads to three separate differential equations [8]:

d*Z

o ’°Z =0 (3.4a)
d2
d—g +m?Q =0 (3.4b)
d?R 1dR 9 m?
W‘F;%—l—(n —F)R—O. (3.4C)
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Herem and! are integersk = +/euw? is the wave vector, and we have used the
notationn? = I? + k2. The solutions to Egs. (3.4a) and (3.4b) are of the form:

Z(z) = e*l* (3.5a)
Q(p) = e™m? (3.5b)

Of particular interest, however, in the case of a cylindrggometry, is the radial equa-
tion (3.4c). In the case of normal incidencezat 0, we can set = 0. Then, using the
notationx = kr, Eq. (3.4c) becomes:

R 1dR m?
er;%Jr(l—ﬁ)R—O, (3.6)

which is the well known Bessel equation. Equation (3.6) suigsolutions of the form

[8]:

Tnw) = (5)" ; i r(](‘_+13; ) (g)% (3.72)
Tom() = <g>_m;j! r(;_—17)71+ 1) <g>2j’ (3.70)

which are the Bessel functions of the first kind. Whens an integer, it is easy to see
from Egs. (3.7) that:
J_m(k) = (=)™ (k). (3.8)

Another set of useful Bessel functions, are the Bessel inmstof the third kind, or
Hankel functions. The common definition for the Hankel fumies is:

HWY (k) = Jo(k) + iNp (k) (3.9a)
HP (k) = Jon(k) — iNp(k), (3.9b)

whereN,, (k) = [J(k) cos(mm) — J_,,,(k)]/ sin(mm) are the Neumann functions (or
Bessel functions of the second kind) afdy and H? are usually reffered to as the
Hankel functions of the first and second kind, respectively.

Finally, all Bessel functions and their derivatives obey tecursion relation:

de(’KO o Qm—l(’i) - Qm—i—l("i)
s = 5 , (3.10)

where(,,(x) can be any of the,,,, N,,,, HY and H? functions.
We now search for the most general solution to the Helmoltagqgn (3.3). With
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the previous assumption of= 0, this solution will be of the form:
U(r,p) =Y ApRn(r)Qum(m), (3.11)

where A,, are Bessel expansion coefficients. It is easy to see now thasing Eq.

(3.5b) and the Bessel equation solutions (3.7), Eq. (3.&tpimes the expansion in
Eq. (3.1). Here, we have identifiet,, = a,, as the incoming field Bessel expansion
coefficients and/ (r, p) = E™*“(r, ) as thez component of the incoming electric field.

Inside the cylinder, the fields are expressed in terms ofd@é&ssctions, too. How-
ever, one also has to take into account the material pregesfithe cylinder. Thus, the
electric field inside the cylinder can be written as:

EM = 3" cpdm(ke)e™, (3.12)
wherec,, are the internal Fourier-Bessel expansion coefficientskand kn.r is the
wave number of the field inside the cylinder, with being the refractive index of the
cylinder.

The field scattered by the cylinders also obeys Eqg. (3.3)hisdase, however,
the field needs to be expanded using the Hankel function$iegsdescribe outgoing
waves. Thus, the scattered electric field becomes:

EX* = > b HP (k)€™ (3.13)

whereb,, are the scattered field coefficients.

The scattering problem is now reduced to finding the coefftsie,, andc,,. This
can be achieved by imposing the boundary conditions of thetre@imagnetic field at
the interface between the cylinder and the backgroued for » = R, whereR is the
radius of the cylinder). For the case of a system with no naksources, the electro-
magnetic boundary conditions imply the continuity of thagant field components,
Bt = B andHE™ = HIY, where:

Bt = B 4+ B (3.14a)
ext __ mnc sca
HE™ = HIM + H (3.14b)

are the total fields outside the cylinder. THg components can be determined from
Maxwell's equations [8]. Imposing the boundary conditiard eliminating the:,,
components between the two resulting equations, leadsetéotlowing solution for
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theb,, coefficients [for the detailed steps required, see AppeBgix

@ (knoR)J (kR) — Jo(kR).J" (kn.R)
by = ay, e (3.15)
H®(kR)J! (kn.R) — aJy,(kn.R)Hw,' (kR)

where the prime denotes a derivative with respect to thenaegtiandy = (k.€)/(ke.).
The coefficients,, can now be found as all the terms in the r.h.s of Eq. (3.15) are
known. Consequently, the internal field coefficients can bk determined as:

I (kR) 4+ b, HP(R)

Cm = T ) (3.16)

To complete the discussion, the TE case must also be takemadobunt. In this
case, the: component of the electromagnetic fieldAs. The incoming field coeffi-
cients for this polarisation can be written:

Ay = Hye mm/2+¢0) (3.17)

whereH, = Ey/Z with Z = /u/e the impedance of the background. The same line
of reasoning can be followed as for the TM problem. The bonndanditions at the
surface of the cylinder now require thAt™ = H" and ES* = E*. The scattering

field coefficients can be found to be:
BIm(kn.R)J! (kR) — Jn(kR)J! (kn.R)

b = —— (3.18)
HO(kR)J, (kn.R) — BJn(kn.R)HZ (kR)

where = k./k. The internal field coefficients can still be found using E316).

With both the TM and TE cases treated, the scattering probfensingle, infinite,
cylinder can be considered solved. In the next sectionntieihod will be extended to
an arbitrary distribution of cylinders. At the same timeg solution of the scattering
problem for such a geometry will be shown in the non-lineaec@oo, namely when
the surface second harmonic generation is considered.

3.3 Scattering Problem for an Ensemble of Cylinders

The numerical method used in our analysis of the linear andinear scattering prob-
lem from an ensemble of cylinders is based on a recentlydotred numerical al-
gorithm that describes the SHG in photonic systems made wfceatrosymmetric
guadratically non-linear optical materials [9]. In thissea the dominant non-linear
optical interaction is described by the dipole (local) cimition of the second-order
non-linear bulk polarization. However, this dipole cobttiion to the non-linear polar-
ization vanishes in the case of centrosymmetric materradstiderefore the numerical
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method introduced in Ref. [9] can not be used to study the SH®Gi$ important class
of materials.

In the approach introduced in this chapter the calculaticth® scattered field at
the SH is performed in two stages. First, by using a stanaartiple scattering matrix
(MSM) algorithm the electromagnetic field at the fundamkfnéquency is calculated,
and this field is subsequently used to determine the nomaslipelarisation at the SH.
In a second stage, this non-linear polarisation, whichspthg role of the source of the
field at the second harmonic, is used to calculate the spisiaibution of the scattered
field at the SH. Note that this two-stage approach impliesrthanergy is transferred
back from the SH to the FF and therefore the numerical metheskepted here is valid
only within the so-called undepleted pump approximatiog, when the energy at
the SH dissipates only through linear optical losses. Duthéoreduced conversion
efficiency of the SHG interaction and the small size of theasémictures involved in
the non-linear scattering process, the undepleted pummxppation is valid in all
cases considered.

3.3.1 Description of the System Geometry

The non-linear scattering problem is schematically iHatstd in Fig. 3.2. Thus, an en-
semble of N parallel, infinitely long cylinders(;, 7 = 1,2,..., N, embedded in a
background medium with electric permittivity and magnetic permeability, is con-
sidered. The cylinders are assumed to be oriented along-&xes. Thej-th cylinder
has radius?; and is characterized by the permittivityw), which, for the sake of gen-
erality, is assumed to be dependent on the frequenend the magnetic permeability
1;; here and in what follows it is considered thgt= 11, = 110, 7 = 1,2,..., N, where
Lo IS the magnetic permeability of the vacuum. In addition,heaglinder is charac-
terised by a surface second-order susceptibbﬁgj,. The position of the centep, of
the j-th cylinder is specified by the polar coordinates {;), which are defined with
respect to a coordinate system with the origiinMoreover, as per fig. 3.2, the posi-
tion of the center of thé-th cylinder, specified in a coordinate system with the origi
in O;, is defined by the polar coordinates (],), whereas the position of an arbitrary
point P, defined with respect to the coordinate systems with theromgO andO;;, is
specified by the polar coordinates:(p) and (5, ¢}), respectively.

An incident monochromatic electromagnetic plane wave mgjpig onto the sys-
tem of cylinders is fully described by its conicity angles 6,, andd,, whereg, is the
angle between the projection onto thwe-plane of the wave vector of the incident wave
and thez-axis, ¢, is the angle between the wave vector of the incident wave la@d t
z-axis, andy, is the angle between the electric field of the incident wawkthe plane
defined by the:-axis and the wave vector. Moreover, while this analysisleaapplied
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Fig. 3.2: Schematics of the system geometry. The scattesiggem consists a¥ cylinders
embedded in a background medium with electric permittagitgnd magnetic permeability;,.
The j-th cylinder has radiusk;, permittivity ¢;, permeability.;, and surface second-order

susceptibilityxfj). .

to the general case of oblique incidence, for the sake oflgiityponly the case of nor-
mal incidence is considered here,, §, = 7/2. Then, under these circumstances, two
independent cases can be considered: in the first case, wni@sponds to the trans-
verse electric (TE) polarisation, the electric field of theident wave is perpendicular
to the axis of the cylindersi{ = 7/2), whereas in the case of the transverse magnetic
(TM) polarization ¢, = 0), the magnetic field of the incident wave is perpendicular to
the axis of the cylinders.

3.3.2 Calculation of the Electromagnetic Fields at the Fundmen-
tal Frequency

In order to calculate the fields at both the FF and SH we havdagmeg a method
based on the MSM algorithm [10]. This formalism has been ssgftlly usede.g,
to solve the linear scattering problem in the case of obligeelence of light onto
a 2D photonic crystal [11] [for a comprehensive review of M8M method and its
applications see Ref. [12] and the references therein].

Due to the 2D nature of the linear scattering problem comsitibéere, the elec-
tromagnetic field at the FF is fully determined once one kndweslongitudinal £)
component of either the electric or the magnetic field. To loeenspecific, for the TM
(TE) polarization this longitudinal componentis (H.). Then, using Maxwell’s equa-
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tions, it can be easily shown that for harmonic fields thatetkelpon time ag™*, the
transverse components are given by:

1 OFE,
b= W o (3.19a)

1 10F,

= —ew— A
r= W 95 (3.19b)
for the TM polarisation, and:
i 0H,

B = gt 2 (3.20b)

K2 r Op

for the TE polarisation (see for example Ref. [8]). In theskations, the transverse
component of the wave vectay, is defined as:

K% (r) = k*(r) — k% cos® 6, (3.21)

wherek = \/upe(r)w is the wave vector. Depending on the positian the transverse
plane.(r) is equal to either the permittivity of one of the cylinderdme,. Also, note
that for normal incidence = k, as in this casé, = /2.

In order to simplify the presentation of the numerical methall cylinders are
assumed to be made of the same material. In particular,aenisg the case of metallic
cylinders, their permittivity is described by the Drude loe Lorentz-Drude model, the
latter one being more accurate in the visible region of tleespm.

Although the technical details can be somewhat complicéitedVISM formalism
consists of two simple steps. First, the incident and thé#esesl electromagnetic fields
are expanded in Fourier-Bessel series. Then, the boundagjtons at the surface of
the scatterers are used to construct a system of linearieqsathose solution deter-
mines the Fourier coefficients of the Fourier-Bessel saxigmnsion of the scattered
field. Once these coefficients are determined, by solvingtiheesponding system of
linear equations, the electromagnetic field can be foundatpaint in space. Thus,
given an incident plane wave, the longitudinal componerthefincoming field />,
which depending on the polarisation of the incoming wavéiis = Eirc (Uirc = Hinc)
for TM (TE) polarised waves, can be written as:

[e.e]

Ure(r, p) = Z U I (K7€ (3.22)

m=—0Q

where.J,,, denotes the Bessel functions of the first kind. Note that iB&2), the har-
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monic time dependence of the incident field has been drodpe-ourier coefficients
a,, depend solely on the type of the incoming wave, for a planesvieaing given by
the following formulae:

. 3.23
£ cos 8o sin Gpe~"m(7/2+0) U, = H, ( )

{ Ej sin §g sin Gpe~™(7/2+¢0) [T, = F,
Ay, =
Zy

whereZ, = \/1u/€ is the impedance of the background medium.

The field scattered by the cylindér; can be expanded, too, in a Fourier-Bessel
series, but since at — oo the scattered field must contain only outgoing waves, the
basis of expansion functions consists of Hankel functionthe second kind 72,
Hence, at a poinP(r, ¢), the field scattered by the cylindéy; is written as:

US(rg) = > b HD (myrf)e™r, (3.24)
whereb,,; are the expansion coefficients and represent the main tjeartthat are
to be determined numerically. It is easy to see now that oheeoefficients,,; are
computed, the total field at a poift can be readily found. Thus, the field°*(P) is
given by the sum between the incoming field and the fieldsexeatby all the cylinders:

o

UY(P) = Z U I (KT p) €PP

N 00 )
+Z Z b HE (kyrd,)eMF . (3.25)

j=1 m=—o0

To find the scattered field the source of the field around a dgtin’; is investi-
gated. Thus, this field can be viewed as being generasdestattering off this cylinder
of an incoming local fieIdU;’;, which consists of the incoming plane wave and the
sum of the fields scattered by all cylinders, except the dgid’;. This local field can
be written as:

[e.9]

UPS(P)=Q; Y amdm(ryrp)e™ "

N 00

+ > Tikmgbgem (kerp)e ™ (3.26)
k=1 Ma=—%
k#j

where(); are phase factors that transform the incoming field from yiséesn with the
origin in O to the system with the origin i@, andT ; is the electromagnetic coupling
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matrix between the cylindersandk. These parameters are defined as [11]:

Q; = e irerieoslei=o0), (3.27a)
Tjimg = ¢CAHE (ryr). (3.27h)

One important observation, which must be made here, ishkdidlds in Eq. (3.26) are

a self-consistent solution to Maxwell’'s equations. Theref they represent the total
field incoming on cylindeC;, which includes all previous scattering and subsequent
re-scatterings of the fields by cylinders. This property of the MSM formalism is also
apparent in its actual implementation, wherein no iteeafivocess exists. As a result,
the only numerical approximation present in the formalisrthe number of expansion
terms, M, being considered, as will be discussed in the next chapter.

Equation (3.26) can be easily derived by inserting in ERSBthe Graf formula
[13]:

Hr(,f)(/fbrfg)eim“”llg = Z ei(m_q)%HéQ_)m(Kbri)Jq(mbré)eiW;. (3.28)

gq=—00
Now, the local field°¢(P) can itself be expanded in a Fourier-Bessel series:

URS(P) = 3" dunj () e ™ P (3.29)
The total field around a cylinde?’; can therefore be written as the sum between this
local field and the field scattered by the cylinder [the indéere signifies thal’t*(P)
is calculated in the system with the origindn]:

UCHP) = N [dog T (55p) + by HD (s31)] €™F. (3.30)

m=—00

Now let us introduce the column vectass = {Q;an}, b; = {b,;}, andd; =
{d.n; }, contain the Fourier coefficients of the incoming plane wélve scattered field,
and the local field associated to the cylindgr respectively. Furthermore, the scattered
field and the local field associated to the cylinderare related by the scattering matrix
S; of the cylinderC};, and thus the relation between the vecloygindd; is given by:

Combining Egs. (3.26), (3.30), and (3.31) yields the follogMinear system of matrix

84



equations:

N

> [0k5T — (1= 0)S; Tyl by = Sja, j =1,2,..., N, (3.32)

k=1
whered,; is the Kronecker symbol arlds the identity matrix. This system of equations
can be reduced to a single matrix equation. For this, thenwoluectorsb, andS;a;
are stacked into the single column vectd8s= {b;} andG = {S;a,}, respectively,
and the scattering matri$,,, of the entire system of cylinders can be defined as:

I —S1Ti2 —SiT3
—Sngl I —SZT23

S, = ] 3.33
—Sngl —Sngg I e ( )

With these definitions, Eq. (3.32) becomes:
S.B =G. (3.34)

Since the vectofs is known, the linear scattering problem has been reducedde fi
ing the scattering matrix of the systef),, and then solving the system (3.34). More
exactly, onces,, is determined, the Fourier coefficiedsof the scattered field are cal-
culated by simply solving the linear system (3.34), theltbé&dd at a pointP being
subsequently determined from Eq. (3.25). To this end, caimg®_, amounts to find-
ing the matricesS; of the cylindersC';, which can be easily determined by using the
continuity of the tangent component of the fields across thentary of the cylinder
C;.

In the case of the TE polarisation, the boundary conditi@mshe expressed as:

HY(R;, ) = HI(R;, @), (3.35a)
EZS(Ry,¢) = ELS(R;, 0). (3.35h)

The magnetic field inside the cylindét, H*, can be written as:

Z?j’

o

HY(P) = " ujid(irp)e™F, (3.36)

m=—00

whereas the tangent component of the electric fLE['g; is determined from the Eq.
(3.20a).

Using Eq. (3.30), imposing the continuity conditions (3,3nd eliminating the
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coefficientsc,,; from the resulting system of equations, one obtains thewvatig rela-
tion between thé,,; andd,,; coefficients:

bmj _ ﬁjjél(liij)Jm(FLjRj) — Jm('%ij)Jrln(KjRj)
A HP (kyRy) I, (k;Ry) — B HZ (ko Ry) Jon (i Ry )

(3.37)

Here, the prime symbol denotes the derivative with respetité argument and; =
r;/kp. These calculations can be repeated for the case of the Tafigation, the result
being that Eq. (3.37) becomes:

bmj _ Osz;n(KJij)Jm(KJjRj) - Jm(“ij)‘];n(’%jRj)
dmj Hg)(liij)J;n(fing) - ang)/(Kij>Jm(KjRj>

, (3.38)

wherea; = (eyx;)/(€j1p). Now, EQ. (3.31) shows thelt; ,,,,, = (bnj/dim;)dmn, Which
means that for cylinders, in the case of a TE or TM polariseitient wave, the scatter-
ing matrix is diagonal. As in the case of the one cylinder getryna relation can now

be found betweeh,,; andc,,;. The internal field coefficients can thus be expressed as:

o= aijm(/iij) + bm]H(Q)(/be]) .
" I (k)

(3.39)

It is worth noting that Eq. (3.39) is valid for both polarisats. With the Fourier coeffi-
cients now known, the field inside the cylinders can be datexchby using Eq. (3.36).
Note that this formalism can be easily extended to the caseatferers of arbitrary
shape, the main difference being that in this case, theestajtmatricesS; are no
longer diagonal [14].

3.3.3 Calculation of the Electromagnetic Fields at the Seoanl Har-
monic

The second step of the numerical method consists in thelatitmu of the electromag-
netic field at the SH. To this end, the source of the field at the@mely, the non-linear
polarisation induced by the field at the FF, must be deterdthifike two contributions
to the non-linear polarisation are given by Eqgs. (2.65) &@7) for the surface and
bulk contributions, respectively. Equations (2.66) shiwat tthe surface contribution
exists only in the case in which thig, and £ components are non-zero which here
corresponds to the TE polarisation. As a result, in whaofedl, only this case will be
considered.

In the particular case of a cylinder, Egs. (2.69), descghie non-linear boundary
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conditions at the metal-dielectric interface, can be réemias:

HM™(Q) — H™(Q) = iQP;s,, (3.40a)
_Dlnt Q _ _Dext Q — s,T P 340b
CDPR) = D) =~ (3.40b)

where the TE polarisation was assumed. Note that due to #sepce of the non-linear
polarisation sheet at the surface of the metal the non#iheandary conditions are
different from the linear ones, which are given by the EqQS3%3

Similar to the linear scattering problem, the total SH fielcagpoint P can be
viewed as consisting of two distinct components: a sourdd, figs"( P, 2), which
reaches the poin®P without being scattered by any of the cylinders, and theteieat
field, H:°( P, Q2), which arrives aP° after it was scattered by at least one of the cylinders:

H*N(P,Q) = H(P,Q) + HX(P, Q). (3.41)
The source field satisfies the Helmholtz equation:
VZHT(r; Q) + £2(Q)H(r, Q) = —iQV x Py) - e, (3.42)

wheree, is the unit vector along the-axis andP,,, = P, + P, is the total non-linear
polarisation. Since the source polarisatldg is known once the electric field at the FF
is determined, this source field can easily be calculatedsiguthe Green function of
the Helmholtz equation in 2055, (1) = —(i/4) HS? (r):

0
H>(P,Q) = —ZHS”(WP) ®[(V x Py) - e.]. (3.43)

In this equation the symbab represents the convolution operator, which is defined as
f®g=[f(r—1)g(r)dr'. Because of the particular characteristics of the surface
and bulk polarisations, Eq. (3.43) represents the sum leetwadine integral over the
boundaries of all cylinders and a surface integral over thhansverse cross sections.
Moreover, the field 5™ (P, ©2) consists of a linear superposition of fielés™ (P, €2),
each such field being generated by the corresponding cylifiddnserting in the Eq.
(3.43), the Graf formula [13] for the Bessel functiﬂf)(r),

HP (slrp — ) = Y €™ T (k1))

m=—00

x HO) (kyrl,)e™er (3.44)

one can easily show that the Fourier-Bessel expansion dfetaer/;s( P, (2), around
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the cylinderC}, can be written as:

HES(P) = 3" aqumiHY (korp)e™ P, (3.45)
where, 0
i == [ I (Vg P ediel. (340

J
In this relation, the domain of integratidh is either the boundary of the cylinder;,
in the case of the surface polarisation, or its transverssscsection, when the bulk
polarisation is integrated. Similar to the analysis of tb&ttering process at the FF, the
scattered field at the SH can be written as [see also the E§)[3.

H(P,Q) Z Z by H (k) ™% (3.47)
j=1 m=—o0
whereb,, ,,; are the scattering coefficients at the SH. Combining Eqé5§3and (3.47)
leads to the formula for the total field (P, 2):

N o] )
HP,Q) =" > (agmj + bam) HY (kyr})e™ ", (3.48)

7j=1 m=—o0

where the two series containing thg ,,; and by ,,; coefficients correspond to the
source and scattered fields, respectively. By insertindnim eéquation the Graf for-

mula (3.28), the total field outside the cylind€y, at a pointP, can be written in the

following form:

H%(P,Q) = Z (aqm; + mej)Hg)(,ﬁbT?‘D)eim%

m=—0oQ

+ Z Z kg (Q0.qk + o qk)Jm(/be%)€im¢§°, (3.49)

k=1 Mg=—00

k#j

where the index signifies thatFif!°*( P, ) is calculated in the coordinate system with
the origin inO;. This equation shows that the total field consists of the satwéden
the field generated and scattered by the cylifdgfthe first term in the Eq. (3.49)] and
the total field incident onto this cylinder [the second temthe Eq. (3.49)]. This latter
field, in turn, is given by the sum between the fields generayell the other cylinders
and the fields scattered by these cylinders.

The total field can also be decomposed in an alternative waayety, it can be
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written as the sum of a source field generated by the cyliogef7:' (P, ), a local
field, H;?;(P, 2), which is the field incident ont¢’;, and the corresponding scattered
field, /3% (P, (2). Furthermore, the source field must satisfy the non-lineambary
conditions (3.40), whereas the field involved in the scattgprocess:

HI(P,Q) = HPS(P,Q) + H(P,Q), (3.50)

satisfies the linear boundary conditions correspondingedle polarisationi.e., EQs.
(3.35). It should be noted that if the non-linear bulk paation is given by the Eq.
(2.67) then the source term in the Helmholtz equation (XdBkels everywhere except
on the boundaries of the cylinders and therefore the fi#lif$ (P, ) and H'}(P, Q)
satisfy the homogeneous part of this equation.

Now, the source field can be expanded in Fourier-Besselksasie

HH(P,Q) = Y g Jm(ryrp)e™r, (3.51)
for r, < R; and
H:5(P.Q) Z g5 H (ke (3.52)

for r}; > R;. By imposing the non-linear boundary conditions (3.401){51'{: R;, one
obtains the following system of linear equations for thefficients ¢! = andggc!!

Q,mj Qmj*
e Im (5 R;) — gisn HE (ko R;) = QP (3.53a)
i’i‘ se "'fb se
chlfn] n(kiR;) — EnggiﬁwH(z (koR;) = Pr. (3.53b)

In these relations,

P%m = Psym, (3.54a)
1 aPsr,m + Pbgp,m ‘
&R 0p |i_p, €

™p

Pr,m:_

(3.54b)

are them-th order coefficients of the expansion in Fourier-Besseesef the corre-
sponding non-linear polarisation. Their exact expressgan be found in Appendix C.
The solution of the linear system (3.53), which completadyedmines the source field
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H: (P, ), is found as:

HD (kyR;) P + ZoHY (ky R))QOP, 1,
?)elrfnj =1 : bB:2> — Ez SO ’ (3.553)
’ ZbJ (kR HY (kyR;) — Z;H (ko R;)J! (1 R;)
it I (6;R) Py + Z;J (FLJR )P, | (3.55b)

ZyJu(k; R)VHSY (kyR;) — Z; HE (kyR))J!, (K R;)

whereZ; = (u;/¢;)"/%. Note that these coefficients can be easily calculated dree t
field at the FF is determined.

Based on Eq. (3.50), the fiel." (P, 2) can be written as:

Hi"(P, ) Z cin T (ke )emer, (3.56)

Q mj
m=—00

for v}, < R; and:

th P Q Z loc J Hbrp)eimapgg

m=—0oQ

+ Z G5 g HP ()7, (3.57)

m=—0oQ

forrl, > R;.
Now, by combining Egs. (3.52) and (3.57) one can cast théfietd 1% (P, 2)
outside the cylindef’; in the following form:

HtOt(PQ Z fgl)ofnf] (K“bTP) ZmSDP

+ > (g G HE (ryr )™ (3.58)

By introducing the vectorsy; = {aom;}, ba; = {bam;}, 855 = {98}

g&; = {98 m;}» andfo; = {f55,;}, then, comparing Egs. (3.49) and (3.58), one can

Q.myj
see that these vectors satisfy the following relations:

ao,; +ba; = g4 + 85, (3.59a)
N
Z Tjr(agr + bax) = fo;. (3.59b)
k=1
ki

Furthermore, the scattered and the incident (local) fieldgelatedvia the scattering
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matrix S, ;,
g0 ; = Safa, (3.60)

where the indeX2 means that the scattering matrix is evaluated at the frexyuafthe
SH, Q) = 2w. From this equation and Egs. (3.59) one can derive the oelati

N
> Sa,Tjk(aos + bax) = (ag, + bay) — g5, (3.61)
k=1
k#j
which holdsforj = 1,..., N. This linear system of matrix equations can be writtenin a

more compact form using the vectoks, = {aq ;}, Bo = {bg;}, andGg" = {g&"}.
With these notations, Eq. (3.61) becomes:

SaBa = Ga, (3.62)

whereSq, is given by Eg. (3.33), with all matrix components evaluatthe frequency
2, and
Gq = —SqAq + G (3.63)

The vector coefficientd g and GE! are completely determined once the field at the
FF is calculated. As a result, the scattering vector coefitsiB, can be found by
solving the system (3.62), and subsequently the field atrat pboutside the cylinders

is determined from Eq. (3.48).

Finally, it can be seen from Egs. (3.51) and (3.56) that thal feeld inside the
cylinderC} is given by:
HZ’;(P, Q) = Z (c?ff,w + cg?mj)Jm(ﬁjrfg)eim%. (3.64)
As in the case of the linear scattering problem, the coeffsi€}’, ; are calculated by
imposing on the field{?,‘;(P, ) the linear boundary conditions (3.35).

3.3.4 Calculation of the Scattering Cross Sections

The MSM formalism allows one to determine not only the spatistribution of the
electromagnetic field but also a series of important physggantities, such as the total
cross section, the absorption cross section, and the Sogtteoss section. Whereas the
field distribution provides essential information regagithe properties of the optical
near field, the scattering cross sections characterizertioegs of energy transfer from
the incident wave into the far field. The total scatteringssreection(),(w), for the
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field at the FF is defined as:

27
Qulw) = ) _ / 4o(3 ), (3.65)

where P and P'*® are the total scattered power per unit length and the powarpe
length of the incident wave, respectively, andy; w) is the differential cross section.

In order to calculate the total scattered power considerliadsr of radiusR,
which contains all the scatterers. Then, the total poweheftattered field that flows
through the boundary of this cylinder can be computed andexuently the limit
R — oo. This procedure is expressed mathematically as follows:

2w 1
Pe(w) = lim [R [ e (B x HSC*)Tdap] (3.66)

Using the asymptotic expressionsiats oo, of the Hankel functiongz,? () and their
derivatives, leads to:

2m
pre() = 1 /O

2
TRy,

2
W
dp = 2’% 3 [l (3.67)
b

m

o
g Em eme

m=—0oQ

whereb,, are the scattering coefficients in the coordinate systetm thii origin inO.
Using the Graf addition formula (3.28), these coefficiemts be written as:

N o)
b =Y D b€ (k). (3.68)

7=0 n=—00

Furthermore, the power per unit length of the incident plaaee is given by:

: 1
pire = 5st,|E0\2, (3.69)
where R, is the radius of the smallest cylinder that would contain ¢nére set of

scatterers andis the phase-velocity of the incident plane wave.

Note that since the amplitude of the scattered field dependarly on the am-
plitude E, of the incident plane wave, the total and the differentiatsing cross
sections do not depend dny. In order to have this condition satisfied at the SH, too,
the scattering cross sectionsatan be defined as:

on w Z:——oo |Bm|2
Q=B _ / 4u( i3 Q)dip — 211 Zom=
0

. (3.70)
Ki |LR,vep| Eol?|”

Here,qs(p; Q) is the second harmonic differential cross section. Thetesgag) power
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in the case of the non-linear fiel&:“(<2), can also be calculated using Eq. (3.67) with
() = 2w and the scattering coefficients, corresponding to the SH scattering case. A
detailed description of how these formulae can be obtaimgd/en in Appendix D.

3.3.5 Calculation of the Absorption Cross Section

The scattering cross section characterizes the strengtiedhteraction between in-
coming plane waves and the objects that scatter these wavether physical quantity
that provides insightful information about the scattefqimgcess is the absorption cross
section. In particular, the absorption cross section giiesmthe rate at which the scat-
tering system absorbs energy from the incident wave, andcdhsiscan be instrumental
in characterizing the strength of the coupling between #a field and the system of
scatterers. At the FF, the absorption cross section canteentieed by separating the
total power flow out of the scattering regiaft°*, which sometimes is also referred to
as theextinctionpower, into the absorbed and scattered power,

Ptot — Pabs + PSC‘ (371)

In this equation*" is defined as:

R—o00

27
P"(w) = lim {R / %Re (E** x Hwt*)rdgp] . (3.72)
0

Taking into account thaE'*t = E*¢ + E¢ andH™** = H™ + H*, Eq. (3.72), in
conjunction with Eq. (3.66), leads to the following expiesdor the total power [8]:

2T 1 . )
P%™" = — lim [R/ iRe (E;CH;HC + E;“CHEC*) dgp} . (3.73)
0

R—o00

Using again the asymptotic forms for the Bessel and Hankedtfans, the total power
can be expressed as:

2 =~ -
prot — ,;;bZC: Z |by | cOS <arg b, + % + m@o)- (3.74)
b m=—00

This total power is used to define the total (or extinctiomssrsection:

L PRYw) 2w S |Em| cos <arg by, + o+ mgpo>

= : = g
Finally, by using Eqg. (3.71), the absorption cross sectsmimply given by:
Qa(w) = Q¢(w) — Qs(w). (3.76)
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Similarly, the absorption cross section can also be defised a

B PP (w)

Qulw) = - (3.77)

It should be noted that when the scatterers exhibit no abisarpe. wheny = 0,
the absorption cross section vanishes, in which case Ef6)(8epresents the well
known optical theorem. A detailed approach to these cdions can be found in Ap-
pendix D.

At the SH, as there is no incoming field, the power loss perlenith, is deter-
mined by integrating over the transverse cross sectior ofihders the Joule thermal
power loss Pabs = %%e(J - E*), with J = ¢,E being the conduction current density
ando; the conductivity of the cylindef; [for the Drude modely = (eqw?) /(v —iw)].

3.4 Description of the Time Domain Linear and Non-
linear Wave Scattering by Ensembles of Cylinders

The MSM formalism is an efficient and versatile method forvsw the linear and
non-linear scattering problem for arbitrary distribusoof cylinders. Nevertheless, it
is limited to the frequency domain in that it can only provitie solution to the scat-
tering problem for a monochromatic wave excitation. Thiplies that more general
light-matter interactions, namely, interaction with artio@l pulse, can not be directly
described by the MSM. To overcome this limitation, we havieerded the MSM for-
malism to the time domain [15].

To better understand the approach we have used, considEpthier transform
between the field in the time and frequency domains:

H(w) = /_+°° h(t)e™'dt, (3.78)

o0

for the direct Fourier transform and

T o

1 e —iwt
h(t) e i, (3.79)

—00

for the inverse Fourier transform. Hef&(w) andh(t) are the fields in the frequency
and time domain, respectively. In the case of our scattgshoplem, a time varying
electromagnetic field (¢) can be written as:

U(t) = F(t)etor+et), (3.80)
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where, according to Eq. (3.79%;(¢) is of the form:

T o

1 teo ,
Flt) / Flw)e ! du. (3.81)
For example, for a temporal Gaussian pulse with maximum énde £,, temporal
durationTj, full-width at half-maximumTryw 5y = V210275, which has its peak
amplitude spatially centred in= 0 att = 0, F(w) can be expressed as:

Up(w) = EO/ e e~ “tdt = Fye 276 ™7, (3.82)

whereW, = 1/T, defines the full-width at half-maximum in the frequency dama
WFWHM =V 21n 2W0
A plane wave at a fixed frequenayof amplitudel,(w) will be given by:

Ulw) = Up(w)et=kr, (3.83)

Equation (3.83) can be expanded in a Fourier Bessel segesdtieg to Eq. (3.1). This
expansion can be written:

m=-+4o0
Ulw,r, ) = Uy(w) Z a J(kr)e™?. (3.84)

m=—0Q

Equation (3.84) summarises how the MSM algorithm can benebe@ to include
the time domain. The values bf(w) can be foundiia a Fourier transform of the input
pulse. By using the MSM approach to solve the scatteringlpnotior each monochro-
matic wave of the form (3.84), the field distributions for ke&wurier frequency can be
found. Calculating the time domain evolution of the totdkfiean then be simply done
by computing the inverse Fourier transform of the field inflleguency domain.

One final point to note is that, due to the finite nature of tisemite Fourier trans-
form used in the computer implementation of this algorittam,important parameter
to be considered is the number of sampling poifts, in the calculations, that is, the
number of frequency components one has to consider. At the 8me, the input pulse
needs to be limited to a time interval which is typically given ag” = aT;, wherea
is the padding factor.

3.5 Conclusions

In conclusion, this chapter has introduced a new numeriesthad, based on the MSM
algorithm, for studying the linear and non-linear scatigreffects in a metamaterial
made of centrosymmetric nanowires (cylinders). In thisrapph, both the surface and
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bulk contributions to the non-linear polarisation haverbeensidered. This chapter
has also presented how a series of physical quantities,agite total cross section,
the scattering cross section, the absorption cross seatithe differential scattering
cross section, can be calculated and used to characteezeatve scattering process.
The MSM formalism introduced here proves to be a robust angepfal method for
analyzing the linear and non-linear wave scattering, wdtilhe same time providing a
high degree of versatility in choosing the scattering getoie®that can be investigated.
At the same time, we have described how the MSM formalism eaaxbended to allow
for time-domain numerical simulations.

While this chapter has covered the mathematical formalisaa in our analysis of
non-linear effects in plasmonic systems, the next chapiledeal with its implemen-
tation as part of the OPTIMET, aab-initio solver, developed as part of the project.
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Chapter 4

OPTIMET: Implementation of the
Multiple Scattering Matrix Solver

4.1 Introduction

OPTIMET (OPTIcal METamaterials) is a highly parallel custonplementation of the
non-linear MSM algorithm, developed in C++ [1]. Current@PTIMET can support
geometries of parallel cylinders of arbitrary distribuitjsize and material properties
using Drude, Lorentz-Drude, or more general models for natgroperties, as well as
magnetic materials. OPTIMET allows for continuous-wawgimes simulations, using
either plane waves or Fourier-Bessel waves, as well as tehpalses using the fully
integrated time domain solver. Output options include$phtial field profiles for both
the linear and non-linear (second harmonic) fields, lineat @on-linear scattering,
absorption and extinction cross sections, and time-degerfield evolution. In this
chapter, an overview will be given of both the logical anchtd@cal implementation of
OPTIMET, as well as its various capabilities. Benchmarkthefparallel efficiency of
the code will also be given.

4.2 Logical Implementation of OPTIMET

In this section, the logical structure of OPTIMET will be disssed. To this end, the
workflow of the three types of simulations that OPTIMET camfqen will be pre-
sented together with their respective input and outpubogti The different steps taken
by the numerical solver will also be related to the mathecahformalism. Finally, the
numerical parameters used by OPTIMET will also be presemteltheir influence on
numerical stability discussed.

4.2.1 Input Options and Simulation Types

OPTIMET uses a simple and intuitive text-based input systensisting of an easy
to edit ASCII file referred to in what follows as tlease file and an automatically
generated, nput file which is fed directly to the solver. This two-step progsessures



| Name of variable Role | C++Type
geometry geometry type int
polarisation TE or TM polarisation int

simulationparams

simulation type and paramete
(based on type)

rsnt *int |[*double

background including dielectri
constant and magnetic constant

wavetype choose between plane wave or varint
ious non-zero components of |a
Fourier-Bessel expansion

waveparams parameters of the incoming wayedouble
including incidence angles and
wavelength

bgroundparams electromagnetic properties of thedouble

C

one or both axis (not required fc
some geometries)

fourier_order number of Fourier-Bessel compgoint
nents to be included in the simula-
tion

geometrysize specify the number of scatterers oriint

r

geometryparams

geometrical parameters of the sc
terers (varies between different g
ometry types)

atdouble
e_

materialparams

Drude model parameters for met
cylinders or dielectric constants fg
dielectric cylinders

atdouble*double
Dr

lorentzparams

parameters for intra-band contrib
tions to the Drude model (can be s
to zero for pure Drude models)

u*double
et

sh susceptibility

second order non-linear susceptih
ities (only non-zero components r

itdouble

0-
~

quired)

Table 4.1: Input variables used by OPTIMET.

that most simulations of often used geometries can be eaglgmented by providing
only the basic geometrical and numerical parameters neddhed nput file, which
contains the full specifications of the geometry and sinnutaican then be created by
OPTIMET’s input functions using thease file. When more control is required, the
input system allows for direct modification of th@put file.
Thecase file contains several parameters that define both the sironlgfpe and
output as well as the geometry of the structure being inyatdd. Based on the type of

simulation and geometry required, the case file containsi@ssef variables. Table 4.1
lists the main variables that can be set using an OPTIME&Se file.

OPTIMET supports several predefined geometries includingingle cylinder,
pairs of cylinders (dimers), 1D nanowire arrays, rectaagie triangle shaped distribu-
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tions, regular polygonal distributions up to octagonshwit without a central cylindri-
cal inclusion, elliptical hexagonal and octagonal disttibns and random distributions
of scatterers. A special type of “geometry” is the predefinaegut file type. When
geometrytypeis set to predefined, the input system bypasses the geoalgtaiam-
eters of the case file and reads the geometry directly fromnimet file. The input
file contains an ordered list of all the scatterers in the getoyrwith their respective
geometrical and material parameters. This allows for theuabcustomisation of the
simulation when the predefined geometries are not sufficient

OPTIMET has three distinct types of simulationstams, which can be employed.
In the basic case, a single geometry is illuminated by a singbnochromatic wave
and the scattering problem needs to be solved only once tyjpgsof simulations are
commonly used to retrieve the field profiles of a specific gagomélere, only the
geometry and the wavelength of light are required as inpu&bkes, while simulation
parameters can include the output quantities needed (suéblds, linear and non-
linear cross sections or differential cross-sections).

In the second type of simulation, one or more variables indineulation are
“scanned”. More specifically, this implies that one or moeggmeters of the simu-
lation are varied to find the response of the system,in several configurations and
at several wavelengths. Consequently, the varied parasngteaally include the wave-
length of the incoming field, one of the geometrical paramsedé the structure and/or
the incoming angle of incidence. These simulations areemety useful for finding
scattering and absorption spectra as well as geometrispédiion graphs, while not
being as computationally intensive as, for example, findivggfield profiles at each
single step. In terms of input, this type of simulation regsithat the varied parameters
be specified with their initial value, final value and the n@mbf steps over which they
will be iterated. The current version of OPTIMET only supigoa maximum of two
variables to be scanned over at the same time. Support fager laumber of scanning
parameters can be easily implemented externally usingstredting.

The third and final type of simulation supported in OPTIMETHhs time domain
regime. As will be explained in the next section, computadity, this type of run is
similar to a wavelength scan. From the point of view of theecfile, a time domain
run requires that the initial temporal pulse be specifiegéims of FWHM and central
frequency, as well as the number of Fourier componehtg that will be used to
Fourier transform the pulse in the frequency domain. Thisiber is important also
because the time domain run always outputs the field profilesach step and'y
will in the end determine the size of the final output files whifor a very fine spatial
computational grid, can become large in terms of storagghétsame time, a large
enough padding factar must be chosen to ensure that the pulse has decayed to near
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zero ast approached’/2 and—T'/2, respectively. There is also an important interplay
between the number of sampling points, the sizZ€ ahd the time and frequency steps.
For the discrete Fourier transform, the time steptis= 7'/ Fyy, while the frequency
step is given byw = 27 Fy/T. 6w must be small enough to ensure that resonances
with very small spectral width are resolved, yet this implgelargel’. To ensure that
even for a largd’, the actual pulse widtl, is small enough to cover a broad frequency
spectrum, the padding factarneeds to be large enough. Finally, this implies that the
number of sampling pointsy must be sufficient to cover thg interval but not so large
as to require a vast amount of computational power. Thehaisd delicate balance that
must be maintained between this factors, which must takeaiotount the application
in question and the available resources.

Finally, the input system checks the automatically or ménggnerated nput
file for consistency. This includes making sure that all mekdariables are defined
and that the scatterers do not intersect each other, whicbtiallowed by the MSM
formalism. This final check can be toggled off by a flag in thpunfile for testing
purposes. If the input file passes this final check, it is sgrthb input system to the
numerical solver.

4.2.2 The Numerical Engine Solver

OPTIMET’s numerical solver is responsible for implemerts MSM algorithm to
solve the linear and non-linear scattering problems witihénphysical and geometrical
parameters provided by the input system. As such, it closdligws the mathemati-
cal formalism presented in Chapter 3. Once the solutiongoargd, the solver passes
them to the output system. Figure 4.1 summarises the impietien of OPTIMET,
including the input system, the solver and the output system

Because of the nature of the MSM method, the numerical dlgarlends itself
to a very efficient, parallel implementation, as many of thlgancomputational steps
are independent of each other. The main steps in the sionlate as follows. First,
the scattering matriceS,;, of single cylinders are calculated and subsequently thie sc
tering matrix at the FF3,,, is determined using Eq. (3.33). The scattering coeffisient
at the FF are then found by solving the linear system given dpy(E34). These co-
efficients are used to determine the fields at thevidHEQ. (3.25) on the boundary of
the cylinders, which are then used to compute by means of E8H) and Eq. (2.67)
the total nonlinear polarization at the SH. Note that in ¢healculations all the com-
ponents of the nonlinear surface susceptibility tensouaesl (not only the dominant
one,;gflu) whereas for the bulk nonlinear polarization the free etectmodel given
by Egs. (2.68) is used.

Furthermore, once one knows the total nonlinear poladmadit the SH one can
determine the source coefficientsy,, and the vectoGE!, and, implicitly, the vector
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Fig. 4.1: OPTIMET work flow. Numbers in parentheses referqoations used to compute the
corresponding quantity.

103



Ggq. Then, the scattering coefficients at the SH are determired Eq. (3.62). If the
total, absorption and scattering cross sections are regfiesthe case file, these are
calculated before the fields are, at both the FF and the SHifigjadly, at the FF, these
cross sections are given by Egs. (3.75), (3.77) and (3.65pgectively. At the SH, only
the scattering cross section has an analytical formula in(EFO. In order to find
the total and absorption cross section at the SH, the totdé Josses are integrated
numerically over the total transverse area of the cylind&lighe final values are then
sent to the output system for storage until final output.

As discussed in the previous section, OPTIMET supportethrain types of sim-
ulations. The most basic type involves a single run whichreameve either the cross
sections, the differential cross section, the spatial fpetafile, or, more commonly, a
combination of the three. In this case, only one single ruthefsolver is required be-
fore the final output. In the second case, a scan of severakofdriables is needed. In
this case, the results of a single run are passed to the aygpiem for storage and the
variables over which the scan occurs are iterated to theirvaues. The solver now
finds the solutions to the new scattering problem going tiinoilne same process as
before. Once all requested iterations are completed, thauion moves on to the final
output. For a time domain run, a similar process occurs libtily iterated variable
is the wavelength. Specifically, an incoming Gaussian psiseified at the input is
Fourier transformed from the timed domain to the frequermyain. Each frequency
will now have an associated incoming field amplitude and @ahstitute a single scat-
tering case with an incoming monochromatic beam. The soteeates through all
these single frequency simulations, passing the requaalfdr each step to the output
system where the fields will be calculated for each frequamcysubsequently inverse
Fourier transformed into the time domain.

There is a series of numerical parameters that need to berdeés so as to ob-
tain convergence of the numerical process. The most impodfathese parameters
is the numberM of Bessel and Hankel functions used in the Fourier-Besgahrex
sions. Due to the technical limitations imposed by the 64dbta storage, the order,
m, of the Bessel functions is limited t®20, leading to a maximum ol/ = 241 ex-
pansion terms. Nevertheless, numerical tests have shatnfoi example, for a one
cylinder (R = 500 nm) geometry case, convergence can be achieved by employing
M = 41 expansion terms. On the other hand, for the most complexeo$thttering
geometries studied here convergence is reachéd at 91. The second limitation
has to do with the algorithm that computes the Bessel and éldukctions. Because
the parameter passed to these function is proportiornattavherek is the wave vec-
tor andr a spatial dimension, instabilities can occur if this pradsceither to small
(the case of small geometries and/or large wavelengthgrgriarge (large geometries
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and/or small wavelengths). Fortunately, while these htioins do exist, they are not an
impediment to study numerically nano- or micrometre-siggdctures in the visible,
near-infrared and infrared domains, which is the main psepaf OPTIMET. Other
parameters required for the implementation of the MSM metire related to the nu-
merical integrations needed to determine the nonlineaceawoefficientsA o, and the
absorption cross section. Thus, the numerical integratigrerformed by uniformly
dividing the[0, 27| domain into360 intervals and thé0, R;| domains inta20 intervals.
Integration is performed using a fourth-order Simpson idanFinally, the number of
Fourier sampling pointg’y u can be set at the input phase and is typically= 8192.

4.2.3 The Output System

The final component of OPTIMET is the output system. This nk@detrieves the scat-
tering problem solutions from the solver and writes the nexgldata to external storage.
The output system uses only ASCII files as this allows easgtes between OPTIMET
and several post processing tools, such as MATLAB, Mathiemat Python. The type
of output depends again on the type of simulation and thepetexrs set by the user at
the input phase.

For a single geometry, single wavelength, run the outpusiste of writing the
linear and non-linear cross sections (already calculagethé solver) as well as the
differential cross-sections (if required) to a set of outfiles. In most cases, a single
run also requires that a spatial field profile be produced.tlfisr the output system
reads a separate “grid” file containing details about themaational grid on which the
field is to be calculated. Currently, OPTIMET supports orilyrggular grids, however,
independent grid limits and steps can be specified along sgatial direction. It is
worth noting here that this grid is simply a visualisatiowltdOnce the grid is read,
with the linear and non-linear scattering coefficientsadsecalculated by the solver,
finding a field profile outside the cylinders consists simplyusing Egs. (3.25) and
(3.48) for the FF and SH fields, respectively. Inside thendgrs, the fields can be
found using Egs. (3.36) and (3.56). The final field profilesthem stored using a series
of individual files. For increased versatility, these fileparate the real and imaginary
components of each of the three electromagnetic field coemerat both the FF and
SH. This is done so that all the information contained thal§ielan be extracted in
the post-processing phase, including phase informatidrpafarisation. If needed, the
actual scattering coefficients at both the FF and SH can #&dseds This is useful for
investigating cases in which the coefficients have no symyngach as, for example,
the case of plasmonic cavity modes with angular momentum.

As expected, for the two other types of simulations, the wugystem does not
differ significantly from the single run case. If a variabt@s is requested, the output
system is called at each iteration to output the needed @laigais to ensure that data
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which is irrelevant to the solver (such as the solution foumthe previous iterations)
does not occupy memory. The output system can write thes#igesther to separate
files or, commonly done for cross-section spectra and dsgpas, to a single file which
is appended at each step with the new data. The time domanisasgnilar, but an
extra step is needed in this type of simulation. The fieldstarh wavelength step are
calculated on the grid and then stored in memory (usuallyidiged across a series of
computational nodes when parallel processing is used)alhtine /'y steps have been
completed. The output system then inverse Fourier tramsfane fields, which are in
the frequency domain, back to the time domain and writesdbelts in either a single
master file or in a series of files for each step. At this poim¢, tiser can determine
whether or not the frequency domain data is also requirethich case it will be
written to external storage.

The final step in the OPTIMET work flow consists in post-praiteg the data
calculated by the algorithm. This can be done in a seriesmifmical analysis packages
and is left to the discretion of the user. For the purposehisfwork, post-processing
was done using the Mathworks MATLAB software package [2].

4.3 Software Implementation of OPTIMET

OPTIMET was developed using the C++ programming languagedasigned to al-
low for a modular build and portability across various cotgpuarchitectures. OPTI-
MET makes use of a series of performance enhancing numéhcaties for its core
numerical engine. As such, all vector and matrix algebraoisedusing the parallel
implementations of BLAS and LAPACK packages, which are pathe IntefRMath
Kernel Library (MKL) [3]. MKL also provides the means for dict and inverse dis-
crete Fourier transforms using the FFTW library. The cha@t®IKL was a result of
the target architecture for which OPTIMET was planned as giathis project. Nev-
ertheless, the solver module can be easily linked with tbelyravailable, open source
implementations of the three numerical packages. All threesponding libraries are
dynamically linked to the solver. To compute the Bessel aadkel functions of com-
plex arguments, the Amos Algorithm 644 is used [4]. A versibrthis algorithm is
freely available in the netlib repository [5]. OPTIMET domast link to Algorithm 644
but instead contains a fully working, FORTRAN to C tranglatiof the netlib files,
which are compiled and statically linked into the solver.

OPTIMET was designed and built on the Legion High Perfornealuster of the
University College of London. Legion consists of 5680 pisirg cores based on the
Intel®Xeon architecture. Each core has exclusive access to ithe¥ GB of memory
and all cores can write to a 192 TB, RAID level 6 storage aremhvhses the Lustre
Cluster File System. Parallelisation is achieved usingihegic MPIl implementation
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Fig. 4.2: OPTIMET parallel execution times versus the nundfecores used. The test simu-
lation consists of a time domain simulation wity, = 16384 Fourier sampling points for a
single cylinder with output of a single field point.

of the MPI-1 standard, however, OPTIMET can be linked to a3l Nbrary, including
OpenMPI. To optimise the final executable for this specifichdecture, OPTIMET
was compiled using the Intg)C++ Compiler, version 11.

As discussed in Sec. 4.2, the MSM algorithm lends itself fiieht parallel im-
plementation, as many of the numerical processes involvednaependent of each
another. In the current version of OPTIMET, parallelismsed only for scan runs and
time domain runs. Specifically, a subset of the solver ii@natover the scan variables,
or the wavelength in the case of time domain simulationssssgamed to a core and ex-
ecuted independently of the other cores. The size of theesdiepends on the number
of iterations required as well as the number of cores reqde3he parallel portions of
the OPTIMET work flow are shown in Fig. 4.1 using dashed arrGwg output system
is parallelised for the initial output of the data from eaohecbut executes the final data
processing and output in the head node in a serial fashion.

Figure 4.2 shows the parallel performance of OPTIMET fomapde time domain
simulation. As expected with parallel code, as the numbewooés increases, the ex-
ecution time decreases asymptotically to a certain fixedevdle to the fact that the
execution time on each core becomes much smaller than tlabdlaainitialisation and
intra-core communication times. The exact number of cavesvhich this plateau is
reached depends of course on the number of iterations eefjiar the simulation. It
is worth noting here that further parallelisation can bei@ad in the solver for the
one wavelength, one geometry case itself using either MRhaDpenMP implemen-
tation. This parallelisation, however, does not provideaificant improvement to the
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execution times.

Finally, the OPTIMET code was designed to be easily docuettnwith each
function and variable being described in the context of thdecand allowing for easy
porting to an automated code documentation system suchyaggBo. Compilation of
the code is done using a system of GNU makefiles, which indlugl@ossibility of test
cases and convergence checks for predefined geometriesg@eg was done using
both the GNU Debuggeg@b) and the Data Display Debugger (DDT) running in MPI
mode. Debugging is also aided by OPTIMET’s runtime outpstesy, which consists
of writing the runtime status tet dout , andst der r in case of non-halt errors.

4.4 Conclusions

To conclude, in this chapter, a logical and technical dpton of the OPTIMET soft-
ware package was provided. OPTIMET was specifically builtrtplement the MSM
method described in Chapter 3. To the best of our knowlethigeid the only available
implementation of the MSM algorithm that includes bulk andace second harmonic
generation from metals. OPTIMET was designed in a bottorapgroach so as to be
modular, portable, easy to implement in parallel fashioth @asy to use.

At the time of writing, OPTIMET has been successfully usesttaly several types
of non-linear plasmonic geometries and their applicati®@pecifically, OPTIMET has
been used to show enhanced linear and non-linear plasmuei@ctions in regular
and random structures made of metallic nanowires [1]. T® ¢hd, it was shown that
these structures exhibit strong field enhancement, supfasenon coupling, tight beam
focusing, plasmon wave guiding and strong light localmatirhe time domain capabil-
ities of OPTIMET was used to show that non-linear plasmorities/have high quality
factors and can become crucial to the developement of sublaregth lasers [6, 7].
Non-linear plasmonic cavities were also investigated g€MPTIMET to show their
potential use as sub-wavelength sensors [8]. Finally, ®FEI was also employed to
study plasmonic cavity modes which possess angular mommeiiithe next few chap-
ters, the use of OPTIMET to study these and other problenibevdetailed, which will
further outline its versatility and usefulness in numdrstadies of non-linear metama-
terials and devices.
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Chapter 5

Linear and Non-linear Scattering of
Electromagnetic Waves from
Two-dimensional Distributions of
Metallic Cylinders

5.1 Introduction

In this chapter, the numerical method described in Chaptel Be used to investigate
the linear and non-linear wave scattering from a set of h@negus centrosymmetric
(metallic) cylinders. Several cases of particular pradtioterest will be considered
from the point of view of the linear and non-linear field distition and near- and
far- field response. The analysis will also focus on the &ffe€ structural changes to
the properties of the structures, so as to highlight the Higree of tuneability of the
designs and the versatility of the MSM method [1].

The cases that will be discussed here include scatteringneywhere a compar-
ison with analytical results is possible) and two cylindein{er) structures, and 1D
chains of cylinders which will be shown to support plasmonegaiiding. The case of
wave scattering by 2D distributions of cylinders will alsodonsidered. Here, it will be
shown how beam focusing and high field enhancement can bevachin triangle- and
square-like structures. Finally, the problem of secondnioaic generation in random
distributions of nanowires will be presented.

5.2 Second Harmonic Generation from a Single Metal-
lic Cylinder

To begin with, consider the linear and non-linear wave scaif by a single metallic
cylinder whose dielectric function is given by the Drude rabdhis is an important
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Fig. 5.1: The top two panels show the logarithmic plot of tb&lt scattering cross sections
corresponding to a single cylinder with radiug = 500 nm. The panels in the middle show
the spatial distribution of the electric field amplitude calated atA = 570 nm and corre-
spond to the dashed vertical lines in the top two panels. T®Im panels present the polar
representation of the differential scattering cross sawdi calculated at the same wavelength
A = 570 nm. Left and right panels correspond to the FF and SH, respelstiv

case because it has an analytical solution [2], which alldwsvalidation of the nu-
merical method. We have therefore considered the waveesicaitby a cylinder with
radiusk = 500 nm and calculated the scattering cross section, at both thed#&tahe
SH. As mentioned in Chapter 2, owing to the symmetries ofxﬂ%étensor, only the
TE polarisation leads to surface second harmonic genaratid, therefore, only this
polarisation will be considered here and in subsequenttelgprhe results of these
calculations, which are presented in Fig. 5.1, show thastattering cross section at
the FF has a global maximum at the wavelengtkr 300 nm, whereas the scattering
cross section at the SH decreases with the wavelength. ihaddt can be seen that
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the scattering cross sections at the FF and SH present a eéspectral peaks. Note
that at the FF there is only one set of such spectral resosahowever, at the SH
there are two spectral regions in which the scattering csesson presents a series of
spectral peaks. As it will be explained in more detail latieg, physical origin of these
two sets of spectral peaks at the SH can be traced to diffphsssical effects.

The properties of the maxima in Fig. 5.1 are revealed, in, pgrthe spatial dis-
tribution of the amplitude of the electric field, calculatadthe wavelength of these
spectral peaks. Thus, Fig. 5.1 shows that at 570 nm, which corresponds to one of
the maxima of),(2), the amplitude of the electric field around the cylinderhat$H,
presents a series of local maxima (see panel B in Fig. 5.13.i$hhe signature of the
excitation of localized surface plasmon modes [3]. Thes€el& modes of the metallic
cylinder, at their cut-off wavelength. To be more specifince the wave vector of the
incident wave is perpendicular to the axis of the cylindee, propagation constant of
the waveguide modes of the cylinder must be zeeq,it satisfies the cut-off condition.
Note that for this wavelength no SPPs are excited at the FF.

There is also an obvious relation between the spatial digtan of the near field
at the SH and the scattering pattern showed by the diffelesdattering cross section,
qs(p; Q). Thus, the polar representation@f; 2), shown in Fig. 5.1, reveals that the
SH is radiated primarily along a series of specific direciadhe number of these an-
gular maxima being equal to the number of maxima of the dpdis&ibution of the
near field. As a general characteristic of the scatterintepatt the SH, most of the
radiation is emitted in the forward direction. At the FF mafsthe radiation is primarily
emitted in the forward direction, too, although there angeesa other secondary direc-
tions in which a much smaller amount of radiation is emittéghould be noted that
these results obtained by numerical simulations fully agvih the analytical solution
of the linear and non-linear scattering problem, which espnted in Ref. [2].

The same scattering process is also considered for a cykvitte R = 200 nm.
The main results obtained in this case are summarized irbFAglt can be seen in this
figure that by decreasing the radius of the cylinder the nurob&PP modes of the
cylinder decreases and their resonance wavelength is biiteds Figure 5.2 also pro-
vides additional physical insight into the nature of the thfferent types of SPP reso-
nances excited at the SH. The origin of the first type of sudh i@Bonances, which are
excited al lower wavelengths (at= 257 nm in Fig. 5.2), is the SPP-induced field en-
hancement at the FF. Thus, as can be seen in Fig. 5.2, at tieéawgths corresponding
to these resonances the amplitude of the field at the FF i;ieatlanear the surface of
the cylinder and, as a consequence, the induced non-liffeatseare also stronger. On
the other hand, the SPP resonances at longer wavelengths-(d480 nm in Fig. 5.2),
are due to the excitation of SPPs at the SH, with no such lmhlnodes being excited
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Fig. 5.2: The top panels show the logarithmic spectra of tbattering cross sections. The
spatial profile of the amplitude of the electric field, cabeld at the wavelength = 257 nm

(A and B) and\ = 480 nm (C and D), are plotted in the bottom panels. The radius of the
cylinder isR = 200 nm. Left and right panels correspond to the FF and SH, respebtiv
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at the FF. Inasmuch as, mathematically, the SPP resonaregs/an by the poles of
the scattering matrix in the Eq. (3.37), the latter type sbreances should occur when
the operating wavelength is about twice as large as the wagti at which the for-
mer type of resonances occur. This conclusion fully agretrstire results presented in
Fig. 5.2. This distinction between the two types of SPP rasoas will appear in more
complex scattering geometries as well. Importantly, aerrtncrease in the strength of
the non-linear interaction can be achieved by tuning tharpaters of the cylinder, so
as the two types of resonances are excited at the same wgtrel&his effect has been
recently observed in the case of wave scattering by diétestlinders [4].

113



100 150 200

0.8

Fig. 5.3: The top two panels present the scattering crosiseat the FF (upper panel) and
the SH (lower panel) vs. the angle of incidence and wavdhegte radius of the cylinders is
R = 200 nm and the separation distance ds= 20 nm. The spatial profile of the amplitude
of the electric field, calculated &t = 237 nm and ¢y = 90° (A and B) and\ = 473 nm and
¢o = 0° (C and D), are plotted in the bottom panels. Left and rightglarcorrespond to the
FF and SH, respectively.

5.3 Linear and Non-Linear Wave Scattering by a
Metallic Dimer

In this section we analyse the wave scattering by a metafliordimer, which has

a series of important technological applications that mlythe enhancement of the
electric field at the surface of metals. Specifically, by gsimetallic nanodimers one
can generate large electric fields, especially in the spatveden the metallic cylinders
forming the dimer. As a result, because non-linear optiffaices at metal/dielectric

interfaces, such as SHG and SERS, are strongly dependehé giinysical properties

of the interface, metallic nanodimers can be used effigientsensing applications or
surface optical microscopy. Importantly, in the linearecti®ere is an analytical solution
to the problem of wave scattering by two cylinders [5]; hoesin the non-linear case
no analytic solution is known yet. Therefore, numericaldetions play an important

role in understanding the non-linear wave scattering bgdtand other more complex
nanostructures.
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Fig. 5.4: The same as in Fig. 5.3, but far= 100 nm. The field profiles correspond tb =
243 nm and ¢y = 90° (A and B) and\ = 475 nm and ¢y = 78° (C and D).

In our analysis, we have considered a dimer consisting otihnders with radius
R = 200 nm, separated by a distandeThe results of the numerical study are summa-
rized in Fig. 5.3 and Fig. 5.4, which correspond to the searalistancel = 20 nm
andd = 100 nm, respectively. The dispersion plots presented in thesesfsggghow that,
similar to the case of a single cylinder, the scatteringgestion of a metallic dimer
presents a series of spectral peaks (SPP bands), at both #relfhe SH. These bands
are located in the same spectral regions as in the case djla silinder, although the
wavelength of the peaks is slightly blue shifted. This sbifthe frequency of the SPP
resonances is induced by the interaction between the SRiRecewn each cylinder,
a physical effect that resembles the hybridization of atoonbitals. As expected, this
blue shift of the wavelength of the SPP resonances decraaske separation distance
d increases. The strength of the coupling between the SPPwddngle cylinders
is also illustrated by the field profiles presented in paneia Big. 5.3 and Fig. 5.4.
Thus, these field profiles are almost independent on the ahgheidencey, (the an-
gle made by the incident wave with the longitudinal axis & thmer), which proves
that this field is chiefly the result of near field interactiohlis same strong SPP cou-
pling explains the fact that the spectral location of the $BRds in Fig. 5.3 and Fig.
5.4 does not depend on the angle On the other hand, the scattering cross sections
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Fig. 5.5: Polar representation of the differential scattey cross section for a metallic dimer
with R = 200 nm andd = 20 nm. The plots correspond t& = 237 nm and ¢y = 90° (upper
panels); A = 437 nm and ¢y = 0° (middle panels); and = 266 nm and ¢g = 62° (bottom
panels). Left and right panels correspond to the FF and Skpeetively.

at both the FF and SH increase with the angle which is due to a more efficient
coupling between the incident wave and the dimer at latgeFurthermore, similar
to the case of a single cylinder, the SPP resonances at tharsblecdivided into two
types, those induced by the resonant excitation of SPP naidbe FF and those that
are associated with the excitation of SPP modes solely &ltheAdditional physical
insights into the properties of the wave scattering by a thetiimer are revealed by
the differential scattering cross sections presentedgn3-b and Fig. 5.6, the plots in
these figures corresponding to a separation distan¢e-020 nm andd = 100 nm, re-
spectively. As expected, when the direction of the incomvage vector coincides with
one of the symmetry axes of the dimer, the spatial patterhefdr-field response is
also symmetric with respect to this axis; however, at angoigliangle of incidence the
scattering pattern is no longer symmetric. In addition,ahgular dependence of the
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Fig. 5.6: The same as in Fig. 5.5, but fér= 100 nm. The plots correspond t& = 243 nm
and¢g = 90° (upper panels) = 232 nm and ¢y = 0° (middle panels); and = 328 nm and
¢o = 62° (bottom panels). Left and right panels correspond to the R& &H, respectively.

differential scattering cross-section shows that at therieist of the scattered field is
emitted in the forward direction. On the other hand, becafiiee intricate distribution
of the sources of the SH (the surface and bulk non-linearigal#ons), the scattering
pattern ofg,(p; ) presents a much more complex dependence on the polar caterdin
. Moreover, since the distribution of the sources of the Spledés strongly on the
separation distance between the cylinders, the scatteaittgrn at the SH also changes
significantly with this distance [see Fig. 5.5 and Fig. 5.6].

The spectral characteristics of the scattering crossmsectirovide us with insight-
ful information about the transfer of energy from the incitierave to the far-field. In
turn, the spectra of the absorption cross sections reveuriant properties of the fun-
damental and second harmonic near-fields. In order to ridltesthis idea, we present
in Fig. 5.7 the scattering and absorption cross sections fmetallic dimer, as well
as the field profiles corresponding to certain resonance lemagths. This figure re-
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Fig. 5.7: The top panels show the logarithmic absorptioni¢stine) and scattering (dashed
line) cross sections. The radius & = 200 nm and the separation distaneé = 20 nm. The
spatial profile of the amplitude of the electric field for= 350 nm and ¢y = 20° (A and B)
and A = 236 nm and ¢y = 20° (C and D) is presented in the bottom panels. Left and right
panels correspond to the FF and SH, respectively.

veals several notable dependencies between the spatiidge pfiathe fundamental and

second harmonic near-fields and the spectra of the scattamithabsorption cross sec-
tions. Firstly, at both the FF and the SH the spectral restesof the absorption and
scattering cross sections do not always coincide, whichigsrthat they have different
physical origins. Moreover, the spectral peaks in the glignr cross section at the FF
correspond to a significant increase of the near-field, aidneslength of the largest

peak the field being enhanced by more than an order of magnjoainpare panels A

and C in Fig. 5.7). Furthermore, the spectral resonancesisdbe SH spectrum have
different origins, too. Thus, the excitation within a ssgdhtial domain in-between the
cylinders of a strong field, a so-called “hot spot”, is difgcelated to the resonance at
A = 350 nm. On the other hand, the resonance at 236 nm is due to the excitation

of a localized mode than penetrates into the cylinders ugtinaiderable depth. Inter-
estingly enough, the panels C and D in Fig. 5.7 show that-at 236 nm the field at
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Fig. 5.8: The top two panels show the logarithmic spectrahefdcattering cross section cor-
responding to a chain oN = 12 metallic cylinders. The radius i® = 200 nm, the angle
of incidence ispy = 0°, and the separation distance ds= 20 nm. The spatial profile of the
amplitude of the electric field, calculated at= 313 nm (A and B) and\ = 229 nm (C and
D), is presented in the bottom panels. The panels A and C sjuoral to the FF, whereas the
panels B and D correspond to the SH.

the FF penetrates into the cylinders only a very small destavhile at the SH the pen-
etration depth is considerably larger. This effect is ex@d by the fact that at the SH
the wavelength is smaller than the plasma wavelengh=139.6 nm), and therefore
at this wavelength the cylinders have dielectric propsytiamely, the real part of the
permittivity is positive. At the FF, howevek, > ),, which means that the permittivity
has the optical properties of a metal. Finally, note thatre&g at the FF the scattering
cross section is more than two orders of magnitude larger the absorption cross
section, at the SH the absorption cross section is largartieascattering cross section
in almost the entire spectral domain considered in our &aticms.
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Fig. 5.9: The same as in Fig. 5.8, but foy = 90° and A = 525 nm.
5.4 Wave Scattering from 1D Chains of Metallic Cylin-
ders

The MSM numerical method has also been employed to studyhi@i§ more com-
plex scattering geometries, namely, chains of coupled ltietgtlinders. Such nanos-
tructures can find important technological applicationsutbwavelength active optical
waveguides, optical nanoantennae, or light focussinglavauvelength scale.

The geometry considered in our study consistsvof= 12 metallic cylinders ar-
ranged in a linear chain, the radius of the cylinders and épasation distance being
R = 200 nm andd = 20 nm, respectively. The main results pertaining to this sceter
geometry are summarized in Fig. 5.8 and Fig. 5.9, the angiecadfence correspond-
ing to these figures being, = 0° andg, = 90°, respectively §, is the angle between
the direction of the incident wave and the axis of the chainytihders). One of the
main conclusions illustrated by these figures is that, fahlamgles of incidence, the
complexity of the scattering spectra increases with thebmmof scatters. This fact
suggests that as the number of scatterers increases, thedoge interactions among
the scatterers becomes stronger and therefore they playceeasingly important role
in determining the global optical response of the structlirés coherent response of
the scatterers is illustrated by the top two panels in Fig, Which show that although
the spectrum of the scattering cross section at the FF hageadaak ah = 313 nm, no
spectral resonance exists at the SH. To be more specifit) iecaeen that at this wave-
length most of the SH field (and consequently the non-linedargsation) is localized
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in the region in-between adjacent cylinders (see panelsd®Bain Fig. 5.8), leading to
a destructive interference in the far-field of the radiatghtl As will be shown in the
next section, this coherent optical response of the seastés even more evident in the
case of 2D ordered distributions of cylinders.

Figures 5.8 and 5.9 demonstrate that the wave scatteringebghain of cylinders
is strongly dependent both on the wavelength as well as thk af incidence. In
particular, Fig. 5.8 shows that, depending on the exciatiequency, the chain of
metallic cylinders supports either modes that propagdieairthe FF (panels A and B)
or propagating modes at both the FF and SH (panels C and Dartaryly, the latter
ones can find important applications to subwavelength actanodevices [6], which
can be used to generate and transport optical power at selemgih scale. Another
notable effect illustrated in the panel A in Fig. 5.8 is thenfiation at the end of the
chain of cylinders of an optical beam with width of aboyt3, a so-called optical
nanojet, an effect that can be employed to achieve subwaytkldight focusing. On
the other hand, one can see in Fig. 5.9 that, as expectedcamimg wave that is
normally incident onto the axis of the chaipy,(= 90°) leads to the excitation of of
standing waves in the chain of cylinders. Indeed, sinceigdfise the projection of the
wave vector of the incoming wave onto the longitudinal aXithe chain of cylinders
cancels, no propagating modes can be excited.

5.5 Wave Scattering by Ordered 2D Distributions of
Metallic Cylinders

As stated before, the versatility of the MSM algorithm alfoane to study the linear
and non-linear wave scattering in cases in which the seaste@re characterized by a
complex spatial distribution. As examples of such compleargetries, in this section
we consider 2D hexagonal and square distributions of new@finders. The main
results regarding these scattering structures are sumadan Fig. 5.10 and Fig. 5.11
and correspond to hexagonal and square distributionsctagely. Similar to the case
of 1D chains of metallic cylinders, both these geometries\sh significant increase in
the number of resonances in the spectrum of the scatteriisg section, at both the FF
and the SH. As discussed in the previous section, this aff¢lae result of the coherent
response of the ensemble of cylinders. In addition, in tise c& 2D distributions SPPs
excited on more than two cylinders can couple, leading to eendricate interaction
among these SPP modes. Moreover, note that as the wavetlsm#ases the scattering
cross section at the SH increases. This dependence is aabrexequence of the fact
that at shorter wavelengths the incident field penetratepetanto the distribution of
scatterers and therefore it induces a larger non-linearigaktion.

As can be seen in Fig. 5.10 and Fig. 5.11, the spatial fieldiloigion inside the
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Fig. 5.10: The top two panels show the logarithmic spectihefscattering cross section corre-
sponding to a hexagonal distribution 6f = 15 metallic cylinders. The radius i® = 200 nm,
the angle of incidence iy = 90°, and the separation distance ds= 100 nm. The spatial
profile of the amplitude of the electric field, calculated)at= 471 nm, is presented in the
bottom panels. Left and right panels correspond to the FF@Hdrespectively.

1.5 0 1.5 -15 0 1.5
X [um] X [um]

Fig. 5.11: The same as in Fig. 5.10, but for a square distidoubf N = 25 metallic cylinders.
In the bottom panels the wavelengthis= 454 nm and the angle of incidence i& = 0°.
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ensemble of cylinders changes significantly with the layafuhe scatterers, a prop-
erty that can be used to tune the linear and non-linear dpésponse of metamaterials
based on such primary building blocks. Alternative potn&chnological applications
are suggested by the field profiles in Fig. 5.10. Thus, as caeée in this figure, the
hexagonal distribution of cylinders concentrates thedent field towards the tip of
the set of scatterers, especially at the SH. Therefore, awsdattering geometry can
be used to efficiently focus and couple the optical near-fregliding nanostructures,
such as the chain of nanowires studied in the precedingosedtiterestingly enough,
Fig. 5.11 shows that in the case of the square distributiayliriders the field gener-
ated at the SH is stronger at the back side of the ensemblatésers. This surprising
result can be explained by the fact that at the front side efetiisemble of cylinders
the phase of the electric field is rather uniform along a pthiageis parallel to the first
row of cylinders, whereas deeper into the distribution dingers the spatial profile of
the phase of the electric field becomes strongly inhomogeneks a result, the non-
linear polarisation induced on the surface of adjacentdgis at the front side of the
ensemble of cylinders would cancel and therefore the augadiof the generated field
at the SH is small. As the field at the FF penetrates furthertivé distribution of cylin-
ders it becomes strongly inhomogeneous and therefore adevably larger amount
of surface non-linear polarisation is generated. This phenon can be compared to
that of phase matching in bulk non-linear crystals. Thisnsrmaportant observations,
as the presence, in metamaterials, of physical effects arynattributed to bulk ma-
terials, is one of the prerequisites of artificial media weffective non-linear optical
properties.

5.6 Second Harmonic Generation in 2D Random Dis-
tributions of Metallic Cylinders

The last geometry investigated is that of a 2D random digtioin of metallic cylinders.
In this case, both the location of the cylinders as well ag tiaglius are random vari-
ables, the only imposed constraint being that the cylindersot overlap. The results
corresponding to one such random ensemble of cylindersrasemted in Fig. 5.12.
It can be seen in this figure that, as in the case of orderedldisons of cylinders,
the scattering cross section at the SH increases as theenmgteldecreases. Again,
this effect is explained by a stronger non-linear inteactt shorter wavelengths. In
addition, the scattering spectra show fewer spectral featas compared to those cor-
responding to ordered distributions of cylinders, whicla idirect consequence of the
inhomogenous spectral broadening of the scattering resesaorresponding to single
cylinders. It can, in fact, be argued that most of the speptaks seen in Fig. 5.12 are
due to resonances associated to individual cylinders (ardsrs of similar size), the
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coherent contribution to the scattering spectra beinglemial this case as compared
to the case of ordered distributions. Nonetheless, theactien among the cylinders

is evident in this case, too, leading to a field enhancemetitarspaces between the
cylinders (cavity effect) at both the FF and SH. Even if suchciures do not show the

intricate scattering patterns seen in our previous exasnfiiey can nonetheless prove
important for applications such as light localisation.

5.7 Conclusions

To conclude, in this chapter, the MSM numerical method hanhesed to study the
properties of the electromagnetic field generated by theevgaattering by distribu-

tions of metallic cylinders, at both the FF and SH. One of tremtonclusions of

our analysis is that the linear and non-linear optical raspoof different ensembles
of metallic cylinders considered in the work is strongly urgihced by the excitation of
SPP resonances. The physical origin of these SPP modessbdseain elucidated and
discussed.

The relation between the geometry and spatial distribuifdhe scatterers, on one
hand, and, on the other hand, the overall response of thendhsef metallic cylinders
has also been analyzed. We have demonstrated that smatimasiin either the shape
of the primary scatterers or the intrinsic structure (spalistribution) of the ensemble
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of scatterers can lead to significant changes in both thigfiaroptical response as well
as in the spatial profile of the near-field, at both the FF andISkas been revealed
that this dependency of the optical response of the ensashbiatterers on its material
and geometrical parameters is especially enhanced whené@Pexcited. A complete
characterization of this relationship would representapartant step forward towards
developing a comprehensive theoretical description okffective non-linear optical
properties of metamaterials. Several potential techncdd@pplications of the scat-
tering geometries considered in this chapter have also thsenssed. Importantly, it
should be noted that the results reported in this chaptdy apponly to metallic cylin-
ders but also to other deeply scaled down nanostructuresentyatical properties are
similar to those of metals, such as metallic carbon nanast{ihé].
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Chapter 6

Computational Analysis of Linear and
Non-linear Optical Modes of
Plasmonic Cavities

6.1 Introduction

Amongst the applications of localised SPPs discussed ipriagous chapters, several
were related to the strong field enhancement that is geweveten SPPs are reso-
nantly excited. For example, previous work has shown thegmbnic nanostructures
can be used to significantly enhance the optical absorpéffitiency) of solar cells,
detectors, and other photovoltaic devices [1-5], as weudmsvavelength, all-optical
control of the optical power flow in active nanodevices [6,Mpreover, because of
the evanescent character of localized SPPs, they are a@slfor achieving subwave-
length confinement of the optical field, and as such, SPPs eanstrumental in de-
signing ultra-compact devices, such as nanolasers or észys [8—11] and optical
microcavities [12-15]. In this connection, a central issu® design plasmonic struc-
tures which support localized SPPs with low optical lossesdes with largé) factor).

A promising approach to address this challenge, describ&ds chapter, is to reduce
the radiative losses by employing cavity-shaped plasmstnictures rather than plas-
monic nanoparticles.

In this chapter the characteristics of linear and non-lineaalised SPPs ex-
cited upon the interaction of optical pulses with plasmastitictures made of two-
dimensional (2D) distributions of metallic nanowires vii# presented. As before, this
investigation is based on the multiple scattering matrgogthm for calculating the
field dynamics and the spectral characteristics of the abtield, at both the FF and
the SH. In particular, the dependence of the main paramleteacterizing the localized
SPP modes, namely, tlig factor, on the structure and shape of the plasmonic cavity
is investigated. Unlike the previous chapter, in which weatlided the spectral opti-



cal response of plasmonic nanostructures, in this chapeanalyzevia time-domain
techniques the optical properties of plasmonic cavitiéss $tudy reveals the existence
at the SH of two markedly different types of plasmon resoranoamely, geometry in-
dependent multipole plasmon modes, which correspond textigation of weakly in-
teracting modes of single cylinders, and geometry depdradasmonic cavity modes.
In addition, we will show that the main parameter charaziteg the cavity modes,
namely, theQ) factor, strongly depends on the structure and shape of thty.céhe
results suggest that by carefully designing the system gagnspecifically, the sepa-
ration distance between the scatterers, the radiativedasan be greatly reduced, thus
being possible to design plasmonic cavities with extrentaetye Q factor [16, 17].

6.2 Optical Modes of Plasmonic Cavities

In this section we describe how the MSM method can be apptiddviestigate the
physical characteristics of linear and non-linear loeadiSPP modes excited by sub-
picosecond pulses upon their interaction with plasmonionavities. In particular, we
explore the relation between the geometry and materiahpetexs of the plasmonic
cavities and the main optical properties of the localize® &tdes. The presentation
of the main results will focus on the optical properties @& lbcalized modes excited at
the SH, as the main conclusions derived in this case alsy &pflie modes observed at
the FF. In addition, since there is no incoming pulse at thes®khe physical quantities
characterizing the localized SPP modes, such as @dactor, can be much easier
calculated if the optical field at the SH is analyzed. Thisrapph can also be relevant
for a series of potential technological applications, saBensing or optical detection,
as the optical signal generated at the SH is spectrally wplusated from the incoming
and scattered fields at the FF.

To begin with, in Fig. 6.1 we illustrate the generic chargstes of the linear and
non-linear interaction between an incoming optical pulseé @ plasmonic cavity. One
convenient approach for identifying the modes of the canaties on the spectra of the
absorption cross-section at the f(w), and the corresponding absorption spectra at
the SH,>, (2w). To be more specific, it is expected that at the resonancedrery of
the localized SPP modes the spectra of the optical absorptEsents resonances, as
at these specific frequencies the interaction of the optieat-field with the metallic
nanowires is enhanced.

The top panels in Fig. 6.1, which corresponds to a plasmamidycmade of 6
Ag nanowires, whose electromagnetic properties are destitty the Drude model,
show that the spectra of the absorption cross sections &Rlaed SH contain a series
of spectral peaks. In addition, the spectral location os¢hpeaks changes with the
separation distance between adjacent nanowiresyariation ofd of less thari 00 nm
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Fig. 6.1: Top panels show logarithmic plots of the absonmptiyoss sections, calculated for
a plasmonic cavity containing 6 nanowires. The legend eigis the separation distance, in
nanometres. Bottom panels show snapshots of the tempatitien of the intensity of the
electric field at the FF (top) and the SH (bottom). The plasicoavity consists of Ag cylinders
with R = 200 nm andd = 60 nm. The wavelength at the FF ¥ = 858 nm and the angle
of incidence ispy = 90°.

leading to a spectral shift of the resonances at the FF of stlBd0 nm. Additional
information pertaining to the optical properties of plasneccavity modes is revealed
by the temporal dynamics of the optical near-field. Thus bibttom panels in Fig. 6.1
reveal that the field at the SH remains trapped in the cavity kfter the initial pulsed
excitation at the FF has passed through the cavity. Sincedhdinear response of the
metal is assumed to be instantaneous, it can be inferred tham-linear cavity mode
with a significant lifetime and, implicitly, largé) factor, is formed in the cavity. In
addition, the plasmonic character of this mode is evidemnfthe spatial distribution
of the near-field, namely, the field has large values at thalnsetrfaces and decays
steeply towards the center of the plasmonic cavity. In whloWs, a more detailed
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Fig. 6.2: Top panels show logarithmic plots of the absonpt@ross sections. The legends in-
dicate the number of cylinders. Bottom panels present thgitrde of the electric field at the
SH, for Ag cylinders witlR = 200 nm andd = 20 nm, at Agg = 578 nm and ¢q = 0 (for
better visualization, the fourth-order square root of treddiamplitude is plotted).

analysis of these plasmonic cavity modes, as well as modesdifferent physical
nature, namely, multipole plasmon modes will be given.

6.2.1 Localized Plasmon Modes in Coupled Cylindrical Nanowes

To begin with, consider a series of different cavity geomstrnamely, cylinder dis-
tributions containing 2, 3, and 4 cylinders. Figure 6.2 swaripes the main results
pertaining to these three geometries. As in the previous, dhs spectra of the ab-
sorption cross section at the SH show a series of sharp pedtksh suggests the
existence of SPP modes. Importantly, the resonance fregueinthese modes does
not depend on the number of cylinders in the distributionaatterers, which means
that these modes are formed primarily due to the excitatfayptical modes in each
of the metallic nanowires. This conclusion is supportedhw®yfteld distributions pre-
sented in the bottom panels of Fig. 6.2. Thus, these plo&glglshow that the modes
at \sy = 578 nm correspond to dipole (cut-off) modes of the nanowires. Birtield
distributions, shown in Fig. 6.3, demonstrate that themasoes at smaller wavelength
(Asy = 336 nm) correspond to quadrupole modes of the nanowires. Fig@ral§o
shows that, as expected, multipole resonances are not xeitg@ in plasmonic struc-
tures containing a small number of scatterers but that irtlfeir existance is a generic
phenomenon. However, when the number of scatterers iregehe amplitude of the
optical modes excited in each nanowire varies with its ocain the 2D nanowire
assembly, especially when the wavelength becomes compdceaihe size of the plas-
monic structure. It should be noted that similar resonandescare excited at the FF,
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Fig. 6.3: Distribution of the amplitude of the electric fidldp panels) and the real part of the
magnetic field (botom panels) at the SH, calculated for tldiferent plasmonic cavities made
of Ag cylinders withR = 200 nm and separation distancé = 20 nm. The wavelength at the
SH isAgy = 336 nm and ¢y = 0 (for better visualization, in the case of the electric fidlte
fourth-order square root of the field amplitude is plotted).

too, but they do not appear in the absorption spectra siree dre “buried” in the
background generated due to the absorption of the inpu¢ plleese modes, however,
can be identified as resonance peaks in the spectra of thersuatross section [18].
Moreover, note that the SH field in the region in-between@ahacylinders is small,
which means that for this separation distance the “hyhaitbhn” effects due to the
interaction between the optical modes excited in adjacgdmtders are weak.

To characterize the influence of the system geometry on ganeace frequen-
cies of the multipole plasmon modes the absorption spectrdifferent values of the
angle of incidence, and separation distandehave been determined. The dispersion
plots corresponding to the absorption spectra at the SHrasepted in the Fig. 6.4.
These absorption spectra clearly indicate that the resenftaquencies of the mul-
tipole plasmon modes are almost independent of the systeamp#ers, supporting
therefore the conclusion that they correspond to opticades@excited in each of the
metallic nanowires. More specifically, the resonance feegies of these modes remain
unchanged even if the distance between the adjacent metahliowires is decreased
to a value as small asnm. On the other hand, a significant increase of the optical ab-
sorption occurs when the separation distance becomesesrtiah a few nanometers,
an effect explained by the field enhancement observed iretlien separating adjacent
nanowires. Figure 6.4 also shows that the spectral widthefésonances varies with
the angle of incidence,. This dependence suggests that, as expected, the stréngth o
the interaction between the input wave and the plasmonictsire and, consequently,
the magnitude of the field generated at the SH, changes wetlanigle of incidence.
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Fig. 6.4: Logarithmic plots of absorption cross section cpe at the SH vs. the angle of inci-
denceg, (top) and separation distanaé (bottom), determined for a three-cylinder geometry.
The top and bottom panels correspondite- 60 nm and ¢y = 0, respectively.

In addition, it can be seen from Fig. 6.4 that as the separatistance between the
nanowires increases the width of the spectral resonanageases, and effect that is
explained by the fact that the strength of the coupling betwdhe modes excited in
adjacent nanowires decreases with the separation distance

6.2.2 Plasmonic Cavity Modes

While the analysis of localized multipole plasmon modesprawide a valuable insight
into the contribution of each individual scatterer to themll optical response of the
plasmonic structure, it does not reveal the complete mabdithe interaction between
optical pulses and plasmonic cavities. To be more specificanalysis reveals that
plasmonic structures containing a larger number of metakinowires support addi-
tional plasmonic modes, which have a different physicaliaras compared to that of
the multipole plasmon modes. In order to illustrate thisatesion, Fig. 6.5 presents the
absorption spectra, at both the FF and the SH, of cavityeshafasmonic structures
containing 4, 6, and 8 metallic nanowires. As in the previtases these spectra present
a series of spectral peaks, which correspond to resonahttes@asmonic system. By
inspecting the field profiles corresponding to these splgueks we found that besides
the multipole plasmon modes similar to those supported agmbnic structures with
a smaller number of metallic nanowires there are additianakkedly different type
of modes, which are called plasmonic cavity modes. Thesdifmz plasmon modes
are formed due to the coherent response of the whole caeityexample, as expected,
in the case of the four-cylinder cavity the absorption spawutat the SH presents two
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Fig. 6.5: Top panels show logarithmic plots of the absonptaross section at the FF and the
SH. The legend indicates the number of cylinders formingplagmonic cavity. Bottom panels
present the distribution of the amplitude of the electritdfigt the SH, for Ag cylinders with

R = 200 nm and separation distancé = 60 nm. From left to right, the wavelength at the SH
is Asg = 321 nm, A\gy = 429 nm, and gy = 333 nm.

resonance peaks aty = 578 nm and sy = 336 nm, spectral peaks that correspond
to the dipole and quadrupole plasmon modes, respectivibl.absorption spectra at
the SH have, however, additional resonance peaksat= 321 nm, Asy = 429 nm,
and \sy = 333 nm. Since the resonance wavelength changes significantly thth
number of nanowires forming the plasmonic cavity, it can dreotuded that these op-
tical modes are determined by the coherent response of thiewstructure. The field
profiles presented in Fig. 6.5 further support this conolugby showing that at the cor-
responding resonance wavelengths the optical field is ndired only to the region
surrounding each nanowire but spreads inside the plasroanity.

It is important to point out that the plasmonic cavity modegestigated here are
similar to whispering-gallery modes recently observedlasmonic structures with a
different geometry [8], the main difference being that iis ttase, the angular momen-
tum of the plasmonic cavity modes is equal to zero. Indeedlatigular momentum of
the incident beam is zero and therefore the angular momeafuhe excited modes
must be zero, too. One additional important feature of thembnic cavity modes pre-
sented in Fig. 6.5 is that they do not appear as resonandes stattering cross section
spectra. Therefore, they adark-plasmon modethat do not couple with the radia-
tion continuum [19], and as a result the corresponding tagitosses are suppressed.
Nevertheless, in the case presented here, these modescies gia the non-linear
polarisation generated at the SH, which acts as localizeal@sources. These results
suggest that the non-linear polarisation at the SH can e tosexcite subradiant (low
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Fig. 6.6: Logarithmic plots of absorption cross section dpe at the SH vs. the angle of inci-
dencegy (top) and separation distanaé (bottom), determined for a hexagonal geometry. The
top and bottom panels correspondde= 60 nm and ¢g = 0, respectively.

loss) propagating modes formed in chains of metallic narimpes, via the near-field
resonant coupling of single-particle dark-plasmon modsswill be shown in the next
section, the suppression of the radiative losses also leadsconsiderable increase
of the lifetime of the plasmonic cavity modes and, consetjyemakes it possible to
design plasmonic cavities with very largefactor.

As can be seenin Fig. 6.2, for a separation distande-o20 nm the four-cylinder
cavity does not have a plasmonic cavity mode but such a madesdard = 60 nm.
This observation provides further evidence that the charistics of the plasmonic
cavity modes are strongly influenced by the geometry of théycdn order to explore
this dependence in more detail, we focus in what follows @ndptical properties of
the plasmonic cavity modes formed by placing metallic naresvat the corners of a
hexagon. In making this choice we were primarily guided by féct that the cavity
modes of this structure are very well defined and, as will lmevshin the next section,
they have a very larg@ factor.

Because the dispersion spectra of the absorption crossrsegpresent a powerful
tool for investigating the properties of localized SPP ngydbese spectra have been
calculated for the hexagonal plasmonic cavity. The respltdted in Fig. 6.6, provide
further insight into the specific properties of plasmonigigamodes. As expected,
because these modes do not depend on the optical couplimgdaethe incoming wave
and the plasmonic cavity, they are independent on the arigtecidence¢,. On the
other hand, the separation distance between adjacenteyirdoes have a notable
effect on the spectral location of the resonance waveleafjthe plasmonic cavity
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modes. Thus, the resonance wavelength of the cavity modeases almost linearly
with the separation distance, a wavelength shift of almd@thm being observed when
the separation distance changes by aliodtnm. In addition, it can be seen that, as
in the case of multipole plasmon modes, the spectral widthefesonance decreases
asd increases; however, as will be demonstrated later, in the aaplasmonic cavity
modes this behavior is determined by the interplay betweerediative and absorption
losses. As the next section will show, other parametersackerizing the plasmonic
cavity modes, such as tlig factor, have a more intricate dependence on the geometry
of the cavity. A general feature, however, of these moddsastheir optical properties
can be easily tailored by modifying the shape of the cavitgrédver, similar to the
case of plasmonic cavities containing a smaller number dhitie nanowires, high
optical absorption is observed for a separation distanpeoaghingl nm. Again, this
effect is attributable to the strong electromagnetic fieddayated at the surface of the
nanowires for small inter-cylinder separation distance.

The strong dependence of the resonance frequency of thaghéscavity modes
on the separation distance between cylinders or other geicalend material param-
eters can have important applications to sensing or phtitogaevices. To be more
specific, the plasmonic cavity can be viewed as playing theeagban optical antenna
that collects and concentrates into a reduced volume thmlsaarried by the input
pulse , making it possible to increase the signal-to-naasi® and/or the speed of a
detector. These plasmonic cavities can also be employdtkidésign of lasers with
subwavelength size, as has in fact been recently demaedstild, 11]. In particular,
the () factor of plasmonic cavities employed in laser applicaipiays a crucial role
in determining the performance of such nanolasers. Coeselguin what follows the
dependence of th@ factor of plasmonic cavity modes on the parameters defifiag t
plasmonic structure will be examined in more detalil.

6.2.3 Time Domain Analysis of Plasmonic Cavities

The main physical quantity that describes the temporaloresp of an optical mode is
the factor or, equivalently, its lifetime. In order to calcugahis important parameter
that characterizes a plasmonic cavity mode, the followirgcedure was employed.
First, the cavity is illuminated with an optical pulse of spizosecond duration and
subsequently the optical field, at both the FF and SH, at aitramp location inside
the cavity is recorded. If the carrier frequency of the inpptical pulse is close to a
resonance frequency of a plasmonic cavity mode the asympeotporal evolution of
the optical field can be represented by an exponential depeed

wprt

E(t) = Epe™ @ | (6.1)
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wherew, is the resonance frequency of the plasmonic cavity modéoilsl be noted
that the relation (6.1) is independent of the location ofgbmt in the cavity where the
field is measured, the value of the carrier frequency of tpatioptical pulse (as long
as it is close tav,), and the duration of the incident optical pulse, a conclushat is
fully verified by the numerical simulations. Therefore, théactor of the optical mode
can be easily determined by calculating the slope of therbpeesenting the linear fit
of the semi-logarithmic temporal dependence of the contpiigéd inside the cavity.

We have used this procedure and calculated2factor of the plasmonic cavity
mode of the the hexagonal plasmonic cavity and the maintseatg summarized in
Fig. 6.7. As expected, when the carrier frequency of thetioptical pulse is close to
the resonance frequency of the cavity mode the temporalgonlof the normalized
field inside the cavity follows the exponential decay ddsedliby Eq. (6.1). From this
asymptotic dependence the value of¢h&actor of the cavity mode and the correspond-
ing lifetime, 7 = @ /w, have been derived.

The calculations show that the lifetime of the plasmonicitganode increases
from 7 = 380.23 fs atd = 20 nm to 7 = 582.2 fs atd = 100 nm. If the separation
distance is further increased, the lifetime begins to demeMoreover, th€) factor
of the optical mode follows the same dependence on the depadastance, its max-
imum value,Q,,... = 2294, being reached foffi = 113 nm. Note that this extremely
large value is more than twice as large as¢hfactor of recently observed plasmonic
whispering-gallery modes [8] (although it should be mem¢id that these modes were
observed in three-dimensional plasmonic cavities) andertioain an order of magni-
tude larger than th@ factor of metallic nano-particles. This dependence of}tactor
on the separation distance between the metallic nanovaresmewhat surprising be-
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cause one would expect that the radiative losses incredbehve separation distance
and therefore thé) factor should monotonously decreasedascreases. In order to
explain this apparent contradiction, it is useful to decosgthe) factor as:

1 1 1

@ B Qabs - Qrad7

whereQ ., is determined by the absorption in the metallic nanowires@n, is due to
radiative losses. Th@,,, factor can be calculated from the absorption spectra byditti
with a Lorentzian the region the spectrum correspondingea¢sonance peak. Thus,
Qas = wr/Aw, WhereAw is the spectral width of the Lorentzian. By using this proce-
dure we found that for small values of the separation digapg,, ~ , which means
that the losses of the plasmonic cavity mode are primarily tduthe absorption loss
in the metal. This result also supports the conclusion ti@aptasmonic cavity mode is
a dark-plasmon mode, whose radiative losses are suppréssédncreases, the field
confinement decreases, and therefore the absorption ldssesse. Consequently, the
Q factor of the optical mode increases. If the separatioradcs is further increased,
the optical field begins to leak more easily out of the caitlig, cavity effects become
weaker, and consequently the radiative losses start torgaeiAs a result, th@ factor

of the mode begins to decrease. This scenario predictdiratiis a separation distance
for which the(@ factor reaches a maximum value, a prediction which is fudlyified

by the results presented in Fig. 6.7b. This analysis alsgesitg that by minimizing the
optical losses associated with plasmonic cavity modespbssible to optimize con-
siderably the efficiency of these plasmonic cavities, a @riypthat can have important
implications to the development of efficient subwavelengtholasers.

(6.2)

6.3 Conclusions

In conclusion, in this chapter, the main optical properaéfnear and non-linear lo-
calized SPP modes excited upon the interaction betweemshiort optical pulses and
nanocavities made of metallic nanowires were presentezintimerical analysis, based
on the MSM formalism, has revealed that plasmonic cavitigpert two distinct types
of localized SPP modes, namely, multipole plasmon modedsatieathe result of the
hybridization of coupled plasmon modes supported by eadiallitenanowire of the
plasmonic cavity, and plasmonic cavity modes, which canibeed as the coherent
optical response of the entire assembly of metallic naresvivWe have also demon-
strated that this dichotomy in the physical origin of thepgaal modes is responsible
for their markedly different optical properties. For exdeyphereas the properties of
the multipole plasmon modes depend almost exclusively ersite of the individual
nanowires, the geometrical and material parameters of lsmnic cavity strongly
influence the characteristics of the plasmonic cavity mobreparticular, this feature
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has been shown to be efective in designing plasmonic cavitilh extremely largé)
factors.

Large @) factors are important in applications which require the@piag of the
electromagnetic field in a small volume such as, for exampliser cavities. This is
easilly achieved in our cavities due to the formation of daldsmon modes which do
not radiate into the far field and thus lead to field enhanceineside the cavity. This
effect also has potential applications in various imagimgj@etection techniques, as the
plasmonic cavities can be used as probing devices. Morgtheeproperties of these
cavity modes are influenced by the background environme,td their plasmonic
nature. It thus becomes clear that this design can also blgedgmas a small scale sen-
sor. In this connection, in Chapter 8, the discussion onlim@ar dark-plasmon cavity
modes will be extended to include their application to swwelength bio-chemical
sensors.
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Chapter 7

Non-linear Whispering Gallery Modes
In Plasmonic Cavities

7.1 Introduction

Unlike the electromagnetic modes investigated in Chapténde is a different type
of optical modes supported by plasmonic cavities knowwlaispering gallery modes
(WGMSs). Whispering gallery modes are closed circular bearhih carry angular
momentum. Specifically, these cavity modes possess a norcamponent of the elec-
tromagnetic angular momentum vector and, as a result, cggagate along curved sur-
faces. Whispering gallery modes were first observed in thpggation of sound over
a curved gallery surface (where the term “whispering ggllstems from). It soon be-
came clear that the same physical effect can also occur éirefeagnetic waves and,
today, several resonator designs exhibiting WGMs have pegposed [1]. These de-
signs include dielectric resonators [2, 3], plasmonic devi4, 5] and non-linear struc-
tures [6], among others. Several methods for coupling WGMptical structures have
been investigated including free-beam coupling (whicloisafficient in the case of low
device volumes), coupling using prisms and waveguides m@ctional coupling via
asymmetries and defects in the cavity design [1]. Also, disb@ishown in this chap-
ter, WGM coupling can be achieved in plasmonic cavities bpgusmultipole Bessel
excitations which carry angular momentum.

Whispering gallery modes have several important propestieh as complex scat-
tering and absorption spectra, tuneable electromagretjgonse, low mode volume
and very highQ factors €.g.up to@ = 10'° in some crystalline resonators) [1,7]. Con-
sequently, WGMs can be employed to the design of efficiemdasavities [8—10], op-
tical filters [11], spectroscopic and mechanical sensd@¥ gt slow-light devices [13].
Whispering gallery modes can also be used to transfer angwaentum to nano-
scale objects, which has tremendous potential applicaiivmptical manipulation at
sub-wavelength scales [14]. Furthermore, in connectidhdadea of effective proper-



ties in metamaterials, the mode orders of WGMs can be thaagytite optical equiv-
alent of the classical atomic orbitals [15]. Thus, WGM supipg structures could be
used to develop photonic meta-atoms and meta-moleculgHibally, because of the
high @ factors and high field enhancement observed in WGM cavisiesh devices
are ideal candidates for non-linear optics as they can stipppong non-linear effects
at low input power.

To better understand the properties of WGMs, let us considerelation between
the energy of the electromagnetic field and its angular moamenit is well known
that for a given electromagnetic field distribution, thecelemagnetic field momentum
densityp can be written as:

1
p=ExH. (7.1)
C

Based on Eg. (7.1) we can define the angular momentum ddrdithe fields as:
l=r xp, (7.2)

which becomes: )
1=—rx(ExH). (7.3)

C
Integrating Eq. (7.3) over all space yields the total angolamentum of an electro-

magnetic fieldL:
1

c2

L= r x (E x H)dr. (7.4)

It is worth noting here that the angular momentum density ¢n &.3) can also be
expressed in terms of the Poynting vecsaas:

1= ir X S, (7.5)

C2

given thatS = E x H. Equation (7.5) has an important consequence in the plane wa
regime. For any given plane wave propagating in an homogenisotropic medium,
the energy fluxS is always oriented along the direction of propagation, s the
vector product in Eq. (7.5) will always be zero. In other ward plane wave does not
carry angular momentum [17]. Consequently, in order to fo@&Ms in plasmonic
cavities, a plane wave excitation is not sufficient.

In this chapter it will be demonstrated that linear and naedr whispering gallery
modes can be excited in cavities made of metallic cylindgraging a multipole ex-
citation which can couple to modes carrying angular monmantl8]. The intricate
phenomena which lead to the coupling of the linear and nogali components of
WGMs will be discussed in detail and the effects of the geoynetn the properties
of the WGMs and theif)-factors will be presented.
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7.2 Excitation of Whispering Gallery Modes

The structures investigated in this chapter are geoméyrisanilar to the ones de-

scribed in Chapter 6. They consist of an array of parallehdyical scatterers arranged
in a hexagonal cavity pattern. The cylinders are assumee todxle of Au and their

electromagnetic properties are described by the Lorentmi® model. According to

the MSM formalism, the incoming wave scattered by a systemhbmawritten as a

Fourier-Bessel expansion [see Eg. (3.22)]:

o0

Uine(r, ) = Z U I (K7) € (7.6)

m=—00

where the coefficients,, are determined by the particular form &f"<. In order to
obtain an excitation carrying angular momentum, one corapbof the incoming field,
denoted bym = my, is chosen as the only non-zero term in expansion (7.6). lat wh
follows, the notationm, = oo denotes a plane wave which includes all of the terms in
Eq. (7.6).

This choice of excitation can be explained by considerimgathgular momentum
density given by Eq. (7.3). Thus, the longitudina)-€component/., of the angular
momentum density can be written as:

1 *
L= — (B x H), (7.7)

Assuming the case of TE polarisation, the angular momentumesponding to a term
with m = mg in EQ. (7.6) can be written as:

1 *
L, = = //(TETHZ) r dr dop, (7.8)

which becomes [see Appendix B for the expressions of therelemd magnetic field
components:

1
L, = —2ﬁm0u0;\amo\2/T|Jmo(fir)|2dr. (7.9)

Due to the asymptotic properties of the Bessel function fgg@endix D], the angular
momentum /[, becomes infinite as — oo.

Now, the total energy of the electromagnetic field can be dduom:

1
U= 5/ ,LL0|HZ\2dr:Wuo\amOP/rUmo(mr)Pdr. (7.10)
v

As for the case of the angular momentum, the total endrgyaecomes infinite in the
far field, asr — oo, which is a property shared with plane waves. From EqQs. Gh€l)
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Fig. 7.1: Absorption cross section as a function of radiisnd wavelength for a six cylinder
cavity. The cylinder are considered to be made of Au and s¢pabyd = 10 nm. The cavity
is illuminated by a plane wave.
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Fig. 7.2: Absorption cross section as a function of radiignd wavelength for a six cylinder
cavity. The cylinder are considered to be made of Au and s¢pabyd = 10 nm. The cavity
is excited by a field wittny = 3.

(7.10) we can now write:
Lz . 2m0

U w

Equation (7.11) shows that the angular momentim,is proportional to the total
energy,U, for a given frequency, with the proportionality constant being equal to
my. Here, mgy can be identified as thazimuthal indexof a vortex beam of order
n = myg [19]. This particular type of excitation is the equivalefibomultipole Bessel
excitation occuring in the centre of the scattering geoyn€ne practical way of imple-
menting this type of multipole excitation consists in usangesonant chiral molecule,
which, as will be shown in a later chapter, can give rise tosmenetric field in the
system and, as a result, couple with whispering gallery mode

In Chapter 6 it was shown that dark plasmon modes can formasnpbn cavities
made of metallic cylinders. Because these modes do notteaithtn free space, one
needs to consider the absorption cross section of suchstesovhen searching for
dark plasmon resonances. Figures 7.1 and 7.2 show the @bsarpss section of a
cavity consisting of six Au cylinders with varying radii aisgéparation distancé =

(7.11)
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10 nm for the plane waverf, = oo) case and then, = 3 case, respectively. These
figures illustrate a striking difference between the plam@ewegime and the case of
mo = 3. At the fundamental frequency, in the case of the plane waggation, only
a few resonances are observed; however, for an excitatitmwi= m,, several new
modes are apparent in the absorption spectrum. It thus kecolaar that a multipole
excitation carrying angular momentum can in fact excite sawity modes which are
not otherwise excited by a plane wave.

In the remaining part of this chapter, we will further ana&yend quantify the
properties of this new type of modes, show how they can beledup the exciting
radiation and how the geometry affects their properties.

7.3 Physical Properties of Plasmonic Whispering Gallery
Modes

Let us consider first, the case of a hexagonal cavity withndgrs of radiusk =
1500 nm. Figure 7.3 shows the absorption cross section spectracbf @eavity, cal-
culated for a plane wave case and fo§ = 1 throughm, = 5. As before, the TE
polarisation is considered so as to include the surfacenseltarmonic contribution of
the metal. The absorption spectra confirm the findings dsszlig the previous sec-
tion. At the fundamental frequency there are only a few rasoas in the plane wave
regime; however, strong absorption peaks can be identifi¢ke case of a multipole
excitation. It is also important to note that even in thisdatase, the resonances do
not appear for all values of,,, indicating that there is a complex interplay between the
geometry of the cavity and the scattering effects which tedte formation of a cavity
mode. In the case of the second harmonic, there is a direstspndence between
the resonances at the FF and the peaks in the non-lineapéibsapectra. This result
indicates that the formation of non-linear cavity modes diract consequence of the
strong field enhancement at the fundamental frequency.egoestly, no directly ex-
cited whispering gallery modes exist, in this spectral dioyat the SH. It can thus be
said that the modes at the SH are indirectly coupiadhe contribution of the scattered
field at the FF. There are also several resonances in theimgar-labsorption spectra
which have no equivalent in the fundamental regime. Thesgesare also present in
the plane wave case and will be shown to represent multigsienances of the indi-
vidual cylinders, identical to the ones discussed in Chete

To better understand the physical phenomena behind thaafammof WGMs, let
us consider the distribution of the total electric field desthe cavities. In addition, in
order to determine the characteristics of whispering galeodes, the profile of the
phase of the electromagnetic field is also required. Beceawse case of the TE po-
larisation, the magnetic field has only one comporiéntthe phase of this component
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Fig. 7.3: Top panels show the logarithmic absorption crossti®n spectra for a hexagonal
cavity with R = 1500 nm andd = 10 nm at the FF (top) and SH (botoom). Bottom panels
show the spatial distribution of the second order squard afahe total electric field (middle
panels) and the phase of the magnetic field compofgnbottom panels) forng = oo. The
field profiles are calculated atrr = 863 nm (this values is also marked by the dashed line in
the top panels).
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Fig. 7.4: Spatial distribution of the second order squaretrof the total electric field (top
panels) and the phase of the magnetic field compoignimiddle panels) forng = 3. The
field profiles are calculated akpr = 863 nm. Bottom panels show the dependence of the
scattering field coefficients at the FF and the SH on the order

is considered. In Fig. 7.3 we plot the field profiles for a plaveese excitation with
Arr = 863 nm. As suggested by the lack of an absorption peak in the alsorgpec-
tra formg = oo, the field profiles show no field confinement, more exactly, anitg
mode is present. This no longer holds true whenrthhe= 3 case is considered, at the
same wavelength [see Fig. 7.4].

Formg = 3, the absorption spectrum has a strong resonange@at= 863 nm.
The field profiles at this wavelength, presented in Fig. &4¥eal the nature of this res-
onance. Thus, the electric field clearly shows the formatifancavity mode at both the
FF and the SH. Further, the phase of the magnetic field denad@sthe formation of a
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vortex-like field distribution with a centradhase singularityn the centre of the cavity.
This is a strong indication that these modes are in fact venisg gallery modes and
thus carry angular momentum. Also, the phase profile exh#ik phase dislocation
lines(i.e.lines across which the phase is discontinous) at the FF aglddvat the SH.
The mode at the FF is of order = 3 while, as expected, at the SH,= 6. This is
easily explained by the fact thaty = Arpr/2. Finally, an important question is why
this mode only couples with m, = 3 excitation and not, for example, with a plane
wave. The answer to this question can be ascertained bydawirgj the expansion co-
efficients of the scattered field,, (see Fig. 7.4). Herd,,, = Y% b,,; whereN is
the number of the cylinders angl ; are the scattering coefficients of cylinderonsid-
ered in a coordinate system centredinThe distribution of the scattering coefficients
is asymmetric, as opposed to the plane wave case, whereg dine dlefinition of the
scattering matrixS(£2), these same coefficients obey the symmetry relation given by
BmJ» = I_p*_mﬁj. Also, the dominant terms in the distribution are all muégof3 at the
FF and6 at the SH. Since the order at the FFris= 3, the first dominant scattering
coefficient ism = 3 and all other subsequent dominant terms are obtained bygigan
the order byb. It is also important to note that, the WGM, being a localisedde,
must have the same symmetry as that of the cavity. As theydagibg investigated has
hexagonal symmetry, the separation between the dominattésng coefficients must
therefore be equal .

To further expand on these ideas, Fig. 7.5 present the fielilgs, phase of the
magnetic field and the scattering coefficients for the cage= 5. In this case, the
absorption cross section does not show a strong resonange at 863 nm, which is
confirmed by the field distribution. The cavity mode that wassent form, = 3 no
longer forms and the phase profile no longer has the vorkextéiatures. This can be
easily explained by the fact that the incoming field no longgs the right symmetry
needed to couple with the WGM.

As illustrated in Fig. 7.2 whispering gallery modes are etfée by the system ge-
ometry, specifically, the radius of the cylinders. Neveldhs, as discussed in Chapter 6,
other types of modes have similar signatures in the dispecdithe absorption spectra.
To separate these resonances we now investigate the dffiaet separation distance
on the absorption spectra when the radius of the cylindetsps constant. The main
results of this analysis are summarised in Fig. 7.6. Theserpbon spectra indicate
that at the FF, the modes vary with the separation distarteeska the nanowires. This
proves that the modes in question are indeed cavity modearanbt multipole modes
of the individual cylinders. In the non-linear regime, thegence of the fundamen-
tal frequency modes leads to resonances in the second hiarafisorption. However,
several other modes can be observed, which are not infludnyctte separation dis-
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Fig. 7.5: Spatial distribution of the second order squaretrof the total electric field (top
panels) and the phase of the magnetic field compoigntmiddle panels) forng = 5. The
field profiles are calculated akpr = 863 nm. Bottom panels show the dependence of the
scattering field coefficients at the FF and the SH on the order

tance. It can be concluded that these resonances correspomdltipole modes and
are a characteristic of the scatterers rather than theyca\nese modes can be seen
in the case of plane wave excitation and since we alreadysied them in Chapter 6
we no longer describe them here. Nevertheless, one canvelibat ford = 65 nm,
one of the multipole resonance occurs at the same wavelehgth= 2304 nm, as a
non-linear whispering gallery mode.

Figure 7.7 plots the dispersion of the absorption specttiagmegion of the cross-
ing. The results show that, as expected, there is a stroogaase in the absorption
spectra associated with the intersection between the twademd he field profiles in
Fig. 7.7 help to clarify the origin of this phenomena. Hehe profile of the non-linear
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Fig. 7.7: Left panel shows absorption cross section at thdd@t hexagonal cavity wittk =
1500 nm. The colour bar gives the natural logarithm of the physicaises. Right panels show
magnetic field profiles for the same cavity with= 32 nm for incoming wavelengthg =
2257 nm (A), A = 2281 nm (B) and\ = 2305 nm(C'). The multipole excitation has, = 3
and field profiles are plotted as a second order square rodt®fihysical values.
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magnetic fieldH, is shown as this particular quantity is useful in identifyitme pres-
ence of multipole modes (see Chapter 6). The separaticandistin all three cases is
kept fixed atd = 32 nm. When the incoming wavelength is taken tobe- 2257 nm,

the cavity couples with a WGM at the FF which induces a noadirmode at the SH.
However, when the incoming wavelength becomes 2305 nm, such that the cavity

is excited at the multipole resonance frequency, the fiedilps show the formation of
sixth order multipole modes on the surface of the cylind€msequently, at a point
for which A = 2281 nm, lying between the two resonant wavelengths, neither of the
two modes is excited, which is illustrated by the magnetid fpzofile.

Whispering gallery modes can also occur in more complex gtoes, namely
cavities which have a central cylindrical inclusion. As viae discussed in the next
chapter, this type of cavity supports modes with a higherekgf localisation and
thus allows for smaller cavity sizes. In the example illagtd in Fig. 7.8, the radius of
the cylinders isk = 800 nm (the radius of the inner cylinder beirfg = 210 nm), but
the WGM occurs at a wavelength similar to that in the casesudised in this section,
specifically,\rr = 700 nm. The profiles demonstrate the formation of a whispering
gallery mode at both the FF and the SH. The main conclusidaipérg to the WGMs
of this type of cavity is that there is a very strong connettetween the geometrical
factors and the properties of the mode. This high degreenefthility can be exploited
toward designing non-linear optical devices for specifipl@ations.

| Cavitytype| mg=3 | mog=9 |

HEXFE | Q=5242]Q =554.1
HEXSH | Q=5252] Q= 1305
INC FF Q=1453 | Q=103.1
INC SH Q=235 | Q=4954

Table 7.1:Q) factors of WGMs for the hexagonal cavity (HEX)at 863 nm and the hexagonal
cavity with a cylindrical inclusion (INC) ak = 700 nm at the FF and SH.

Finally, as previously discussed, an important propertyawity modes is theif)-
factor. TheQ-factors for the hexagonal cavity at= 863 nm and the hexagonal cavity
with a cylindrical inclusion ah = 700 nm were calculated. Th@-factors where found
by using a Lorentzian fit of the absorption cross section peakl using the definition
Q) = wo/dw, Wherewy is the resonance frequency of the mode &nds the width of
the resonance. The results are given in Table 7.1. The se@lltlate our conclusions
that WGMs can only couple with multipole excitations withtegn values ofing. As
a result, the highegb-factors are given here, for both geometries, when= 3 and
mo = 9, which shows the same pattern of distribution of the sdatjecoefficients.
The dominant mode in the case of the hexagonal cavitythas 1305, which is an
order of magnitude higher than the highéstactor of the cavity with a cylindrical in-
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Fig. 7.8: Spatial distribution of the second order squaretrof the total electric field (top
panels) and the phase of the magnetic field compofgnimiddle panels) forng = 3. The
field profiles are calculated akpr = 863 nm. Bottom panels show the dependence of the
scattering field coefficients at the FF and the SH on the orderThe geometry consists of
a hexagonal cavity of cylinders witR = 800 nm and a central cylindrical inclusion with
R; = 210 nm. The profiles are show foxpr = 700 nm.

clusion. Consequently, while the latter geometry allowssfoaller devices, the former
gives higher quality factors. It is thus possible to see thpartance of being able to
tailor the structure to obtain the best possible design émhespecific application. It
is important to note that no effort has been made here ta tdiénon-linear plasmon
cavity design and thus, whispering gallery modes with mughér Q-factors could be
achievable. The absorption losses which are tied to theepoesof metallic structures
in this design significantly reduce the maximum achievé@blactor compared to, for
example, dielectric resonators. Nevertheless, the sftdqtlasmon surface resonances
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on the tight field confinement and enhancement in metallidtieaumeans that our de-
sign has significant advantages in enhancing the non-lipegerties of whispering
gallery modes. Also, as will be discussed in a later chaiter,presence of surface
plasmons could allow for the direct control of the WGMs inlsstructures

7.4 Conclusions

In conclusion, in this chapter it was shown that whisperiadjegy modes carrying
angular momentum can be coupled in non-linear plasmonitiesvmade of metallic
cylindrical scatterers. Similar to cavity modes, WGMs arergyly affected by the ge-
ometry of the scatterers allowing for a great deal of tur@glin the choice of design.
In addition, the distributions of the scattering coeffi¢geaf the electromagnetic field
in both the linear and non-linear case was examined. Thétsetemonstrate that a di-
rect connection can be found between the pattern of the dorhooefficients and the
mode profile. Thus, WGMs can only be coupled when the digiohwf the dominant
scattering coefficients has the same symmetries as the rA®iimilar connection can
be found between the coefficient distribution and the symiesebf the cavity itself.

The quality factors of two whispering gallery modes werelysed and))-factors
of up to1305 were found. The results suggest several possible applisator this type
of cavity in optical trapping, optical manipulation anditags Also, as the non-linear
cavity modes discussed here are a direct result of the fistdlaition at the fundamen-
tal frequency, it may be possible to use the magnetisatidndad second harmonic
generation effect to externally control the propertieshefWGMs through the use of a
magnetic field. This can have important applications invatyi controlled optical de-
vices. Further work can lead to a better understanding afdh@plex interplay between
the properties of the incoming beam, those of the cavity ard¥GMs which can be
coupled in such structures. It is thus clear that plasmounded, non-linear, whisper-
ing gallery modes can open up further possibilities for ngpligations in optics and
beyond.
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Chapter 8

Applications of Plasmonic Cavities to
Sensing

8.1 Introduction

The use of SPP resonances for sensing applications has aestigated for nearly
three decades [1]. In particular, devices based on SPPaeses provide efficient,
noninvasive, low-power and low-volume sensing. Recenkwothis area has led to the
development of several designs with various detectiontmlipas. Common detection
limits (DL) for plasmon based sensing devices range ftonf refractive index units

(RIV) for prism coupling and optical fiber designsite—> RIU for waveguide designs
[2]. While such detection limits are considered suitablenfmst sensing applications,
the designs mentioned above range in size from several édmdicrons to several
millimeters. A submicron sensor design possessing simédgection capabilities would
therefore prove to be a significant advancement in devi@giation. Such a design
could be employed for sensing small amounts of target snbssaor on-chip parallel
sensing.

In this chapter, we introduce and describe an ultra-complasimonic sensor de-
sign, which combines the advantages provided by the tight ¢enfinement of local-
ized SPPs and the non-linearly enhanced field induced byinear optical processes
at metal surfaces. The design employs cavity-shaped atissrabmetallic nanowires
whose optical modes are excitgth local dipoles induced by the surface SHG pro-
cess. Unlike the optical coupling to far-field radiatioredk electric dipoles can excite
dark (subradiant) plasmonic cavity modes that do not cotplée radiation contin-
uum [3, 4]. As a result, the radiative losses are suppresksed)-factor of such dark
plasmonic cavity modes being more than an order of magnikaider than that of
metallic nanopatrticles [5]. This unique property of darkigamodes can be used ef-
fectively to measure extremely small changes in the indeeféction, which can be
induced, for example, by minute concentrations of traceecues or thermal varia-



tions of the surrounding environment. To be more specifis,¢thapter will show that
this novel approach to plasmonic sensing allows one tolseadnieve detection limits
of 10~¢ refractive index units (RIU), for a detector resolutiondaf1 nm [6].

8.2 Optical Properties of Plasmonic Cavity Modes

The plasmonic cavity considered in this chapter is schealfitiillustrated in Fig. 8.1.

It consists of a cavity-shaped distribution of parallel afiet cylinders with radiusr,
which are assumed to be made of Au. As it will be shown in whikbvics, additional
functionality can be achieved by placing at the center optaesmonic cavity a metallic
cylinder, whose radius i&;. In addition, the plasmonic nanowires forming the cavity
are separated by a distan¢eThe plasmonic structure is excited by normally incident
monochromatic plane waves with carrier frequengyhe electric field of the incident
light being perpendicular to the axis of the nanowires (Tkapsation). Under these
conditions, at the FF, the optical response of the plasnsinicture is fully determined
by the spatial distribution of the dielectric constant. $hilne ensemble of plasmonic
nanowires is assumed to be embedded in a background op&chlim with index of
refractionn, = /e, wheree, is the relative dielectric constant. In addition, the diele
tric constant of the metallic nanowires is described by tbeehtz-Drude model given
by Eg. (2.26). The simulations use the numerical values@®ptrameters correspond-
ing to Au, which can be found in Appendix E.

The MSM method provides considerable flexibility in chogsihe geometry and
system parameters. In this chapter, three different desigplasmonic cavities are
considered. In the first two cases the plasmonic cavity stsief an assembly of six and
eight identical metallic nanowires, whereas in the thirsleca hexagonal cavity, which
contains at its center an additional metallic nanowire veltraslius is different from that
of those forming the boundary of the cavity (see Fig. 8.1¢pissidered. One efficient
approach to find optical modes of plasmonic cavities is tockefr resonances in the
scattering and absorption cross-section spectra. Hoyetikzing absorption cross-
section spectra provides a distinct advantage, nameligwtsione to find dark plasmon
modes, as previously discussed. Moreover, we have used emalysis of the optical
response of plasmonic cavities the absorption crossesespectra at the SH rather
than those at the FF, for two main reasons. First, this cheicenates the contribution
to the total absorption of the incoming plane wave, thusdasing the accuracy of
the analysis. Second, the generation of non-linear sudgudes at the SH provides
a convenient mechanism to excite dark plasmonic cavity siaghich plays a central
role in enhancing the sensitivity of plasmonic sensorsdasethis design.

Figure 8.2 summarises the findings pertaining to the lighttedng from the three
plasmonic cavities investigated. One important resulistdated by this figure is the
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Fig. 8.1: Schematics of a plasmonic system consisting okagomal cavity which contains a
cylindrical inclusion at its center. All cylinders are madeAu.

presence of resonance peaks in the absorption cross ssptotray’,(2), which are
attributable to the excitation of plasmonic modes. Theeetato types of such plas-
monic modes, namely, multipole modes excited on singledglis and plasmonic cav-
ity modes, which are the result of the coherent responsd ofabwires in the plas-
monic nanostructure (the electric field profiles at the SHemhined for each type of
cavity for the corresponding resonance wavelength of tigycaodes, clearly confirm
this conclusion). The resonance wavelength of the formatesd\sy = 663 nm and
Asu = 937 nm) does not depend on the geometry of the plasmonic nanastescind
therefore it cannot be tuned by modifying the geometry ofcidnaty. As a result these
multipole plasmonic modes will not be analysed further ay tave already been cov-
ered in chapter 6. By contrast, as illustrated in Fig. 8.2 résonance wavelength of the
plasmonic cavity modes is strongly dependent on the systeanpeters. The spectra
in Fig. 8.2 also reveal several important characteristith@plasmonic modes excited
in the cavity. Thus, they clearly show that the geometry efc¢hvity has a strong in-
fluence on the field distribution of the cavity modes. Equatiportant, the scattering
cross section spectra at the SH show no resonance peaksvauekength of the res-
onances in the spectra of the absorption cross-sectios.ifipiortant result indicates
that the corresponding modes are dark plasmonic cavity syadeich are decoupled
from the radiation continuum and thus cannot scatter ligtd the far-field. As a re-
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Fig. 8.2: Left panels show logarithmic spectra of the absiorp (solid line) and scattering
(dashed line) cross sections for (a) a six cylinder cavity; ight cylinder cavity; and (e) six
cylinder cavity with a cylindrical inclusion. Right panedbow the field profiles of the plasmonic
cavity modes, which correspond to the vertical dashed lindke left panels. The geometric
parameters are: separation distande= 20 nm, d = 130 nm andd = 70 nm for (a), (c) and
(e), respectively, radius of the boundary cylindéts= 500 nm and radius of the cylinder at
the centreR?; = 400 nm.

sult, at the corresponding resonance wavelength, the plaismavity is very efficient
in trapping the non-linear field generated by the inducethsardipoles and therefore
experiences reduced optical losses.

In order to gain a deeper insight into the physical propgxighe plasmonic cav-
ity modes a detailed study of the dependence on the systemeggoof the resonance
wavelength of the modes was performed. This analysis iscpéatly relevant for as-
sessing the sensitivity of plasmonic sensors based on swities. One effective tool
for performing this investigation is the dispersion mapla tesonance wavelength of
the plasmonic cavity modes. These maps, calculated fdwraktcavities, are presented
in Fig. 8.3.

The dispersion maps corresponding to the three cavitiaslgiustrate the strong
variation of the resonance wavelength of the cavity modés tie change in the geo-
metrical parameters defining the cavity. In the case of tharsil eight cylinder cavities,
an almost linear increase of the resonance wavelength cathy modes with the sep-
aration distance between the plasmonic nanowires can lewaas This dependence
can be easily explained by the fact that the size of the cawidyeases with the sep-
aration distance and, consequently, the resonance watklehthe cavity modes is
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Fig. 8.3: Dispersion maps of absorption cross section, walied for (a) a six cylinder cavity;
(b) eight cylinder cavity; and (c) and (d), a six cylinder @gwvith a cylindrical inclusion.
Fixed geometric parameters are= 70 nm for (c) and R; = 400 nm for (d). In all cases
R =500 nm.

red-shifted. It can also be seen that the resonance wavklshgws a steeper increase
with the separation distance in the case of the hexagon@lycas compared to the
case of the octagonal one. Moreover, the spectral widtheoféeonance is somewhat
smaller in the case of the hexagonal cavity whereas in batbscthe width of reso-
nance peaks decreases withThese findings are explained by the field distribution of
the cavity modes. Thus, simulations show that the field ecéraent at the surface of
the metal, and consequently the optical loss, is largeramrcéise of the octagonal cavity
and in both cases it decreases witiMore specifically, ag increases the cavities are
less effective in confining the optical field and as such teetak field at the surface of
the plasmonic nanowires decreases.

The modal field profiles also explain some of the effects olexbwhen the struc-
ture of the cavity is modified, namely, when a plasmonic nareis placed at the center
of the cavity. As shown in Fig. 8.3, the hexagonal cavity hadaamonic mode even
when a nanowire is added at its center; however, the resenaaeelength is affected
by this structural change. On the other hand, simulations/ghat the cavity mode no
longer exists in the case of the octagonal cavity. The fietdilps in Fig. 8.2 clearly
explain this phenomenon. The field amplitude of the plasmaorde of the hexago-
nal cavity has a minimum at the center of the cavity and tloeeeit is only slightly
perturbed by the added nanowire. By contrast, the mode afd¢tegonal cavity has a
maximum at the center of the cavity, so that by adding a namocthie cavity mode is
suppressed. It should be also noted that in all cases theaese wavelength of the
plasmonic cavity modes depends linearly on the geomefpaameters of the cavity
(d andR;).

The resonance wavelength of the plasmonic cavity modesassalongly affected
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Fig. 8.4: Dependence of the absorption cross section spextrthe background refractive in-
dex, ny, calculated for (a) a six cylinder cavity; (b) an eight cyier cavity; and (c), (d) a
six cylinder cavity with a cylindrical inclusion. The geadme parameters ared = 20 nm,

d = 130 nm andd = 70 nm for (a), (b) and (c), respectively, an@; = 400 nm for (c) and (d).
In all casesk = 500 nm. The dashed lines mark the spectral location of the plasmcawity
modes.

by the change in the index of refraction of the backgroundiomagdn,. This effect has
important implications when sensing applications are aned. In order to better un-
derstand this dependence, consider the three types olesadescribed by parameters
R = 500 nm andd = 20 nm, d = 130 nm, andd = 70 nm for the six cylinder, eight
cylinder, and the six cylinder with central inclusion céest, respectively, the radius of
the central cylinder being; = 400 nm. In all cases the resonance wavelength of the
cavity modes for a background refractive index varying freym= 1 to n, = 3.5 was
calculated. The results of the simulations are summariadedg. 8.4. The dispersion
maps presented in this figure, depicting the variation ofahgorption cross-section
spectra with the background index of refraction, demotestizat the resonance wave-
length of the cavity modes increases linearly with However, the rate at which the
resonance wavelength varies withis dependent on the specific plasmonic mode and
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the structure of the cavity. As expected, the smaller themel of the cavity mode, the
steeper the increase of the resonance wavelengtmyjtee also Fig. 8.2]. We also re-
mark here that the mode lines in Fig. 8.4 clearly show a discoity of the mode. This
effect however is a result of the;; andn step sizes used to obtain the data. As will be
shown in the next section, the sensitivity of these nondindasmonic cavity modes
is very high, thus, one would require a very fine step size &h the wavelength and
the refractive index, which would have been computatigneXpensive. Figure 8.4d
shows a zoomed in area of the absorption spectra in Fig. 8hich has been obtained
with a finer refractive index step size. Thus, it becomesr¢lest the modes in question
are indeed continuous and that the discontinuities apparethe spectra are simply
a numerical artifact. Figure 8.4 also illustrates the disjp@ properties of the multi-
pole plasmonic modes, which appear as a series of spechads liaat are more closely
spaced at increasing value of the background index of tadracThese resonances
have a low() factor and as such are less effective in sensing applicgtiberefore,
they are not discussed in what follows.

8.3 Applications to Plasmonic Sensors

Having established the main physical properties of thenpdasc cavity modes sup-
ported by the plasmonic cavities described in the previ@esian, we now discuss
their potential for applications to plasmonic sensing. @bpendence of the resonance
wavelength on the background index of refraction allowstorealculate a quantity that
plays a central role in characterizing the performanceadmlonic sensors, namely, the
refractive index sensitivity of the sensor. The sensorifieitg is defined as the varia-
tion of the resonance wavelength per unit change of the waaokg index of refraction.
Mathematically, it is expressed &s= d\/dn,, and can be determined by calculating
the slope of the dispersion curves of the plasmonic cavitgesoAnother important
quantity characterising a detector is the detection limit, which is defined as the ra-
tio between the wavelength resolution of the deteetpand the detector sensitivity,
i.e.,, DL = ¢/S. In what followso is measured in nanometres wheréxsis measured
in refractive index units, RIU.

Figure 8.5a presents the dependence on the backgroundtirefrandex of the
resonance wavelength of the plasmonic cavity mode of thadanal cavity that con-
tains a plasmonic nanowire at its center. The dispersionesunave been calculated
for several values of the radius of the central nanowiregiramfrom R; = 350 nm
to R; = 400 nm. It can be seen that the slope of the dispersion curve ineseagh
the radiusR;, which again is explained by the fact that the mode volumeedses
with R;. Consequently, the sensitivity of the plasmonic cavity@ases withR;. This
conclusion is confirmed by the data plotted in Fig. 8.5b, Wishows the dependence
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Fig. 8.5: (a) Resonance wavelength of the plasmonic cavigewf a six cylinder cavity with a
cylindrical inclusion vs. the background refractive ind@x) Sensitivity of the plasmonic cavity
vs.d and R;. The markers correspond to a six cylinder cavity, @n eight cylinder cavityx)
and a six cylinder cavity with a cylindrical inclusion (+)p8d lines serve as a guide to the eye.
The separation distance is= 70 nm in the case of the six cylinder cavity with a cylindrical
inclusion.

of the sensitivity of the plasmonic modes on the parametefisidg the cavities, de-
termined for each of the three cavities. Indeed, it can be #es the sensitivity of the
cavity increases witl;, with S = 944 nm/RIU for R; = 400 nm. Similar large values
of the sensitivity of sensors based on plasmonic perfecirbbss have been recently
reported [7]. Importantly, of the three designs investgaihe hexagonal cavity with
a central inclusion presents the largest sensitivity, @agithe octagonal one has the
lowest S. This result further proves that generally cavities wittgéa mode volume
have lower sensitivity. For a specific cavity, however, tepehdence of the sensitivity
on the cavity shape can be more intricate. Thus, Fig. 8.5tysltizat the sensitivity of
the hexagonal and octagonal cavities increases with theratpn distance, which
means that the sensitivity is determined not only by the m&wf the cavity mode but
also by its particular field distribution.

Utilising the results discussed above the detection lifhihe devices can be cal-
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the case of the six cylinder cavity with a cylindrical indtus

culated. The actual value of thel depends on the wavelength resolution of the de-
tector employedy. In what follows it is assumed that = 0.01 nm, in order to make

a quantitative comparison between these findings and seeesmt results pertaining
to plasmonic sensors [8—10]. With this assumption, theegfar the detection limit of
the hexagonal cavity design varies frdml7 x 1075 RIU to 1.17 x 105 RIU whend
changes from0 nm to 60 nm, respectively. Similarly, the hexagonal cavity desigriwit
a cylindrical inclusion has &L ranging froml.1 x 10~° RIU to 1.05 x 10~° RIU when

R; increase fron350 nm to 400 nm. It is important to stress that not attempt was made
to optimize the sensitivity of the plasmonic cavities aneréfore further improvement
of the device performance is possible. Although one careseHower detection limits
by using millimeter-sized plasmonic sensors, my designides the unique advantage
of submicron sensing volume. This functionality makes tbsigh easily integratable
in on-chip plasmonic sensing systems.
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Another important characteristic of sensing devices isdistection accuracy, or
signal to noise ratio (SNR). The SNR represents a conven@ains for comparing
the level of the detection signal to that of the backgrounigendn spectral sensing
characterization it is defined &R = 6\ /w, whered\ is the shift in the resonance
wavelength for a given and is the spectral full width at half maximum of the res-
onance. The SNR for all three cavity designs, for differeadtiges of their geometric
parameters, has been calculated. In all calculations itagasmed thain, = 0.01
andn, = 1.4142. The results are shown in Fig. 8.6. The curves for the six agidk e
cylinder cavities show a similar trend, with the SNR valuessthe hexagonal cavity
varying from2.049 to 1.2414 asd varies from10 to 60 nm. It should be noted that
the dependence of the SNR on the separation distance (SNBades with d) is op-
posite to that of the sensitivity of the devices, within then® parameter range. This is
due to the broadening of the absorption peaks as the sepadisiances increase. The
same conclusion holds for the six cylinder cavity with a calnhclusion. In this case,
the SNR varies froni.263 to 0.6764 as R; increases fron350 to 400 nm. Unlike the
case of the sensitivity of the devices, of the three desitpessix cylinder cavity with
a central inclusion has the lowest SNR. This result showsttige is a complex in-
terplay between the geometrical characteristics of thenpdaic cavities and the main
parameters that characterize their sensing performare . SNR values of the pro-
posed plasmonic devices are within the typical range aabiewvith waveguide based
plasmonic sensors [11,12].

8.4 Conclusions

To summarise, in this chapter, we have seen that cavityeshapsemblies of metal-
lic nanowires support dark plasmonic cavity modes whosen@sce wavelength is
strongly dependent on the geometry of the cavity and thechiet properties of the
background medium. In addition, the suppression of theatamti losses of these plas-
monic cavity modes leads to a significant increase of thealityufactor, a property
that has important practical applications to plasmonicssen Our theoretical analy-
sis has revealed that these dark plasmonic modes can btweffeexcited by electric
dipoles induced at the surface of the metal by the SHG oppicadess, thus making
them extremely sensitive to changes in the surface pregesfimetals and variations
of the dielectric environment generated by thermal effectshemical processes. In
particular, we have demonstrated that this phenomenoneanilsed to design plas-
monic sensors with enhanced sensitivity to changes in tthexiof refraction of the
dielectric environment. For example, this study has shdwahdetection limits as low
as10~° RIU can be readily achieved with submicron-sized plasmonis@®sn These
theoretical findings can lead to new experimental researnbm-linear plasmonics and
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exciting applications to active plasmonic nanodevices.
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Chapter 9

Theoretical Investigations of Tuneable
Plasmonic Metasurfaces

9.1 Introduction

Several recent studies have theoretically predicted thatcan tailor the properties of
LSPs formed in a 2D array of asymmetric apertures in metéliics so that the mid-
infrared optical transmittance of the corresponding plasicy metasurface becomes
strongly dependent on the polarisation of the incoming fjgl®] or the shape and
distribution of the apertures [3]. In this chapter we wilepent an in-depth theoretical
and numerical analysis of this effect, as well as a comparisorecent experimen-
tal results. In particular, a simple design for asymmetriaperture whose properties
can be conveniently tuned, namely, a Swiss cross with asynmaems is used. The
plasmonic response of arrays ®fmmetriccruciform apertures has been extensively
studied both theoretically and experimentally [4-8]. TI8PLresonances of such sym-
metric apertures, however, consists of two degenerate snodkeogonally polarized
with respect to each other and therefore the optical trasson of the correspond-
ing plasmonic metasurfaces is polarisation insensitivéhils chapter we show that by
introducing structural asymmetry in the design of the daron aperture, the optical
transmission and reflectance of a uniform, periodic arraasginmetric apertures show
enhanced optical anisotropy. In particular, the maximurtheftransmission spectra,
which corresponds to the resonant excitation of a LSP intaey ®f asymmetric cruci-
form apertures, can be tuned by alm@&t; by simply rotating the plane of polarisation
of the incident wave [9]. Moreover, by using Babinet’s pipie, the ideas presented in
this chapter can be readily extended to the complementamegty of metallic crosses
placed on a dielectric substrate [10, 11].
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Fig. 9.1: Schematic of a 2D grating which can be numericatiyeistigated using the rigorous
coupled wave analysis method.

9.2 The Rigorous Coupled Wave Analysis Method

The numerical simulations described in this chapter ard tsdind the transmission
coefficient, reflection coefficient, absorption and the figistribution inside metallic
gratings. While there are several formalisms which can bel@yed for this task, this
work relies on a numerical algorithm specifically designedthis type of problems,
namely, theigorous coupled wave analySiRCWA) algorithm [12, 13].

Figure 9.1 illustrates a typical grating structure which ¢& analysed using the
RCWA method. Note that RCWA can also be used in 3D structuugsfer the sake
of simplicity of this presentation, the discussion in threstson will be limited to a 2D
grating. The first step of the RCWA method consists of splitthe simulation in three
domains: the area above the grating characterised by a ttigityiie;, the substrate
below the grating with,, and the grating region itself. The electromagnetic field in
each of these regions is treated separately.

Assuming for simplicity an incident plane wave normal to ¢ginating surface and
with componentE perpendicular to théz, z) plane, the field reflected by the grating
into the area with dielectric constant can be expanded as (if harmonic time depen-
dence:™! is assumed) [12]:

Ey= Y Rye iCwmohionz), (9.1)

m=—00

whereR,, are the reflected field coefficients ahd ,, = |/kZe; — k2 .- The period-
icity of the grating structure determines the expressioh,of ask, ., = k, — mK,
whereK = 27 /A andk, = ko./€ sin 6. Here and aboveé;, andd are the free-space
wave vector and incidence angle of the incoming wave, réisde Note that in this
region, the total field also includes the incoming wave, Wwhicassumed to be known.
In the substrate region, underneath the grating, the triteshfield can be expanded
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as. -
E'2 — Z Tme_i[k:v,mx“l‘sz,nL(Z_h)]7 (9.2)

m=—0oQ

whereT,, are the transmitted field coefficientsjs the height of the grating layer and
]ng,m = 1 //{3862 — k%,m

Inside the region of the grating itself, the permittivily becomes a function of
bothz andz, ¢, = ¢,(z, z). This function can be expanded into a Fourier series owing
to the periodicity of the grating. Thus,(z, z) becomes:

e(z,2) =€z + A, 2) = Z €gn(z)emEm N (9.3)

n

whereA is the period of the grating. The electric field inside thetiggacan also be
expanded as:

By= Y Gu(e)ebemathoncd) (9.4)

where G,,(z) are the space-harmonic field expansion coefficients apd =

koy/€1 cos .

To solve the electromagnetic problem, the coefficierfg =) need to be deter-
mined first. In the grating region, the field satisfies the wegeation:

V2E, + kie,(z,2)E, = 0. (9.5)

Combining this Helmholtz equation with Egs. (9.3) and (94)ds the following infi-
nite set of second-order coupled differential equations:

d*Gn(2)
dz?

dGn(2)
dz

— 2iky. 0 = (K2, + ED)Gm(2) = k3 Y €n(2)Gmen(2).  (9.6)

Once Egs. (9.6) are solved and the space harmonic coefficigrit:) are known, both
the reflected and transmitted wave coefficierits, andT,,, respectively, can be de-
termined by imposing the boundary conditions between treethegions. As such, at
the interface between the top region withand the grating, the boundary conditions
require that:

E,=FE, H =H, (9.7)

where theH field is parallel to ther axis (see Fig. 9.1). In the substrate region, the
boundary conditions require that:

E,=E, H,=H, (9.8)



Equations (9.7) and (9.8), coupled with the solution of E§%) thus completely de-
termine the field distribution in the entire simulation i@yi

In the technical implementation of the RCWA, Egs. (9.6) aseally solved using
a state-variables method employed in linear system asal¥d4]. Common to many
numerical methods, the infinite sum in Eqgs. (9.6) is trurgtébea finite sum, with the
accuracy of the results being determined by, amongst gtthersiumber of terms one
keeps. To this end, an important numerical parameter redjloy the RCWA method
is the number of harmoniogsed. The number of harmonics (diffraction ordeks)s
defined asV = (M —1)/2 where)M is the total number of expansion terms considered.
A typical value for the number of harmonics used in our simaftais N = 16. For
complex gratings, such as the one in Fig. 9.1, whereitiependence af, (z, ) needs
to be considered, the grating region is “sliced” into a o€ layers perpendicular
to the z-axis, which are numerically treated as havigg= ¢,(z). Also, appropriate
boundary conditions are imposed at the interface betweem &djacent layer. Due to
the periodicity of the layer, the simulation domain is liedtto the unit cell on the-axis
(or z- andy-axes in the case of 3D gratings). On thaxis the domain is considered
to be infinite in both directions with the wave propagatingading to Egs. (9.1) and
(9.2).

The RCWA method is an efficient numerical solver for the peobbf light diffrac-
tion on gratings, with several commercial and freely ad@damplementations being
widely used. In the remaining of this chapter, as well as @ral0, the RCWA method
will be used to investigate the electromagnetic responptasmonic metasurfaces with
asymmetric features.

9.3 Sample Fabrication and Experimental Measure-
ments

In this section, we briefly describe the fabrication progafsthe grating being inves-
tigated theoretically. Thus, the cruciform aperture asrasre fabricated using the fo-
cused ion beam (FIB) technique. The device structure anbrecéded array are shown
in Fig. 9.2. Each array hd$ x 15 unit cells and a periodicity in both theandy direc-
tions of A = 2 um; thus the array has dimensio#sx 30 um?. The size of the arrays is
large enough so that size-dependent array effects areyiteglj15]. A similar array of
symmetric cruciform apertures was fabricated as a conamlpte. This array had the
same periodicity and same number of unit cells as the arrfegsyonmetric apertures.

The transmission spectra of the arrays were measured ugurgeFtransform in-
frared (FTIR) microscopy. The transmission spectra werenatized to the bar€ak,
substrate while the reflection spectra were normalizeddatipatterned gold surface.
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Fig. 9.2: (a) Schematic of the unit cell also showing the dkifim of the in-plane electric-field
polarisation angle,d. (b) Scanning electron micrograph of an array with the inskbwing
magnified detail. (¢) Schematic cross-section throughXhesegment, as shown in (b). The
devices were fabricated at the London Center for Nanotdogydy P. Thompson and E. Osley.
For more details see Ref. [9]

Data were obtained for incident in-plane polarisation aadhs defined in Fig. 9.2a)
betweerf = 0 andf = 90° in 15° increments.

The resulting experimentally measured transmission spéot the asymmetric
cruciform array, presented in Fig. 9.3a, show two distireaks,A and B, the posi-
tions of which, to within the accuracy of the measuremerd,iavariant with respect
to the polarisation angle. As the polarisation angle is gedrfromd = 0 to = 90°,
the amplitude of peakd decreases from its maximum value reached at 0 and
eventually decays to below the noise level, while the pBdiegins to emerge and in-
creases in amplitude to reach its maximund at 90°. The spectra in Fig. 9.3a show
another intriguing spectral poini, (at A=4.46:m), at which transmission is indepen-
dent of polarisation. Drawing from an analogy from molecslaectroscopy, this point
is termed an isosbestic point [1]. By comparison, the spdair the control array of
symmetric cruciform apertures show a single peak (see Fdg)@%nd, within the in-
herent variations introduced by the fabrication procdss ttansmission is insensitive
to the polarisation of the electric field. In addition, a samssion minimum is seen at
A = 3.3 um, for arrays of both asymmetric and symmetric aperturess minimum
corresponds to the Wood’s anomaly of the periodic array armtedicted to occur at
Aw = ndA/\/m [15-17], wheren, is the index of refraction of the dielectric
medium and; andj are mode indices. In the case of square arrays the largest wav
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Fig. 9.3: (a), (c), and (e) Measured FTIR transmission, k@i and absorption spectra (re-
spectively) for an array of asymmetric cruciform apertusegh L, = 1675 nm, L, =
1003 nm, g, = 418 nm and g, = 165 nm. These spectra show polarisation angles vary-
ing fromé# = 0 (blue) tod = 90° (brown) in increments of5°. (b), (d), and (f) Simulation
of FTIR transmission, reflection and absorption spectradsymmetric cruciform apertures
with the above dimensions. (g) and (h) Measured transnrissim simulation spectra for the
control array of symmetric cruciform apertures with dimems L, = L, = 1264 nm and

g: = gy = 368 nm. Experimental measurements were performed at the LondoteCtor
Nanotechnology by P. Thompson and E. Osley.

length at which the Wood’s anomaly occurs corresponds=tal and; = 0. As such,

for an array withA = 2 pm the wavelength of the Wood’s anomaly corresponding to
Au-air (ng = 1) and AuCaF; (ng = 1.4) is Ay = 2 pm and Ay = 2.8 um, respec-
tively. The measured reflection spectra (Fig. 9.3c) areiguiakly anti-correlated with
the transmission spectra, with clear reflection minima atvwavelengths of the trans-
mission peaksd and B. Remarkably, for both the reflection and absorption spectra
(Fig. 9.3e) there is an isosbestic point, its wavelengthdpéiue-shifted with respect

to that of the isosbestic point in the transmission spetii@icosbestic point of the re-
flection and absorption spectra is at the wavelength 4.36 ym and\, = 4.32 um,
respectively).

In order to investigate theoretically the optical propestof the fabricated arrays,
it was necessary to know the fabricated dimensions of tlagsras defined in Fig. 9.2a.
Owing to fabrication process variability, the dimensiomgach aperture vary. There-
fore, measurements were taken of 10 fabricated apertuescimarray using scanning
electron microscopy and the dimensions averaged. For thg af asymmetric cruci-
form apertures the lengths of the arms of the cruciform wewed to bel., = 1675 nm
and L, = 1003 nm, whereas their width wag, = 418 nm andg, = 165 nm. Note
also that for the array of symmetric cruciform aperturegitation tolerances led to
a small degree of asymmetry, the corresponding mean vakiag b, = 1270 nm,
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L, = 1258 nm, g, = 362 nm, andg, = 373 nm. Therefore, in this case the values
of L, and L, were averaged to arrive at a single mean value= L, = 1264 nm.
Similarly, the values of the width of the armg, andg,, were averaged to the mean
valueg, = g, = 368 nm.

Device simulations were carried out using commerciallyilatée software,
RSoft’'s DiffractMOD [18], which implements the RCWA metho8imulated spec-
tra for the arrays of asymmetric and symmetric cruciformrigjyes are shown in Fig.
9.3. In the simulations, numerical convergence was reaaleh N = 17 harmonics
were included for each transverse dimension, which amdondstotal of N? = 289
Fourier expansion terms. Furthermore, it was assumed hafréquency-dependent
dielectric constant of Au is described by the Drude model (2dL4)). In the case of
AU, w, = 13.72 x 10'° rad /s andvy = 4.05 x 10" s~* [19]. Note that since the devices
operate in the mid-infrared frequency domain the contrdouio the dielectric constant
of inter-band effects can be neglected. In order to achieyeoal agreement between
the experimental data and the numerical results howeweiddimping frequency had
to be increased to — 1.5y = 6.08 x 10'* s~!. This fact is not surprising since it
is well known that due to electron scattering into surfaegest the dielectric constant
of metallic nanostructures depends on their size when titregiwonding characteristic
size is comparable to the skin depth. For metallic films, thi& bamping frequency
is replaced byys, = Ywux + @vr/d, wherea is a theory-dependent quantity on the
order of 1,05 is the Fermi velocity, and is the thickness of the film [20]. Interestingly
enough, at optical frequencies the corresponding scadicif was found to be equal
to 3 [21].

The two transmission maxima and their polarisation-depeoé, as well as the
spectral location of the isosbestic point and the Wood'sraaly in the experimentally-
measured spectra are well reproduced in the simulatedraggecthe asymmetric aper-
tures. An additional peak, labeled (A = 2.6 um), is however observed in the sim-
ulation, which in the experimental data appears to be onghdy above the noise
level. Likewise for the array of symmetric apertures, th@wdation reproduces the
single peak of the experimental datadat= 4.6 um, but also predicts the existence
of an additional peak” at shorter wavelength. This additional peak is at the same
wavelength as for the asymmetric apertures. The inseitgit¥ the position of peak
C' to the detailed geometry of the unit cell suggests that itus tb extended sur-
face plasmon polariton (SPP) resonances. Indeed, the evegtbl of SPPs is given
by the relation\spp = (A/\/i% + j2)Rey/eaean/ (€4 + €au) [15-17], which implies
that for Au-air and Auc€aF, interfaces the SPP wavelengthNgp = 2.005 pm and
Aspp = 2.807 um, respectively. Sincka,| > €4, Aspp is only slightly larger than\y.
The extended SPP resonances are significantly weaker ixgegimental measure-
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Fig. 9.4: Simulated spatial profiles of the electric field tbi= 0 andf = 90°. Panelsa, b, c,
andd show the field profiles at a wavelength3o$ xm (corresponding to peaM in Fig. 9.3b),
while panels, f, g, andh show the field profiles at a wavelengthzf5 um (corresponding

to peakB in Fig. 9.3b). The electric field is normalized to the ampl#wf the incident plane
wave.
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(d)

Fig. 9.5: Simulated spatial profiles of the electric field g tisosbestic point\( = 4.75 pm,
corresponding to point | in Fig. 9.3b) f&# = 0, 8 = 45°, andd = 90°. The electric field is
normalized to the amplitude of the incident plane wave.

ments, as compared to those in simulations, presumablyaiosges resulting from
the surface roughness of the evaporated metal film [22] amdiignal-to-noise ratio of
the detector in the lower-wavelength spectral domain.

In contrast, peaksl and B result from local surface plasmon resonances in the
shorter and longer arms of the asymmetric aperture, ragphictMore specifically,
they correspond to the cut-off wavelength of the waveguidel@s supported by the
cruciform apertures. This interpretation is further supgd by the fact that the simu-
lated spectra for the symmetric apertures are polarisatidependent as in this case the
two modes are degenerate. Importantly, since the propeartithese modes are defined
entirely by the shape of the apertures, the correspondamgrnnission depends only on
the optical coupling between these modes and the incomargeplave and as such itis
not affected by the roughness of the top surface of the neeféth. The amplitudes of
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the measured LSP transmission pedksnd B are suppressed by comparison with the
simulated peaks due to similar loss processes which supfireextended SPP modes
as described above. Structural variations introduceddfetbrication process may also
play a role.

Figures 9.4 and 9.5 show the simulated field distributionthiwithe apertures
which help confirm that the interpertration of peaksand B corresponding to LSP
resonances is correct. The field profiles correspond to enddgtalf of the thickness
of the Au film. Figure 9.4 shows the field distributions at pation angles off = 0
andfd = 90° at the two transmission peaks in Fig. 9.3b. The field profiepanels
(a)—(d) in Fig. 9.4 illustrate the in-plane electric-fieloheponents ah = 3.9 pm (cor-
responding to peal), while panels (e)—(h) in this same figure show the field peefil
at\ = 5.75 um (corresponding to peak). From these simulations it is clear that peak
A occurs due to the resonant excitation of a waveguide modesthemarily polarised
transverse to the shorteroriented arm of the aperture (as shown in 9.4a). Similarly,
peak B corresponds to the cut-off wavelength of a waveguide modie polarisation
primarily transverse to the longer;oriented arm (as shown in 9.4h). Switching be-
tween these two modes is accomplished by changing the gaftim of the incident
plane wave. It should be noted that these LSP resonanced domespond to the cut-
off modes of the separate arms of the cruciform apertures) tes case the cut-off
wavelength would obey the relation < 2max(L,, L,). Importantly, this result sug-
gests that the wavelength of the transmission peaks canaddyréuned over a wide
spectral range by simply changing the shape of the apertures

Figure 9.5 shows the in-plane electric field distributiohtha transmissive isos-
bestic point in the simulations (Fig. 9.3b), = 4.75 um, at polarisation angles of
0 = 0,60 = 45°, andd = 90°. Unlike the fields corresponding to transmission maxima,
the fields calculated at the isosbestic point do not havedopneant polarisation state.
This phenomenon also explains why such an isosbestic pasiseThus, if7;,(\) and
T,(X\) denote the transmission spectra corresponding to an imca&ne wave polar-
ized along ther- andy-axis, respectively, and it is assumed that there is a wagéte
Ao, for whichT,(Xg) = T,(\o), then, at\ = ), the total transmission corresponding to
the polarisation angléis T'(\g) = T, (\g) cos® 8 + T,(\) sin” 4, i.e,, it is independent
of the polarisation angle. In other words, despite the fact that the plasmonic metasur
face is anisotropic, at = )\ it is optically isotropic. A similar argument holds for the
isosbestic points in the reflection and absorption speattiapugh the wavelength at
which the reflectivity coefficients,(\) and R,()), and the absorption components,
A, (X)andA, (), are mutually equal would differ in the three cases. Thisiiexpected
result as the total transmission and reflection coefficiants implicitly, the total ab-
sorption, depend in a intricate way on the reflection andstrassion coefficients at the
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Fig. 9.6: L,-dependence of the wavelength of the LSP transmissionaesesA (blue) and

B (red), and the isosbestic poitit(green). Filled points are experimental data; unfilled gein
are data from simulations. Error bars if, correspond to the standard deviation of the fab-
ricated device dimensions. Experimental measurements pegformed at the London Center
for Nanotechnology by P. Thompson.

top and bottom facets of the metal film as well as the couplogfficients between the
LSPs excited in the cruciform apertures and the incomirtgfmng plane waves [15].

Going back to the analogy with physical chemistry, the plasicmetasurface can be
viewed as a 2D distribution of meta-molecules whose paaility, at the isosbestic

point, is independent on polarisation.

In order to further validate the interpretation of the plegsorigin of the resonant
peaks, the spectral location of the resonant pehksid B, as well as that of the isos-
bestic point/ for several values of,, are plotted in Fig. 9.6. As expected, pedKthe
shorter wavelength peak) shifts to longer wavelengths eetigth,L,,, of the shorter
arm increases, whereas pdakthe longer wavelength peak) is invariant with. Also,
as the length of, increases, the cruciform apertures tend toward symmetky. ind
L,. Thus peaksi and B, and the isosbestic poitt tend to converge toward a single
peak with the amplitude of peak increasing (due to an increasing area of the optical
mode) and the amplitude of ped@kdecreasing. Also plotted in Fig. 9.6 are the results
of the simulations for varyingd.,,. The values of_,, g,, andg, used in the simulations
are given by the mean of all these values across all the armaysmeasured by SEM.
The results of the numerical simulations agree well withakgerimental data, using a
single value of the damping frequengy= 6.08 x 102 s~. This confirms the physical
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interpretation of the features observed in the experinisptectra.

These findings suggest that the functionality of the proggdasmonic nanos-
tructures can be greatly enhanced by interspersing arragsevunit cell consist of
cruciform apertures with different sizes or, more gengralpertures with different
other shapes. Since the transmission maxima of the arral/thair optical reflectiv-
ity are determined solely by the frequency of the correspgntdSP resonances, the
spectral optical response of these plasmonic nanostasctan be tailored for specific
applications, allowing one to explore new designs of frempyeagile metasurfaces with
enhanced functionality. One such potential applicaticim isroadband negative index
metamaterials. Specifically, it has been demonstratedoghédyering 2D plasmonic
arrays of symmetric crosses and dielectric thin-film spaoere obtains metamateri-
als with a negative index of refraction [6]. In this conneatithe study present in this
chapter suggests that employing plasmonic arrays madeyofrastric crosses opens
up the possibility of achieving negative index of refrantmver a broad frequency do-
main. Moreover, the frequency of LSP resonances changesisamtly with the index
of refraction of a chemical substance filling the apertuagseffect that can be used
to develop new plasmonic-based nanodevices for paralethip sensing for chemi-
cal and biomedical applications. In particular, it has besrently demonstrated [23]
that molecules deposited on an optically thick metallic fperforated by a periodic
array of holes can dramatically affect the transmissiotspeat wavelengths at which
they are strongly absorbent, an effect called absorptidoded transparency. In this
connection, it can be readily understood that these plagnstmictures can be used as
tunable surface filters for chemical or biological analysis

9.4 Using Plasmon Resonances to Enhance Absorption
in Metasurfaces

Another important application of the high field enhancemachievable in nano-
patterned plasmonic metasurfaces is the ability to inerdas total absorption of such
structures. As it is well known, the absorbed electromagrmiwer in a material is
directly proportional to the square amplitude of the eledield in that material [24]
(also see appendix D). Consequently, our plasmonic métess can be used to both
enhance and control the amount of absorption in such stegtirhis has major prac-
tical implications in developing new metamaterials witthanced absorption such as,
for example, new photovoltaic devices [25, 26].

To investigate this effect, a new set of devices was falgtathus, the meta-
surfaces shown in Fig. 9.2 were covered with a 100 nm thickrlaf poly(methyl
methacrylate) (PMMA). The covering process employed tha spating method to
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Fig. 9.7: Experimentally measured (circles) and simulagsalid line) transmission through a
100 nm thick slab of PMMA. The experimental data was obtaatethe London Centre for
Nanotechnology by E. Osley.

ensure that the PMMA layer is uniformly distributed on togloé Au layer while com-

pletely filling the cruciform apertures. These samples wieea analysed using FTIR
microscopy, as before. The fabrication and experimentars of the PMMA devices
were carried out at the London Centre for Nanotechnology .@dtey.

Due to its molecular structure, PMMA shows an absorptiorkpsa.783 pm,
which corresponds to the resonant absorption of the caoggen double bond [27].
It was already shown in Fig. 9.6 that the spectral positiotheftransmission peaks in
cruciform apertures can be easily tailored throughoutrifraied spectrum. At the same
time, Fig. 9.4 indicates that the peak in transmission istduee strong field enhance-
ment inside the apertures, caused by the excitation ofitezhplasmon resonances. By
combining these two phenomena it can thus be possible toatpas well as enhance,
the absorption, transmission and reflection charactesisti PMMA coated metasur-
faces.

In order to find the appropriate geometrical parametershiemew devices, one
of the two spectral peaks of a cruciform array needs to behedtto the absorption
peak of PMMA. Numerical simulations based on the RCWA wendgomed in order
to determine the proper parameters required for the newtapsr In order to accu-
rately model the absorption of the carbon-oxygen doublelptire transmission of a
100 nm thick PMMA slab was experimentally determined. Transnaisshrough the
same structure was then numerically calculated. The inaagipart of the refractive
index of PMMA was modelled using the Lorentzian function:

_2A[ v

By tuning the parameters of Eq. (9.9) it was possible to abéavery good fit of the
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Fig. 9.8: Top panels show numerical results for transmissi@flection and absorption of a
PMMA coated cruciform apertures (solid lines) and an idestiaperture with PMMA treated
as a non-absorbing dielectric (dashed lines). Bottom paekbw the experimentally measured
values for a PMMA coated structure with the same geometpyelxental data was obtained
at the London Centre for Nanotechnology by E. Osley.

experimentally measured transmission spectraffor 21.6 nm, v = 46.5 nm and
Ao = 5.783 pm. Figure 9.7 summarises our results.

Using this accurate model of the absorption in the PMMA, ip@ssible to nu-
merically find the transmission, reflection and absorptipactra of PMMA coated
cruciform apertures. The numerical results showed thaafoasymmetric cross with
geometrical parameterts, = 1.731 pym, L, = 1.185 um, g, = 0.471 pm and
g, = 0.265 pm, the wavelength of the transmission pdalexactly matches the wave-
length of the PMMA C=0 bond absorption peak. A sample withséhgeometrical
parameters was then fabricated and analysed using FTIR.

Figure 9.8 shows the results of the numerical and expermhamnestigations. The
presence of the PMMA layer has a significant effect on thetspleshape of the plas-
mon resonance. The transmission through the aperturesases due to the PMMA
coating and is also strongly influenced by the intensity efftbld, as expected. Thus,
for § = 90° polarisation, for which the uncoated structure has a mamirtransmis-
sion at this wavelength, the transmission is decreasednbystl 5%. However, for the
6 = 0 polarisation, the decrease in transmission is only ab&%utin the case of the
reflection coefficient, the decrease in transmission isapamied, as expected, by an
increase in reflection. Remarkably, however, at a polaosaingle ofd ~ 20°, the
trend reverses and the reflection decreases compared tefetion of an uncoated
aperture. This effect has an interesting consequencee @dbkef) = 20° polarisation,
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the reflection spectra of the PMMA coated structures becatessical to the reference
spectra of the apertures with no PMMA absorption.

The third plot in Fig. 9.8 shows that the PMMA coating has gédaeffect on the
absorption as well. As the polarisation angle approaéheso(°, the relative absorp-
tion increases. This agrees well with the original assuompthat the stronger field
enhancement at the resonant wavelength and polarisatgla aiil lead to a higher
absorption in this structure. It is worth mentioning herat tihese results were obtained
for a single structure that was designed so that the seceodaat peak of the cruci-
form aperture would be located at the same wavelength asMiAPabsorption peak.
With further tailoring and more complex geometries it canplssible to build new
designs with an even higher increase in absorption as wétleaability for fine tuning
of the absorption, the reflection and transmission by sinspBnging the polarisation
of the incoming light. Finally, it is important to note thaigF-9.8 also shows a very
good agreement between the numerical and experimental data

9.5 Conclusions

In summary, in this chapter, a comprehensive theoretighkaperimental study of op-
tical properties of plasmonic metasurfaces charactefyestrong form-anisotropy of
the unit cell was presented. In particular, it has been detnated that the excitation of
LSP resonances strongly affects the transmission speicthe @lasmonic nanostruc-
ture by providing polarisation-dependent transmissi@nciels. This feature allows the
transmission properties of the plasmonic arrays to be Isetiched by properly engi-
neering the shape and size of the unit cell of the array. Tiedi@gs can foster exciting
new applications in nanophotonics and plasmonics, innyiffequency-agile surfaces,
polarisation-selective absorbers, strongly anisotropgtamaterials, plasmonic-based
sensors for chemical and biomedical applications, anddtraad negative index meta-
materials.

At the same time, it was shown that PMMA coated plasmonic sugfaces can
further enhance the resonant effects in anisotropic seijeatings, leading to increased
absorption. As such, this property could be employed iniegibns where high field
concentration and high absorption are required such asgxXample, new plasmon
based photovoltaic devices. It also becomes clear tha¢ ttesigns could potentially
be employed in non-linear optical devices either by relyangurface second harmonic
generation or by using a bulk non-linear material. Suchrtffoould lead to new phys-
ical insight into the properties of metasurfaces, inclgdine design of metasurfaces
with externally tuneable effective non-linear properties
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Chapter 10

Second Harmonic Generation In
Plasmonic Metasurfaces

10.1 Introduction

As discussed in Chapter 2, there is a high degree of intemestm-linear effects in
nano-patterned metasurfaces and their technologicatagiphs. In this chapter, a the-
oretical and numerical study of second harmonic generatichiral metasurfaces will
be presented and the results compared to experimental dsdiine first part of the
chapter will present the results of a computational analysthe spatial distribution of
the local field enhancement at the fundamental frequenay.nlimerical maps of the
local field enhancement at the fundamental frequency wiho®vn to match the ex-
perimental mapping of SHG sources. Consequently, thiyaisgbroves that the origin
of the SHG can unambiguously be attributed to maxima of thitase charge den-
sity, which in turn depend on the geometry of the structufbsse results suggest that
SHG microscopy can be used efficiently for mapping the loedd fenhancement in
nanostructured metamaterials [1].

In the second part of the chapter an example of how SHG miopmyscan be
used to investigate complex electromagnetic phenomenatasurfaces, at the nano-
scale, will be given. Specifically, it will be demonstrateal\nnumerical simulations
confirm that surface non-linear effects can be studied usiagnagnetisation-induced
second harmonic generation (MSHG) microscopy. Thus, it lwélshown, through a
mix of numerical results validated by experiment, that acef plasmons can create
asymmetries in the rotational dependence of the MSHG sigvtdath can reveal the
direction of the magnetization in nanostructures made ckaii[2].



10.2 The Origin of Second Harmonic Generation in
Chiral Optical Metamaterials

To understand the origin of SHG in metallic gratings we neecbinsider the polarisa-
tion at the second harmonic. As previously mentioned, thiansation ca be written
as the sum of two contributions:

P,(2w) oc P (2w) + P (2w) = eoxiit  Bj(w) Br(w) + eoxioni B (w) ViEy(w), (10.1)

Wherexf.?,l and xg’,ll are second- and third-rank susceptibility tensors, rasfy,
while i, j andk represent any of the Cartesian coordinategsandz. The first polarisa-
tion term in Eq. (10.1) is theurface-specifielectric dipole contribution, indicated by
the indexs. The second polarisation term in Eq. (10.1) includesaihi&-specifielec-
tric quadrupole and magnetic dipole contributions, intidaby the index. In isotropic
media, the latter takes the following form [3]:

Pb<2w> = 60(ermm — Xayyzr — Xzzzy — Xry;py) Z ézEz(W)vZEZ<W> (102)

i

+ EO%V[E(C‘O ‘E(W)] + €0Xayya[E(w) - VIE(W) + €0Xaayy E(W)[V - E(w)].

If metals are considered, this relation can be written as [4]
P’(2w) Xayye[E(W) - VIE(W) + Xoayy E(w)[V - E(w)]. (10.3)

If we assume thdE,,..;(w) = L(w)E(w), whereL(w) represents the local field factors
for the fundamental frequency [3], it then follows that, foe dipolar contributions:

Pyoeat < L(26)XE) : B toeat (@) By jocat(w) o< L(2w) L (w) PP (2w), (10.4)

i ijk -

where L(2w) represents the local field factors at the SH. The local fiedtbfa L(w)
andL(2w) contain the contributions from plasmonic excitations fsas those observed
in our nanostructures. Furthermore, for the quadrupolatridmtions:

Plocat(20) 0¢ L(20) Xayya[L(w) E(w) - V]L(w)E(w)
+ L(20) Xaayy L(W)E(W)[V - L(w)E(w)]. (10.5)

Combining Egs. (10.4) and (10.5), we obtain:

Piocar(20) = L(2w) L (w)P(2w). (10.6)
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And henceforth, the intensity at the second harmonic carxpeessed as:
I(2w) o |L(2w) L*(w)P(2w) % (10.7)

This relationship implies that, in metal nanostructures, expect a correspondence
between the distribution of local field enhancement at timeléumental frequency and
the SHG sources.

One of the main difficulties in characterizing the SHG fromtatiec nanoparti-
cles stems from the fact that the SHG can be the result of @kevempeting contri-
butions, such as electric dipoles, magnetic dipoles ardreleuadrupoles, as well as
higher-order effects. In centrosymmetric materials, tbed]) bulk electric dipole con-
tribution to the SHG cancels and, therefore, the leadimgosources of the SHG are
surface electric dipoles and the (nonlocal) contributirosn bulk magnetic dipoles
and electric quadrupoles. In metallic nanostructures)dbal field enhancement and
the corresponding large spatial variation of the field tstion increase the contri-
bution to the SHG of both the surface and bulk componentgd_arultipolar contri-
butions have thus been observed in plasmanghaped [5] ands-shaped [6] metal
nanostructures. Contributions from octupoles to the SH@aiof gold nanoparticles
with size of~ 100 nm have also been reported [7]. In this connection, a theaetic
model that attributes most SHG to the bulk sources, thusa@xph the enhancement
of multipolar contribution to the SHG, has been proposedH®)wever, this same issue
of surface versus bulk contribution to the SHG in nanostmext metal films has been
previously investigated, the conclusion of this study behmat the surface contribution
dominates [9]. While the distribution of the local field enbament at the fundamental
frequency undoubtedly plays a role in the SHG response, thetbe studies lack an
experimental mapping of the near-field distribution at theosxd harmonic.

The relationship between the local field enhancement at uhdamental fre-
quency and the SHG in chiral metamaterials has not been ugamisly demonstrated
yet. Because of the large dielectric constant of most mdtasiear-field distribution in
metallic nanostructures is extremely inhomogeneous .dwvipus theoretical studies the
local field enhancement and spatial field inhomogeneity haesn taken into account,
for instance, when calculating the SHG response of sphgraréicles [10]. Numeri-
cal simulations based on the multiple scattering apprdactexample, can rigorously
provide the spatial variation of the fundamental frequeany the second harmonic
fields at nanoscale although, in some cases, they can bedimseming and computa-
tionally demanding. To validate these numerical algorghhowever, it is essential to
develop alternative, experimental techniques, which Hrerto be used in conjunction
with numerical methods to explore nonlinear optical eSeaitthe nanoscale.
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10.3 Numerical Simulations and Experimental SHG
Microscopy

The plasmonic structures being investigated are showngnli.1. In Fig. 10.1a and
Fig. 10.1b, the geometry of the G-shaped and mirror-G-ghapaostructures, respec-
tively, can be seen. The substrate consists of a singleatiipst Si layer toped by a
100 nm thick SiO, layer. The Au structures have a thicknes2®fhm and are grown

on top of the silica. A3 nm thick layer of Ti assures adhesion between the Au and
the substrate. The transverse profile of the structuretusrihited in Fig. 10.1c. The
samples were fabricated and experimentally investigatdteeKatholieke Universiteit
Leuven. The experimental SHG field distribution was achdevging a confocal scan-
ning microscope with a fundamental excitation wavelendgt®0® nm.

Numerical characterisation of the chiral metasurfaces pearmed using two
complementary approaches. The first one maps the distribafifundamental surface
currents in the structures and employs the MAGMAS solver@QRAAS is a numerical
software tool, originally developed at the Katholieke Uarsiteit Leuven, for electro-
magnetic problems in the microwave and millimeter wavedeswy bands [11,12].

In the second approach, the near-field distribution at tineldmental frequency
was investigated using RSoft’'s DiffractMOD [13] which isde@l on the RCWA. In
the simulations numerical convergence has been reached Whe- 17 diffraction
orders were used [see Sec. 9.2] for each transverse dimengioch amounts to
M = (2N + 1)? = 1225 Fourier modes. Moreover, it was assumed that the dielec-
tric constant of gold is described by the Lorentz-Drude nhotlee simulations have
shown that the Ti adhesion layer does not affect the fieldidigton at the surface of
the metallic structures although, as expected, it leadsr¢et overall absorption in the
structure. This increase can be explained by the preserthe tfin metallic layer of Ti
which, coupled with the resonant surface plasmon modeds leaincreased metallic
absorption. Figure 10.2 illustrates this result.

For these structures, under the influence of linearly peaarilight, SHG mi-
croscopy reveals four hotspots that are positioned aloagltagonals in Fig. 10.3c

(a) G- shaped . (b) mirror-& (c) < Au
_— e e—— Ti
T~ sio,

<—Si

Fig. 10.1: Four-fold simmetry chiral (G-shaped) metasoda. Panels (a) and (b) show the
surface pattern. Panel (c) gives a depth profile. The sampbae prepared at the Katholieke
Universiteit Leuven by V. Valev et al. For more details, set R].
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Fig. 10.2: Electric and magnetic field profile distributioasthe surface of the G-shaped nanos-
tructures. In (a) and (b), electric field profile without andinthe Ti adession layer, respectively.
In (c) and (d), the same but for the magnetic field.

and Fig. 10.3d. This result has already been reported, ththegprecise location of the
hotspot on the structures was not clear [14].

Figure 10.3e and Fig. 10.3f show the numerical maps of theentidistribution
at the surface of the nanostructures, calculated using MAGMn each case, the
strongest field enhancements are situated in four regi@isctirespond to the SHG
hotspots. Because these simulations do not take into attieerdielectric, the sub-
strate, and the Ti adhesion layer, their agreement with #@& 8sults demonstrates
that the electromagnetic behavior of the gold nanostrastig the main cause for the
SHG signal. Moreover, numerical simulations of the elediglds at the fundamental
frequency in Fig. 10.3g and Fig. 10.3h are in remarkableeageat with both MAG-
MAS simulations and the SHG microscopy. For better compansith the SHG, the
DiffractMOD results show the squared electric fields at thdase of the nanostruc-
tures. The agreement between the experimental results s¢tond harmonic and both
simulations at the fundamental frequency can also be obdédov right-hand circularly
polarized light, Fig. 10.3i to Fig. 10.3n, as well as for {b&ind circularly polarized
light, Fig. 10.30 to Fig. 10.3t. It should be noted that forcalarly polarized light,
there is a large circular dichroism effect both in the SHG anthe simulations. In
fact, this effect regarding SHG has previously been repotteough, as with linearly
polarized light, the location and origin of the hotspot patis was ambiguous.

It should be noted that both the MAGMAS and the DiffractMODsiations were
performed with a linearly polarized light and did not tak&iaccount the tight beam
focusing of the beam. More specifically, the incident bears agsumed to be a plane
wave. In the case of the simulations performed using Difv2D, field profiles for
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Fig. 10.3: Mapping of the SHG sources matches the mappingirfdice field enhancements
at the fundamental frequency. In (a) and (b), the geometrtheftwo sample configurations
that were used for the gold nanostructures. Experimentscatcllations were performed for

linearly, right-hand and left-hand circularly polarizedght as indicated on the left side. The
images are organized columnwise according to the sampkiniges (c), (i), (0), (e), (k), (q),

(9), (M), (s) and (d), (i), (p), (M, (), (), (h), (n), (t) fer to G-shaped and mirror-G, respectively.
The first two columns of the images are obtained with SHG sgeoqy. The third and fourth

columns are calculated with the MAGMAS software. The fitgstéolumns were obtained at the
Katholieke Universiteit Leuven by V. K. Valev et. al.. Thé fiind sixth columns are obtained
with the DiffractMOD software.

the circular polarisation were obtained by combining theuhes of two independent
simulations withz andy linear polarisation, respectively. Thus, the field ampléun
the case of circularly polarised light can be written [15]:

U;ircular — U](z) + ZU](y), (108)

whereU is either of the electric or magnetic fielgss one of the three Cartesian coor-
dinatesr, y or z and the superscriptsandy denote the direction of linear polarisation.
The choice of plus or minus in Eq. (10.8) correspond to leftigint circular polari-

sation, respectively, when looking into the beam. The agesg between simulations
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Magnetic helds

Fig. 10.4: Magnetic fields at the surface of the gold nanagtrtes also match the distribution
of SHG sources. In (a), (c) and (e), magnetic field intensitgsishaped nanostructures, for
linearly, right-hand circularly and left-hand circularlpolarized light, respectively. In (b), (d)
and (f), magnetic field intensity in mirror-G-shaped namostures, for linearly, right-hand
circularly and left-hand circularly polarized light, reggtively. The white lines are guides to
the eye, highlighting the correspondence to the SHG miomspatterns.

and experimental results clearly demonstrates that thefoigusing does not represent
a crucial factor, which is explained by the fact that the potformation is chiefly a
near-field effect. The simulations results in Fig. 10.3 pinpthe exact location of the
hotspots on the structures and establish a clear relatpphshween the location of the
second harmonic sources and local field enhancements ofdbigiel currents and
field, at the fundamental frequency.

In optical metamaterials, it was suggested that larger Sig@ats could be de-
tected when magnetic-dipole resonances are excited, gsazethwith purely electric-
dipole resonances [39]. In order to investigate the magrtids at the fundamen-
tal optical frequency in the G-shaped nanostructuresyaufMOD simulations were
performed and the resulting maps are shown in Fig. 10.4tisgawnith the G-shaped
nanostructures, as it can be seen for linearly, right-h&edlarly and left-hand circu-
larly polarized light in Fig. 10.4a, Fig. 10.4b, and Fig.4d€).respectively, the maxima
of the magnetic field intensities correspond to the SHG mswopy patterns, indicated
with white lines. This same correspondence is also obsewitbdhe mirror-G-shaped
nanostructures, in Fig. 10.4d, Fig. 10.4e, and Fig. 10.4f.

These results demonstrate that the sources of SHG in thessuses coincide
with the locations of large local field enhancements at the@mental frequency. From
a practical point of view, this data demonstrate that SHGrosiopy constitutes an
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Fig. 10.5: Magnetization-induced second harmonic genemnais measured in four-fold sym-
metric magnetic, plasmonic nanostructures. (a) and (b)raagnetic force microscope images
of the sample structures. The yellow-blue contrast revagial in-plane magnetization for
B=+25 mT and B=-25 mT, respectively. In (c), second harmanicroscopy shows plasmonic
local field enhancements at 800 nm. The direction of polidras indicated with an arrow. In
(d), the geometrical structures of the unit cell is supelisgd on the SHG micrograph in order
to illustrate the origin of the SHG hotspots. In (e) and (Basal distribution of the intensity of
the magnetic and electric fields, respectively, upon etigiteof the sample with 800 nm light.
SHG microscopy results were obtained at the Katholieke éfgiteit Leuven by V. K. Valev et
al.

effective imaging method for mapping local field enhancetm@nmetamaterials. This

new visualisation tool is important because it can be imsémntal in exploring the novel
properties of chiral optical metamaterials.

10.4 Second Harmonic Generation in Nickel Chiral
Metasurfaces

A similar structure to the one described in the previousigeatas also investigated
using numerical techniques and SHG microscopy. In this,¢hseAu surface features
were replaced by structures made of nickel. Nickel is knowvhe a good plasmonic
material [16, 17] and, unlike the noble metals, also exhibitong magnetisation. In
these samples, the presence of plasmons is directly ewtddncmeans of SHG mi-
croscopy images. These images are collected using anadeptbcess to the one de-
scribed in Sec. 10.3.

The field profile shows four hotspots within the unit cell otifdGs. While this
unit cell is indicated with a red rectangle in Fig. 10.5a amgl E0.5b, it is indicated
with a white rectangle in Fig. 10.5c. For clarity, in Fig. 36.the geometry of the
unit cell is reproduced over the SHG micrograph. In this nesnthe origin of the
hotspots is revealed. The hotspots themselves are duediskxt field enhancements
that result in localised SHG sources. The field enhancenaet® consequence of
localized plasmons in the Ni nanostructures, in agreeméhtrwamerical simulations
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Fig. 10.6: MSHG intensity as a function of the azimuthal skemptation angle for G-shaped
(a) and mirror G-shaped (b) metasurfaces. The samples areegl in an external magnetic
field which is switched betweenl 53 mT (black) and+158 mT (red). The measurements were
performed at the Katholieke Universiteit Leuven by V. Kevadt al.

of both the optical frequency magnetic (Fig. 10.5e) andtete¢Fig. 10.5f) fields.
The simulations are performed using RSoft DiffractMod, ewital convergence being
reached ifN = 18 diffraction orders are used for each transverse dimengdiba.
dielectric constant of Ni is described by the Lorentz-Druaaedel, with the interband
effects being characterized by a superposition of four hizmians.

The samples were placed in an external magnetic Balehich was applied in the
plane of optical incidence. The samples were then rotataharthe: axis (azimuthal
rotation). According to Eq. 2.72 the orientation of the metgmfield will directly affect
the second harmonic field intensity due to MSHG. This effescthown in Fig. 10.6
whereinB is switched from—153 mT to +158 mT. The MHSG intensity shows a
corresponding switch between the two case, as theorgtjmadticted. Furthermore, it
can be seen in Fig. 10.6 that the position of the resonantspsaependent on the sam-
ple rotation angle. This can be explained by the fact thatinsamples, light waves
couple to plasmon modes that depend on the geometry of thestmaotures. Rotat-
ing the samples changes the orientation of the structurgsrespect to the direction
of optical polarisation. Consequently, the total MSHG nsti¢y can exhibit local max-
ima depending on whether or not plasmon modes are addrelsgpthat particular
location. Thus, it can be said that MSHG can be used to relrealitection of magneti-
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sation in asymmetric metasurfaces made of nickel, as atdasalt of the excitation of
surface plasmon modes.

10.5 Conclusions

In conclusion, numerical simulations were used to show tiatiocal field enhance-
ment at the fundamental frequency matches the distribatidmt-spots in SHG from
metallic metasurfaces. Consequently, it was shown that $ti€soscopy can accu-
rately map the SHG sources of a nanostructure. These resaltdso in good agree-
ment with the existing theoretical framework for SHG enteament from local field
factors. The numerical simulations presented here couldxtended to the second
harmonic response in order to reproduce the overall SH@sittefor different polari-
sation cases.

Also, it was shown that the MSHG effect leads to a change inntiemsity of the
second harmonic wave in metasurfaces made of nickel. Tliegshis also strongly
affected by the coupling of surface plasmon modes and, asutr®&SHG can be
employed to determine the the direction of magnetisatiomagnetic nanostructures.
This result suggests that it is possible to build nano-pagi metasurfaces wherein
the effective linear and non-linear properties can be aslbr controlled using the
magneto-optic effect.
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Chapter 11

Zero-n Bandgaps in Photonic
Supperlatices containing Negative
Refractive Index Materials

11.1 Introduction

One important type of photonic crystal can be obtained byaiag alternating lay-
ers of NIMs and positive index materials (PIMs) [1-3]. Thisoponic structure (ex-
ample shown in Fig. 11.3) has unique optical propertieduding complete photonic
bandgaps [4] and phase-invariant field for cloaking appbcs [5]. Moreover, these
binary photonic structures have an omnidirectional bapdbat is insensitive to wave
polarization, incidence angle, structure periodicityd atructural disorder [6]. The ex-
istence of such a gap is because the path-averaged refraatiex is equal to zero
within a frequency band [1-3]. Specifically, at this freqoyerthe Bragg condition,
kA = (nw/c)A = mm, is satisfied form = 0, irrespective of the period of the
superlattice; herek andw are the wavevector and frequency respectively, and
the averaged refractive index. Because of this propersyghotonic bandgap is called
zero41, or zero-order bandgafs].

Near-zero index materials have a series of exciting pakapplications, such
as beam self-collimation [7], extremely convergent lersed spontaneous emission
control [8], strong field enhancement [9], and cloaking desi[5]. The vanishingly
small value of the refractive index of near-zero index materand their large phase
velocity can reshape electromagnetic phase fronts enbitexptical antennas [10] or,
for highly-directive antennas, transfer near-field phadermation into the far-field.
At the near-zero index regime the electromagnetic field masrauisual dual charac-
ter, i.e., it is static in the spatial domain (phase diffeebetween arbitrary spatial
locations is equal to zero) while remaining dynamic in tmeetidomain, thus allow-
ing energy transport. Nevertheless, perhaps the most targ@pplication of near-zero



index materials is to optical links in lumped nanophotonrcuits [11]. In particular,
chip-scale optical interconnects or interferometers taat guide light over hundreds
of wavelengths without introducing phase variations caeffectively used to reduce
unwanted effects of frequency dispersion. This remarkptdperty has other exciting
technological applications to photon delay lines with za@nase difference, information
processing devices, and new optical phase control and mesasut techniques.

Through the use of finite difference time domain (FDTD) siatigns, the exis-
tence of the zeraris verified in a PIM-NIM stacked Si waveguide. This same mdtho
will also be employed to show that the photonic bandgap isisbhgainst structural
disorder.

11.2 The Finite-Difference Time-Domain Method

There are several numerical methods widely used to studgrthiagation of electro-
magnetic waves through complex structures. Two of theséadsthave already been
discussed, namely, the multiple scattering matrix methudl the rigorous coupled-
wave analysis method. One of the drawbacks of both theseoaeth that they solve
Maxwell's equations in the frequency domain. While the MSthod can be extended
to the time domain, it still relies on solving what is essalhia frequency domain
problem. One of the most popular and widely used numerigarahms in electromag-
netism, which operates in the time domain is tinée-difference time-domain method
(FDTD) [12]. Since FDTD is a time-domain algorithm, it allewene to investigate the
dynamics of the electromagnetic field and, implicitly, ig@stral content. FDTD simu-
lation can cover a very wide frequency range with a singlematational run by using
a very narrow temporal pulse as a source. A brief overviewhefRDTD formalism
will be given in this section and its advantages over fregydrased solvers as well as
several of its limitations will also be discussed.

Finite-difference time-domain is a time-stepping aldurtthat uses a leap-frog
type iteration to update the values of the electric and magfield at different time
steps and throughout the entire computational grid. To dp iththe FDTD approach,
the spatial domain is split into parallelipipedic unit sdthown asree cell§13]. Figure
11.1b shows the standard cartesian Yee cell. The numeabtay of the electric field
are calculated in the centre edges of the cell while the ntaggfields are calculated
at the centre faces of the cell. It is interesting to note imahis approach, two inter-
spersed spatial grids are actually employed. One contaénsléctric field components
on its edges, while the other contains the components of #ymetic field. This spatial
discretisation method is known as tiaggered-gricapproach.

To better understand the mathematical formalism emplayéde FDTD method,
consider the simple one dimensional case of a wave propggaitbong ther-axis in a
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Fig. 11.1: Standard finite-difference time-domain compatel domains: a) schematic of spa-
tial and temporal stepping in a 1D simulatiom; represents the time steps. The two vertical
bars denote the numerical interfacE field, solid line andH field, dashed line) between two
dielectric withe; andes; b) the 3D Yee cell [14].

non-dispersive dielectric medium with permittivityand permeability:. Figure 11.1a
illustrates this physical setting. Assuming an electrilfpolarisation along thg-axis,
the one dimensional wave equation can be written:

0? 1 6

whereU can be either, or H.. Equation (11.1) can be written as two separate, first
order, partial differential equations:

dE,  OH.

OH,  OF,
= e, (11.2b)

By using the Yee grid in Fig. 11.1a, Eqgs. (11.2) can be writisra set of discrete
equations in time and space:

n+1/2 n—1/2 n n
(Hz)m+l/2 B (Hz)m+1/2 . 1 (Ey)m—i-l — (Ey)m

= —— 11.
At 1 Ax (11.33)
(B — (B VHE = (H)E
At T e Az ’ (11.3b)

wheren andm are indices of the time and space steps, respectively drehd Ax
are the time and space step size, respectively. Equatidn3) (teveal how the FDTD
iteration process works. At any given time stefhe electric field at each point in space
can be calculated using the value of the field at the previmesstep and the numerical
curl of the local spatial distribution of the magnetic field whishknown from the
previous half-iteration. The calculation of the magnegtdioccurs at time step+1/2.
This procedure mimics the physical process of a varyingtetefteld giving rise to a
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varying magnetic field, which in turn gives rise to a varyirgogric field, and so on.
The start of this iterative process occurg at 0, where the spatial distribution of the
electric and magnetic field components is given by the iretadition €.g.the source
used in the simulation).

The question now arises as to how FDTD handles inhomogerstaucsures, that
is to say, separate areas of space with different electroetagroperties. Figure 11.1b
gives a basic example of this case. At the interface betweemtedia withe,, 14; and
€9, l12, the linear electromagnetic boundary conditions need tmpesed. More specif-
ically, the tangential components of the electromagnegid$i need to be continuous
across the interface. In the simple 1D case, FDTD handlesahinuity conditions of
the two field components individually on the two separategrFor example, in the
case of the’, component, the interface between the two media is conslderie on
the cell boundary of the grid containing the electric fieldhgmnentsi(e. the solid line
in Fig. 11.1a). Because this grid interface is shared bywleregions, the continuity
of the £, component is enssured. Equation (11.3a) can now be useditthBrmag-
netic field in the next half-iteration at the two neighbogrpoints of the grid. As these
points lie on either side of the interface, the valueuas well defined in both cases.
The same reasoning is applied for tHe component but in this case, the material in-
terface is taken to lie on the cell boundary of the magneit @e. the dashed line in
Fig. 11.1a). The tangent compondit is once again continuous across the interface
and the values of needed for the next iteration are well defined on either sidae
interface. In real applications however, it is unlikely tthiae actual interface will lie
on the boundaries of one of the grids, in which case an avegagfithe electromag-
netic constants of the two media is required for some of ths close to the interface.
This method is also used, for example, when dealing witheximterfaces, such as
cylinders or spheres. Because of this, for structures vétl fine features, a very high
spatial resolution is required. At the same time, the ahibtaccurately determine the
field at an interface, like in the case of the multiple scattemethod, is lost. This is
one of the disadvantages of the FDTD method.

An important factor to consider when using the FDTD methodhis type of
boundary conditions imposed at the edges of the system. DA®Fnethod finds the
values of the fields throughout the entire spatial domainngtgiven time step. As
such, the actual domain of simulation needs to be finite antedorm of boundary in
the case of a propagating wave. Several solutions to thidgmoexist. In some cases,
periodic boundary conditions can be imposed, which meaasithulation is limited
to the unit cell of the structure being investigated. Howgewethe case of finite struc-
tures, periodic boundary conditions cannot be used. Ore dfboundary conditions
often employed in this case is the perfect metal boundardition. In this case, the
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fields at the boundary are forced to zero in the spatial stegpdmithe boundary, which
cuts off the simulation domain. Perfect metallic walls, leeer, still experience reflec-
tion back inside the structure, which can be undesirable@vBrcome this problem, a
type of boundary layer known agerfectly matched laygPML) was introduced [15].
Perfectly matched layers act as a perfect absorber withfleztien back into the sim-
ulation domain. In the case of FDTD, however, due to the disgation of space and
time, a PML will have to be large enough to fully absorb the gvand only reflect a
small part of the field back into the system. In practice, a Rivth about 16 unit cells
reduces the reflection coefficient to less than® [12]. The PML boundaries must be
taken far enough from the structure being investigated ¢veant any unwanted inter-
ference (usually one wavelength is sufficient).

Another important factor to consider in FDTD simulationshe size of the time
and spatial discretisation stepst and Az, respectively. Thus, the numerical stability
of the FDTD method is governed by numerical stability is goeel by theCourant-
Friedrichs-Lewy(CFL) condition. This condition requires that, for the siation to be
stable, the time and space step sizes are related by:

cAt < SAx, (11.4)

where S is known as theCourant factor A well known rule for the Courant factor
states that:

n .
g < Lmin_ (11.5)
V Ndim

wheren,,.;, i1s the minimum refractive index in the system aig,, is the number of

space dimensions of the simulation. The main implicatiothed stability condition

is that when decreasing the size of the spatial step in oadebtain a higher spatial
resolution, the size of the time step also needs to be dextessording to Eq. (11.4),
which can lead to a large increase in the computational t@sgecially in the case of
3D simulations.

11.3 Negative Refractive Index in Photonic Crystals

In Chapter 2, the idea that an effective negative refradtisiex can occur in artificially
structured media was discussed. An increasing interegtigative index metamaterials
(NIMs) [16,17] has been withessed over the last years. Nbetséd NIMs [18—-22] have
been actively studied due to their unusual physical progeeand potential use in many
technological applications [23—-25]; however, they usubHve large optical losses in
their metallic components. One method of overcoming théadivantage of metallic
NIMs is to design dielectric structure with negative refraic where the optical losses
would be reduced.
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The reason behind the existance of media with negativeatefeaindex stems
from the definition of the refractive index:

n = £\/eu, (11.6)

wheren is the index of refraction and and ;. are the permittivity and permeability,
respectively. Whemandyu are both negative, the minus sign must be taken in Eq. (11.6)
and as a result, the refractive indexvill be negative. Achieving negative permittivity
and permeability is possible in metallic metamaterials mpkying sub-wavelength
resonant structures.

However, one can also define the refractive index in terméi®@fntave vectok
and the group velocity,, as [26]:

k
n = sgn(v, - k)cu, (11.7)
w

a definition that is particularly important in the analysistloe optical properties of
periodically structured media. Consequently, a structusghich v, - k < 0 will, for
all purposes, have negative index of refraction even witttmeineed for negativeand
IR

Photonic crystals are an example of optical structures ilchvhegative index of
refraction can readily be achieved. Thus, PhCs have beemnstooexhibit complex
photonic bands as a result of their periodicity, a propdmit teads to negative index
of refraction. To understand this concept of negativim photonic crystals, we can
employ an analysis based equifrequency surfac€gFS).

An EFS plots the contour of the wave veclofor a given frequency (k). For an
isotropic and homogenous material, the dispersion relékip= nw/c implies that the
EFS contours are circular [28]. This concept is illustrateftig. 11.2a. Here, the case
of refraction between two isotropic media is plotted. Tharheés assumed to be incom-
ing from Material 1 upon Material 2. The continuity of the ¢gmtial component dt
at the interface between the two materials (illustratedign E1.2a by the dashed line)
determines the properties of the refracted wave vector.odschbefore, the group ve-
locity of light is defined asry = V. (w(k)) whereV,, = (0k,, Ok, , Ok. ). Consequently,
the group velocity vector is always perpendicular to the EBIR8 oriented along the
direction in which the frequency, (k) increases [27]. In Fig. 11.2a, this leads to the
well known refraction case between two isotropic materials

In the case of refraction between an isotropic medium and@ Bte process is
influenced by the presence of the photonic bands in the.l&iterl1.2c shows the band
structure of a PhC consisting of a triangular lattice of alels in a InP/GalnAsP/InP
slab. Assuming light incident along th&\/ direction, in the frequency ranged marked
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Fig. 11.2: Panels a) and b) show EFS diagrams (top) and reimacschematics (bottom) for
the conventional case of refraction between two isotropdiaand the PhC case of refraction
between an isotropic medium and a PhC, respectively. Paratiaws the photonic band struc-
ture of a PhC with a triangular lattice of air holes in a InP/G8As/InP slab. All panels after

Ref. [27].

by the dashed contour.€. the “working area”), the slope of the second (green) band
implies that the group velocity should be oriented towah#sEFS in the crystal. This
effect is illustrated in Fig. 11.2b. Here, it can be seen tiegative refraction occurs
between the two media. Thus, it can be said that the photoystat has an effective
refractive index: which is negative for this particular frequency range. Tgnsperty

of photonic crystals has been investigated theoreticaby28] and verified experimen-
tally [27,29,30]. The mechanism of negative refractioniCB was also used to design

a perfectly flat lens [31, 32].

Further to this, it can be proven analytically that in an in@rPhC, the sign of
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v, - k is the same as the sign 8f- k, asv, andS are collinear [33]. However, the
Poynting vectorS, is always oriented away from the source. As a result, ¥ 0,
which impliesS - k < 0 according to Eq. 11.7, the Poynting vector and the wave vecto
must have opposite orientation. This can only occur if epamyd phase propagate in
opposite directions, which is one of the defining charasties of left-handed (negative
index of refraction) media [16].

11.4 Existence, Invariance and Robustness against
Structural Disorder of Zero- n Bandgaps

The existence of zeron-bandgaps can be demonstrated by considering a 1D photonic
crystal with periodic layers of permittivity and permeadtyil in the = direction, such
thate(z) = e(z + A) andpu(z) = u(z + A), whereA is the period of the layers. The
dispersion relation for this structures can then be detezthby solving the equation

for the electric field [1]:

) (11.8)

c

_6(12) % {M(lz) diiﬂ

We now seek a solution to Eq. (11.8) with periodidifyz + A) = E(z)e™**, wherex is
the Bloch wave vector. For a one-dimensional (1D) binaryoguke lattice, the solution
condition implies that the trace of the transfer matilix,of a primary unit cell can be
expressed as [1, 3]:

T[T(w)] = 2cos(KA) = 2cos (%) _

é%—é—2 sin mwd, sin nawd, , (11.9)
Zg Zl C C

wheren, (o), Z1(2) andd, ) are the refractive index, impedance and length of the first
(second) layer, respectively.
In the case of impedance matchirg (= Z, = Z,), Eq. (11.9) becomes:

Kol = ned , (11.10)

which is the dispersion relation of a homogenous medium axtrage refractive index
n=1/A fOA n(z)dz. When an impedance mismatch occurs ¢ 7,), the dispersion
relation is given by:

koA = —— = mm, (11.11)
c

wherem is an integer. This is the well known Bragg condition. It sgthat for any
frequencyw wheren;d;w/c is not an integral multiple of, Eqg. (11.9) will only have
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imaginary solutions im:, which leads to a photonic bandgap.

When stacking both positive and negative index materibkyetis another pos-
sibility for achieving a bandgap. Equation (11.9) implikattif the spatially averaged
refractive index ) is zero, all solutions for the wave vector are imaginary &,w
which signifies the presence of a spectral bandgap [1, 3k ptoperty also implies
that the total phase accumulation upon beam propagatidmeirstructure cancels at
wavelengths corresponding to the zefogap [6]. Unlike the bandgaps given by the
Bragg condition, this type of bandgap does not depend orptheirsy of the layers/)
and will always occur at frequencies for whigh= 0.

The photonic structures examined for the presence of zgjaps (Fig. 11.3) con-
sist of dielectric PhC superlattices with alternating Isyef negative index PhC and
positive index homogeneous slabs [3]. The PhC band streiidshown in Fig. 11.4a-b,
with geometrical parameters from averaged fabricated ksn(ipole-to-lattice constant
r/a ratio of 0.283 and: ~ 423nm). This two-dimensional (2D) hexagonal PhC has a
negative index within the spectral band of 0.270 to 0.278&armalized frequencies
of wa/2me, or wavelengths from 1520 nm to 1566 nm. Moreover, withis tiperating
wavelength range (Fig. 11.4b) the PhC has two TM-like bands, with positive re-
fractive index and the other one with negative refractivdei) and an almost complete
TE-like bandgap.

The numerical transmission spectra were determined by ii’s MEEP [34],

a freely available code based on the finite-difference titoerain (FDTD) method. In
all numerical simulations a uniform computational grid & grid points per micron
was used. This ensures that a widely used rule-of-thumbédtiing the size of the
computational grid in FDTD simulations is satisfied, nam#igat the smallest charac-
teristic length of the system (in this case, the diametehefholes) contains at least
10 grid points. The transmission spectra correspondingdpeaific geometry of the
photonic superlattice have been determined by normalisiegransmission spectrum
of the photonic superlattice to the transmission spectréithe homogeneous struc-
ture that is obtained by replacing the PhC regions with hanegqus slabs. In all the
FDTD-based numerical simulations a pulsed excitations®uith central wavelength
Ao = 1550 nm and spectral full-width at half-maximum 60 nm was used. A typical
simulation run on 64 IntegR)Xeon processors was performed in about 7 hours.

A set of three devices of different periodswere fabricated, with the negative
index PhC layer in the superlattice spanning 7, 9, and 11laatis along thez-axis,
so that the thickness of this layer wés= 3.5v/3a (2.564m), d; = 4.5v/3a (3.297
pm) andd; = 5.5v/3a (4.029 um), respectively. The experiments span 1520 nm to
1620 nm and the negative refractive index band exists foeleagths up to 1570 nm.
The effective refractive index of the PhC region is obtaifrean the band diagram
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Fig. 11.3: Schematic of a Mach-Zehnder interferometer (Miith alternating negative and
positive index regions and scanning electron microscopegén of the fabricated device. The
structure was designed and fabricated as part of a collaborabetween Columbia University,
University College London, The Institute of Microelecios Singapore, and the Center for
Functional Nanomaterials at Brookhaven National LaborgtoThe fabrication was carried
out by M. S. Aras, M. B. Yu, D. L. Kwong and A. Stein. For moreildetsee Ref. [6].

(Fig. 11.4a-b) and the PIM layer index is computed from thygrasetric TM slab
waveguide mode effective index (for example, at 1550 nm tbdearindex is 2.671).
To have the zera-frequency in the middle of the negative index band, the lenatio
between the PIM and PhC sections of the superlattice wa® $e¥78. As such, the
zeroq1 gap should occur at 1552.6 nm [6]. The corresponding PIMrl#lyiekness is
determined by requiring the average index to be zere=[ (n1d; + nads)/A = 0],
while keeping the rati@l,/d; unchanged for all three devices in the set. Hereand
ny are the effective mode indices in the PhC and homogeneoasslagspectively, at
the corresponding wavelengths. This leads to the followalges for the superperiod
(SPS):A7yc = 4.564 pm, Agye = 5.869 um andA ;¢ = 7.173 um, where UC stands
for unit cells. Example transmission spectra for the fadigd samples are summarized
in Fig. 11.4 and show that the zefiogap is around 557.8 + 1.5 nm, very close to the
theoretically-predicted valued /A < 5%) and numerically-computed spectra.

One of the main properties of zefobandgaps is their remarkable robustness
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Fig. 11.4: Band diagram of the PhC, verification of perioganant zeroa bandgaps, and
influence of structural variations on transmission spec&taBand diagram of the PhC in Fig.
11.3andd; = 2.564 pum, ds = 2 pm andA = 4.564pm. The TM-like (TE-like) photonic bands
are depicted in blue (red). The light cone is denoted by tlegidines. b) A zoom-in of the
spectral domain corresponding to experimental region tdrest. Experiments were performed
in the spectral region marked by the two horizontal line2{8-0.261 normalized frequency). c)
Experimental verification of the zero- bandgap in supedat with varying periodA gjoct. =
4.56 pm , Agpeq = 5.87 pum, and Agreen, = 7.17 pum) and the same ratiods/d; = 0.78 ,
and numerically simulated transmission spectra (dashaek). d) Influence of lattice disorder
(parametero)on the transmission spectra. Color bar indicates the traission scaling. The
simulations in panels a) and b) and the experimental measeinés in panel c) were performed
by S. Kocaman at Columbia University.

against effects induced by structural disorder. To studly pnoperty, we considered
the optical transmission in randomly perturbed photonjeslattices. Specifically, we
considered superlattices for which the PIM lengths areaarig distributed within the
domain ¢, — Ad, /2, dy + Ady/2), amounting to a random variation of the superperiod
A. The degree of structural disorder is quantified by the patara = Ad,/d,. The
main results of the computational investigation are presem Fig. 11.4d. It can be
clearly seen that the zero- bandgap is preserved even whelistbrder parameter is as
large ass = 10%), i.e., a value much larger than from the fabrication proegshlote
that the amplitude oscillations in the transmission seate Fabry-Perot resonances
in the superlattice.

In addition, the numerical simulations show that the strtadtdisorder associ-
ated with a random perturbation of the hole radii or theialoan has a comparable
or smaller influence on the existence of zarbandgaps. More exactly, the radius of

the holes is set in the domain  Ar/2, r + Ar/2), according to a uniform random
distribution whereas in the second case the location of dheshs randomly perturbed
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Fig. 11.5: Transmission spectra calculated for differentues of the disorder parameter.
The inset shows the expanded transmission spectra. Paoetrasponds to structural disorder
introduced by randomly changing the radius of the holes nRhC sections of the superlattice.
Panel b) shows the effects of structural disorder generaiexhndomly perturbing the location
of the holes.

by Al. In these models, the degree of structural disorder is ctextaed by a disor-
der parameter defined as= Ar/r ando = Al/a, respectively. The main results of
the computational investigations are summarized in Figh.Ilhus, it can be seen that
in the case of random perturbation of the radius of the hdlesttansmission spec-
tra in the superlattice are only slightly affected, everhié tlisorder parameter is as
large asoc = 10%. As observed, the main effect consists of a small decreasieeof
zeroq superlattice transmission with increasing values of tiserdier parameter. It

Is seen, however, that structural disorder induced by naatglohanging the location of
the holes has a much larger effect on the transmission spétits important to note
though that a value of = 10% corresponds to variations of tens of nanometers of
the location of the holes, variations which are much largantthose measured in the
fabricated devices.

11.5 Conclusions

To conclude, this chapter has shown that deterministic griotbandgaps can be
observed in alternatively stacked negative and positidexrnphotonic crystals. The
bandgaps are associated with a spatially averaged refaailexn = 0. The nu-
merical simulations of the transmission spectra fully aomdéid the experimental find-
ings. Zeroa gaps were also shown to remain invariant to geometric clsaofyap to
o = 10%.

The structure numerically examined in this chapter wasi¢ab¥d and used to
demonstrate, for the first time, zero phase delay in negatagtive-index superlat-
tices [6]. The engineered control of the phase delay whiplssible in these near-zero
refractive index superlattices can be implemented in slgde transmission lines and
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interferometers with deterministic phase array and dgparcontrol, and has signifi-
cant technological potential in phase-insensitive imagegssing, phase-invariant field
for electromagnetic cloaking, lumped elements in optdedeecs, information process-
ing, and engineering of radiation wavefront to pre-desigsiegapes.
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Chapter 12

Conclusions and Future Work

The field of photonic metamaterials has greatly advanceuhgltine recent years. The
ability to engineer new structures which can directly matage light has lead to the de-
velopment of new metamaterials and devices, which havegptiep and functionalities
that cannot be replicated using naturally occurring makerlt has now become crucial
to be able to probe and understand the underlying physiesigrhena that characterise
this new class of materials. This work is part of this chalieg endeavour. The ability
to investigate the electromagnetic effects occurring itamaterials, photonic crystals
and plasmonic materials offered by theoretical analysisaatvanced numerical simu-
lations complements the knowledge that can be directlyexedd through experiment.
At the same time, while significant progress in our undeditap of the principles
of photonic metamaterials has been achieved, due to advamoanotechnology and
modern nano-fabrication techniques, many aspects pirgain these materials are
largely unexplored. To this end, my work has focused on usiegretical and numer-
ical methods to further investigate the electromagnetisphotonic metamaterials. In
particular, | have endeavoured to study, within this prpjeon-linear phenomena per-
taining to second harmonic generation in plasmonic nan@tires, their properties
and applications.

| have also, throughout the course of the work, attemptei@ o these non-linear
effects to other linear and non-linear phenomena occuiringetamaterials, such as
plasmon coupling, excitation of cavity modes, rotatingspt@n modes, structural sen-
sitivity and magnetic effects. The results presented is tifesis have shown that pho-
tonic metamaterials possess a high degree of flexibilithairtdesign and operation,
from which their versatility and large number of potentippécations are drawn. Con-
sequently, having a powerful model of the interplay betwderse electromagnetic
effects and the many remarkable properties of metamageasia crucial factor in ex-
panding our current knowledge of this field. Many challengesed by this research
guestion have been successfully tackled in this thesis.



In what follows, I will discuss how my work has directly cointed to overcom-
ing some of these research challenges and how it has maragetiéve its intended
objectives. In the end, | will also elaborate on how this woak be further expanded
upon so as to open up new avenues of exploration and potgmqtiaivide answers to
some of the remaining research questions in this field.

12.1 Contributions of the Work

In this thesis, | have shown how theoretical analysis andarigal simulations in pho-
tonics can be used to better understand new electromagretitomena, design new
structures and devices with remarkable properties and hesgetresults can be corre-
lated with experimental work, so as to allow for new desighaative optical devices
and a deeper understanding of some of the important opffeate in photonic meta-
materials.

Specifically, in this thesis, | have presented a new mathieatdrmalism, based
on multiple scattering theory, that allows one to accuyateap the linear and non-
linear field distributions in an array of arbitrarily diditited metallic nanowires or,
more generally speaking, cylinders made of centrosymmatdterials. This formal-
ism is unique as it includes the full contribution of surfael bulk second harmonic
generation in centrosymmetric materials. | have also dised the implementation of
this formalism into a fully functional numerical softwai@ol which, to the best of my
knowledge, allows one for the first time to numerically invgate the largely unex-
plored area of non-linear optics in plasmonic metamaterial

The enhanced functionality of the software tools develagegart of this project
has led to a series of new results, which have been instranienexplaining and
enhancing our understanding of the complex optical phenanme plasmonic struc-
tures. In this connection, | was able to demonstrate thanpde coupling in metallic
nanowire arrays can lead to a complex response of the linehman-linear fields
which can result in high field enhancement, light localmatnd light focusing. One
of the major challenges in photonics today is to employ tlegsets in designing new
nano-scale active optical devices. In my work, | have shdvah mon-linear plasmonic
cavities can be engineered to provide high quality factorsstib-wavelength lasing
applications, to sustain whispering gallery modes, whigh be employed in optical
trapping and manipulation, and to be used as compact sublevagth on-chip sensors
for biological and chemical applications.

Itis also vital that the conclusions of analytical and nuiceranalysis be matched
with experimental results and this is especially true infiblel of electromagnetism. A
broad array of analytical and numerical methods allows onevestigate a large num-
ber of phenomena and possible designs for new photonic @evithese devices can
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then be practically implemented and studied using expeariaieneans. Consequently,
this can provide further insight into the practical appiicas of one’s work and their
practical implementation in real world devices. To this ghtave investigated how
plasmons can be employed to generate second-harmonicifigldeo-patterned meta-
surfaces, where chirality can play an important role in tba-hnear effects. | have
also discussed nano-patterned metasurfaces that candbuseate polarisation agile
structures where localised plasmon resonances lead ®4aifis in the transmission,
reflection and absorption of light in response to a changledpblarisation of incident
waves. These structures also showed great promise in giegeabsorption by using
the strong field enhancement associated with the excitatigrlasmon resonances.
These results give novel insights into the properties diaserplasmon resonances in
metamaterials and their connection to non-linear surféfeets. Finally, | have also
considered in my work the properties another type of phatstructure, specifically,
photonic crystals. In this connection, | confirmed numeiycaxperimental findings,
which demonstrated that a new kind of spectral band gap cpeaapvhen layering
positive and negative refractive index regions, corredpanto an effective zero re-
fractive index medium.

12.2 Future Prospects

The work discussed in this thesis shows that, as a logicahsidn to the results pre-
sented within, there are several new avenues which are wrpliloring. As the under-
standing of the fundamental physical phenomena which stiip® many discoveries
made in the field of photonics expands, so does the need te deén further and be-
gin to investigate more complex systems and more advancedrde which have the
potential to lead to new scientific breakthroughs. It is mlydbe¢hat further analytical,
numerical and experimental work, toward this end, can ptove an important source
of new science. As such, this section will cover the seveegsswhich can be taken to
further extend the work carried out thus far.

The OPTIMET software has, as shown throughout the bulk sfwlirk, proven to
be an efficient and robust tool for investigating linear and-finear effects in nanowire
arrays. OPTIMET inits current form can be employed for a watlege of studies, some
of which being discussed here. Nevertheless, there is goeantial for further explo-
ration using the current code implementation. There areraéwew designs which |
believe will offer new results and greatly extend the worke®o far. For example,
it is possible to use OPTIMET to investigate nanowire arraystaining only dielec-
tric or combinations of both metallic and dielectric scadts. In this case, new optical
phenomena could be investigated; large arrays of dietectmowires can be used to
observe, for example, the diffraction of light by cylindalcscatterers with radii much

217



smaller than the wavelength. In effect, this would allow tise of OPTIMET to in-
vestigate media with effective electromagnetic propsrti®r instance, by using sili-
con cylinders, the surface nonlinear effects would stilpbesent and thus it would be
possible to study metamaterials with non-linear effectik@perties, an important step
forward in developing new artificial media with complex aati response. Further, sil-
icon scatterers can be used to build photonic crystals vataal-type cavities, which
could support non-linear whispering gallery modes sintitathose discussed in this
work. The use of dielectric components would eliminate thevanted effects of opti-
cal absorption in metals. Finally, new geometries couldvafior linear and non-linear
sub-wavelength devices that possess directional fieltestag, coupling and transmis-
sion of light between devices, strong beam focusing and ratrers. These efforts can
also be aided by implementing, within OPTIMET, new typesnmfoming waves, such
as waves with a Gaussian spatial distribution.

At the same time, OPTIMET can be extended in humerous way®veldp a
more powerful software package. One of the possible exdarss the incorporation
of the effects of external magnetic fields, which can leadott Imagnetisation induced
second harmonic generation as well as the possibility tereatly control the SHG in
nanowire arrays. For example, it could be possible to tuagtbperties of whispering
gallery modes in non-linear plasmonic cavities by changjiregdirection and intensity
of the external magnetic field. In addition, using the cur@de base it is possible to
extended OPTIMET's capabilities by allowing for periodiasumdary conditions. With
this feature implemented, several new structures couldeseggded and investigated,
including structures with practically an infinite numberuwfit cells, which would al-
low one to study the near-field phenomena in non-linear matamals. Further to this,
adding support for scatterers with arbitrary shape woulmhafor new devices, such
as elliptical scatterers, bow-tie antennas and many athi@ssworth noting here that
although this design would require a spatial grid to find therimlary conditions around
the scatterers, this does not limit the advantages offeyetdomultiple scattering ma-
trix method because even in this case, the field can be rdfadihd at any point in the
geometry.

Perhaps the most important feature that can be added to CEPIT &lthis point,
however, is the ability to simulate 3D structures. This wdbopen up a large number
of possible new designs which could be investigated. Theeati2D version of the nu-
merical method relies on the expansion of the fields in cyioad Fourier-Bessel series.
For 3D structures, this expansion will have to be carriedusiig spherical Fourier-
Bessel functions and spherical harmonics. To this ende thier known algorithms and
numerical libraries which have this capability and whichulcbbe readily integrated
in the OPTIMET package. At the same time, 3D structures waoltbnger offer the
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possibility of using pure TE or TM modes, which would furthecrease the computa-
tional complexity of the software, so care will have to beetalto make sure that the
software implementation of the numerical method is fullyilmised. The use of mixed
modes would mean that the bulk component of the non-linearigation would con-
tribute directly to the second harmonic generation, whiohld open up new avenues
of exploration.

The technical implementation of OPTIMET is currently roblst with the pos-
sibilities of expanding to 3D there are areas where impram@sican be made. Paral-
lelisation will have to be achieved at a deeper level and geeaf a hybrid OpenMP
and MPI method is one possibility. Also, the output systenienfficient for the work
carried out so far will need to be extended to allow for fagtarallel output using
specialised libraries, such as HDF5 or NetCFD. At the same,twhile the input sys-
tem in the current stable version is sufficient, it would begible to extend it further
and increase its user friendliness. One method of doingghasinclude a full script-
ing language as an input system, most likely by includingstal@ished language and
wrapping itto OPTIMET’s application programming interéa©f course, it would also
be possible to extend OPTIMET by developing a fully fledgeapbical user interface
for it.

With the improvements to OPTIMET 1 just outlined, it would pessible to ex-
tend its capabilities to encompass some of the more complegtsres presented in
this work, such as metasurfaces and photonic crystals obic@nits results with other
numerical methods. As a result, further investigations efasurfaces and PhCs could
lead to new and more advanced designs with enhanced fualitjofror example, re-
placing the PMMA coating in the cruciform structures withA3acan lead to strong,
polarisation tuneable, non-linear effects. Specificalig, strong linear field enhance-
ment effect could be used to increase the second harmongcagam in GaAs. At the
same time, GaAs coated chiral metasurfaces could giveaiskital non-linear effects
and, for geometry sizes much smaller than the wavelengttasudaces with effective
non-linear properties not readily available in nature. Niorar optical effects could
also be further investigated in dielectric based photorystals were the high absorp-
tion in metals can be overcome, however, at the cost of ncelobging able to excite
surface plasmon resonances.

Thus, it is clear that there is great potential for futureelegment in the field.
With photonics offering the possibility of tackling sometbie challenges of today’s
world, and having an impact on a global scale, this poteshialld not be overlooked.
The scientific quest to understand the behaviour of our ab&nvironment has led to
countless incredible breakthroughs. Yet even with the aasiunt of scientific knowl-
edge available today, many questions still remain. Thikvwais proposed an answer to

219



some of those questions, specifically related to non-lieéfacts in photonic metama-
terials. The contributions of this thesis to the researdd tian, in my opinion, provide
a good foundation for future development, both theoretcal practical, and promises
to allow us to design and develop new active optical deviads iemarkable function-
ality. Still, many challenges lie ahead, both in the pattcease of this project, as well
as photonics in general. A well known quote, sometimedoatteid to Lord Kelvin, says
that “There is nothing new to be discovered in physics nowthdt remains is more
and more precise measurement”. Yet in the very year thiswch&s made, Max Planck
was developing his theory of the black body radiation. Pesha a similar way, it has
taken well over a century for us to fully exploit the potehtté Maxwell’s equations
and the electromagnetic field. And with what may be calledaptital revolution” on
the horizon, the future of photonics and metamaterialsddwight indeed.
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Appendix A

Non-linear Boundary Conditions at a
Metal-Dielectric Interface

The non-linear boundary conditions of the electromagnféid at the interface be-
tween two media can be found by starting from Maxwell’s et with sources [1]:

V.-D=-V.P, (A.1a)
OB
VxE+ 2 =0 (A.1b)
V-B=0 (A.1c)
oD 0P,
VxH - o = (A.1d)

whereP,,; is the non-linear polarisation. The geometry in questich t#we integration
domains used to drive the boundary conditions domains goectéd in figure A.1.
Thus, let us consider two semi-infinite media withand ¢;, separated by a slab of
vanishingly small thickness with permittivity. Because of the infinitesimally small
thickness of the slab), + P., E;, B, andH, must vanish across it, because of the
linear boundary conditions and so:

ot ot 0t 0t

/ (D, + P,)dz = / E.dz = / B.dz = H;dz =0, (A.2)

_ _ _ -

where the tangential and normal components have the indie@sl = respectively.
Thus, at is well known, in a polarised slab of infinitesimaltgall thickness, the normal
component of the electric induction becomes singular. Targlition leads to:

0t 0"

/ (D, + P,)dz = / (D, + P’ + P#)dz, (A.3)
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Fig. A.1: Integration domains for the non-linear boundagnditions at the interface between
two media. The thickness of the slab of permitivittis considered to be infinitesimally small.

where P’ is the bulk contribution to the non-linear polarisation aftlthe surface
contribution.P? and D, must vanish across a thin slab, thus:

o+

o+
/ (D. + P!+ P)dz = — / Pidz = —P}(z) = —P;. (A.4)

When integrating over the volunié, (A.1c) becomes:
/ V-BdV =0, (A.5)
\%
and from the divergence theorem:
/ B-dA =0, (A.6)
ov

which implies:
Bz,l - Bz,2 = 07 (A7)
which is the boundary condition for thie, component.

Integrating (A.1d) over the are& of contour/ with sidesL = 1, in the direction
shown in Fig. A.1 leads to:

oD\ . [ (0P
/S(VXH—E)CZS—/S<8t)dS, (A.8)

and from Stokes’ theorem:

Hoaz [ sy [P

- dS. (A.9)

Here, the first integral in the r.h.s. vanishes as the integras taken in opposing
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directions on the two sides of the interface. Thereforetdingential component dfl
must obey the boundary condition:

AH, = % X 7. (A.10)

For theD, component, the integral over the voluivieof (A.1a) is:

/V-DdV: —/ V-PdV, (A.11)
\4 \%
which combined with the divergence theorem becomes:

D.dA = —/ V - [P*(x,y)d(z) + P'laV. (A.12)
ov 14

As before P’ vanishes across the slab and so the boundary conditian.foecomes:
AD, = -V, -P*(x,y), (A.13)

whereV, = z(9/0z) + y(0/Jy) is the gradient operator in the tangent plane.
Finally, following the same procedure as for tHe component, Eq. (A.1b) im-
plies:
% E-dl=0. (A.14)
s

SinceD, = ¢'E. and [, (D, + P)dz = —P¥, it follows that:

1 ,
AE, = —Z(vtP; —PY). (A.15)

In conclusion, the boundary conditions for electromagnediation at the inter-
face between a medium with surface and bulk non-linear gaitons and free space
are:

AB, =0 (A.16a)
OP
AH, = —=2 x 2 Al
= X2 (A.16b)
AD, = -V, -Py(z,y) (A.16c)
1
AE, = —?(vtp;" —PY). (A.16d)

One final question is the nature ©f In the mathematical formalism presented above,
¢’ is a “boundary” value between ande,. In most studies of surface non-linear optics,
¢’ is usually set to be equal to the permittivity of the poladiseedium.
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Appendix B

Calculation of the Local Scattering
Matrix Coefficients in the Multiple
Scattering Matrix Formalism

At the fundamental frequency, the total field outside a @ginj at a pointP” and
calculated in a system of coordinates with origin in the epf the cylinderQ;, can
be written in the MSM formalism as [see Chap. 3 and Fig. B.Infore details]:

USHP) = 3 [dugJun(rrp) + b HE ()] €797 (B.1)
In the case of TE polarisation which will be assumed in whélotes, U = Hj.
Inside the cylinder, the magnetic field becomes:

o0

HIN(P) = 3 eollrrp)e ™. (B.2)

m=—0oQ

The azimuthal component of the electric field is related erttagnetic field by:

1 0H.
E,; = ?uow 87”]' (B.3)

From eq. (B.3), the total electric field outside the cylindgy’; and the electric field
inside the cyllnderElnt become:

1 - . e
E5 = g HO Z (A T (o) + by HY ()] €%, (B.4a)
B2 = o > cudlssr)e (B.4b)

m=—0Q
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Fig. B.1: Schematic of the system geometry [see Chap. 3 for datails].

The linear boundary conditions at the interface betweeryheder and the back-
ground ¢ = R;, with R; the radius of the cylinder) are:

HZF (Rj, @) = HI(R;, 0), (B.5a)
EZ5 (R @) = EJ5(R;. ). (B.5h)

Imposing the boundary conditions to both the electric amdntiagnetic fields yields a
set of equations for the external expansion coefficients

dmj Jm(liij) + bm‘]Hr(r%) (Hij)

- B.
Cmj o Ry) (B.6a)
/ (2)
Kj dijm(Kij) + bm]Hm (Kij)
R . B.
o Kp I (Kp ;) (8:60)

Eliminating thec,,; between the two equations above gives the relation between t
coefficientsd,,,; andb,,;:

boi By (ko R) Ty Ry) = (s Ry) Ty (s Ry)
dmj Hy(r%)(liij)J;n(HjRj> - ﬁjHr(r%)/('%ij)']m(HjRj)

(B.7)

This equation defines the local scattering ma#rjof cylinderj, as the components of
the scattering matrix are defined 85,,, = (bynj/dm;)dmn-
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In the TM case, the component of the electromagnetic field will B&. The
procedure outlined above still holds for this case with thevision that the electro-
magnetic boundary conditions#t = R; now read:

EZ(Ryy ) = EVS(Ry, ), (B.8a)
HS(Rj, ) = HIS(R;, ©). (B.8b)

Thus, the relation between thg,; andb,,; coefficients for TM polarisation can be
written as:

bmj Sy (6 Ry) I (K R5) — Jm (Ko RRj) Ty, (K B;)
g H (ko Ry) T}, (k5 By) — g HiY (ko Ry) (1 R)

, (B.9)

wherea; = (e,k5)/(€jkp).
At the second harmonic, the same scattering matrix is ustat #se fundamental
field but care must be taken when using the wave vektar) — k(2w).
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Appendix C

Components of the Non-linear
Polarisation expressed in Cylindrical
Coordinates

The non-linear source term which contains both the surfadebalk contributions to
the second harmonic generation from a cylingend embedded in a homogeneous
background medium can be written, using the notationsdutred in Chapter 3 [also
see Fig. B.1], as:

AQmj = —% /F HP (kyr;(P))e™?i PV, x P, (¢ — 1;)]e.dr’, (C.1)

wherer;(P) = |r' —r;| andl is the boundary between the medium and the cylinder
In what follows, to simplify the notations, the indexfor the polarisatio has been
dropped.

The surface contribution to the source term can be written as

. 1/(0P: oP:
(VT/XP)eZ—;(arr+P¢—8SO>. (C.2)

Here, P; = 260)(&24/);7»E7«E@ = 260X|(|T\)J_ETE<P andP? = (—:oxganf = €0X(f)lLE3 and the
components of the electric field are taken at the fundaméetghencyw.

The bulk contribution in Eq. (C.1) i€V,» x P’)e., where:
P’(2w) = a[E(w) - VIE(w) + SE(w)[V - E(w)] + 7V[E(w) - E(w)]. (C.3)

Because in the case of TE polarisation considered ligre; 0 and the source term is
part of the scalar product witd., the only relevant components of tié(2w) polari-



sation vector aré?; and P.:

b _ pbla b(3 b
Pb = Y 4 pho) 4 pho) (C.4a)
Pb — pble) . piB) | ph, (C.4b)

The six terms in Egs. (C.4) can be determined from Eq. (C.8)aae:

0E, 10E,
bla) _ el o 7%
P, (E e + E, o &p) (C.5a)
1 OE, 10F
b(B) — Z L o)
P BEw( E o + " &p) (C.5b)
Pbm == ( O, —“E, @Er) (C.5¢)
© d¢
PY@ — o EraE E, 1OE, (C.5d)
or Yr Op
PP = BE, EET + 0L, + 10, (C.5e)
or r Jy
PO = 94 <8E E, aET 7«) : (C.5f)
r
Here, as before, the electric field components are calcuktehe fundamental fre-

quencyw.
The two electric field components in Egs. (C.5) and theindgives are given by:

l

By = —powem J), (k)€™ (C.6a)
Kj
By = —mptowCm—Jm (kjr)e™? (C.6b)
K r
Eon |
887? oW I (K 41) €™ (C.60)
ETm 1 1 .
OBrm _ — Mo —Jy, (k1)e"™? (C.6d)
or Kj r
OBom _ ——mpowmJ,, (k;r)e™? (C.6e)
Op K;
E, .. ) 1 ,
OLirm _ %mQuowcm—Jm(/{jr)e’m“’. (C.6f)
Op K7 r

Here the internal field expansions coefficieftshave been used as the non-linear bulk
contribution only occurs inside the cylinders.

It is worth noting here that three of the non-linear sourcengonents,P;, P’
and P?, also enter in the non-linear boundary conditions at therfate between the
cylinders and the background [see Eqgs. (3.54)].
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Appendix D

Calculation of the Total, Scattered and
Absorbed Power in Assemblies of
Cylinders

The asymptotic form of the Bessel and Hankel functions aeit tterivatives, ag —
oo are:

Im(x) = \/gcos (93 — g — %) (D.1a)
J (x) = —\/%sin <x — g — %) (D.1b)
HO) (2) = \/ge—i(x—”z”—l) (D.1c)

H® () = —iy /ie—i(l’—%—g)_ (D.1d)
T

The total power in the system is defined as:
P = Pabs + Pscata (D2)

or the sum of the absorbed and scattered power. From Eq)(a&@assuming that all
scattering coefficients are defined relative to the ori@iand account for all cylinders
(i.e.b,, = by), EQ. (D.2) becomes [see Chapter 3 for the definition of tHegiand
scattering coefficients]:

1

2T
P = —5 / Re(Es<p . HZ*Z + E’igp : H;kz)rdgp (D3)
0



The Fourier-Bessel expansions of the four field componenEsgi (D.3) are:

H;, = Z Ay S e €™ (D.4a)
H,, = i by HP (kr)e'™¢ (D.4b)
Ei, = %ubw Z am ), (kr)e™? (D.4c)
Fup =+ 3 by HD (hr)e™, (D.4d)

where the sumation is taken over the integer numbers. Ingdtiese expression into
Eqg. (D.3) and moving the integral inside the sum yields twuasate integrals. The first
integral can be written:

2w 2w
2/~wa/ —‘(k _M_l) ;
B, Hidp = Y bei () i
/0 4 iz P Tk2r . (m (& e

(D.5)

Taking into account that:
2w ) ]
/ e dp = 2T 6mm, (D.6)
0

equation (D.5) becomes:

27.(- 4 ; mT ™
/ B, Hidp = — ;f;‘” S by, x @8 i <kr - % - %) . (D.7)
0 L

A similar expression can be derived for the second integrady. (D.3). The total power
can then be written:

P= —2';:;WRG Z(Cm cos(ay,) — Cri sin(am)] , (D.8)

where:
Q= k1 — % . g (D.93)
Cpp = aX b, (D.9b)

Here,a,, are the incoming field expansion coefficients [see Egs. }B.23
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Equation (D.8) can, after some elementary algebra, be sspdeas:

2w

P=-=3

Re{z |Cm| [COS(¢m + am) +1 Sin(¢m - am)]}

2ppw
=— 'Z:I; Z\Cm\cos(¢+ozm), (D.10)

whereg,, is the phase of’,,, C,, = |C,,|e?*". From the definition of’,,, it can be

written as:
Cm — i ‘ bm | €i<arg(b7”)_m% +m500_047n>

= ; (D.11)
b
which implies that:
Om = arg(b,) — mg + mpy — O, (D.12a)
b
= — D.12
ol = 5= (D.12b)
whereZ, = \/ /€ is the impedance of the background.
Finally, the total power in the system now becomes:
P:—Q'ubwi Z|b |Cos<ar (b )—mz+m ) (D.13)
k2 Zb — m g(0m 9 ¥o . :

The scattered power can also be determined using the expregshe Poynting
vector. According to Eqg. (3.66) the scattered power is:

1 2
Py = 3 / Re[E,, - H},rdyp. (D.14)
0

Using the asymptotic expressions (D.1) and an approackesitaithat used to calculate
the total power, it can be shown th&t., becomes:

27
Prea = % ] ;bmamﬂ?d@ = 2’“2’—;" ; b2, (D.15)
Expressions (D.13) and (D.15) show that the total and geatigowers depend on
the scattering coefficients, and known parameters of the system. Consequently, once
the scattering problem is solved (the scattering coeffisiép are determined), the
two powers can be calculated. Then, using Eq. (D.2), one eterdine the absorbed
power. It is worth noting here that for the non-linear cabe, total power cannot be
found using this approach as there is no incident field. Tted power, however, can
be calculated numerically by finding the Joule losses in ytséesn as is discussed in
Sec. 3.3.5.
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Appendix E

Linear and Non-linear Optical
Constants of Gold and Silver

| Coefficientf Au | Ag |
\,mm] | 137.3041] 137.6089
£ 0.76 0.845
T'o [nm] 23394 | 25830.33
7 0.024 | 0.065
T [nm] 5144.6 | 319.05
A [nm)] 2987.6 | 1519.43
fa 0.01 0.124
T’y [nm] 3593.8 | 2743.04
Ag[nm] 1493.8 | 276.69
f3 0.071 0.065
I's[nm] 1425.1 | 19075.7
As[nm] 417.6 | 151.47
7y 0.601 0.84
I'y[nm] 497.13 | 1353.55
Au[nm] 288.07 | 1365
7 4384 | 5.646
I's [nm] 560 | 512.54
As[nm)] 93.08 | 61.106

Table E.1: Lorentz-Drude model coefficients for Au and Ag [Eq. 2.26] [2].

| | Au | Ag |
X7 m?/V] 146286 x 10 [ 3.98 x 10~
X2, [m?/V] | 1.5903 x 108 [ 2.79 x 10~ ™3
Table E.2: Non-linear susceptibilities of Au and Ag [3].
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