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Abstract

In this dissertation, a comprehensive and rigorous analysis of BER performance in the

single- and multi-channel silicon optical interconnects is presented. The illustrated

computational algorithms and new results can furnish one with insight of how to en-

gineer waveguide dimensions, optical nonlinearity and dispersion, in order to facilitate

the design and construction of the ultra-fast and low-cost chip-level communications

for next-generation high-performance computing systems.

Two types of optical links have been intensively discussed in this dissertation,

namely a strip single-mode silicon photonic waveguide and a silicon photonic crystal

waveguide. Different types of optical input signals are considered here, including an

ON-OFF keying modulated nonreturn-to-zero continuous-wave signal, a phase-shift key-

ing modulated continuous-wave signal, and a Gaussian pulsed signal, all in presence

of white noise. The output signal is detected and analyzed using direct-detection opti-

cal receivers. To model the signal propagation in the single- and multi-channel silicon

photonic waveguides, we employ both rigorous theoretical models that incorporate all

relevant linear and nonlinear optical effects and the mutual interaction between the free

carriers and the optical field, as well as their linearized version valid in the low-noise

power regime. Particularly, the second propagation model is designed only for optical

continuous-wave signals. Equally important, the bit error rate (BER) of the transmit-

ted signal is accurately and efficiently calculated by using the Karhunen-Loève series

expansion methods, with these approaches performed via the time-domain, frequency-

domain, and Fourier-series expansion, separately.

Based on the theoretical models proposed in this work, a system analysis engine

has been constructed numerically. This engine can not only analyze the underlying

physics of silicon waveguides, but also evaluate the system performance, which is ex-

tremely valuable for the configuration and optimization of the optical networks on chip.
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Chapter 1

Introduction

Photonics can be viewed as a field that involves light-related technologies and applica-

tions, which smoothly blends the subjects of physics and engineering. During the last

few decades, photonics has spread into almost all areas of modern life and cutting-edge

technologies, including telecommunications, computing, medicine and robotics. Con-

currently, with the development of photonics in our knowledge-based society, rapidly

increasing growth of data traffic in networks driven by bandwidth-intensive applica-

tions, such as the widespread use of social networking, video streaming in mobile ap-

plications, and cloud services, is creating increasingly stringent demand for bandwidth,

which can be effectively addressed by deploying broadband optical communications

solutions [1]. Internet data centers and high-performance computing (HPC) systems

are just two examples of markets where photonic technologies can play a major role.

Optical interconnects are viewed as a promising alternative to the commonly used

copper wires [2], due to their unique features of high capacity, large transparency win-

dow, and fundamentally low energy consumption. Furthermore, the optical commu-

nications have already been deployed in the metro and long haul networks during the

last two decades [3], and will penetrate into the development of next-generation in-

formation networks [4]. In fact, rack-to-rack (1m ∼ 100m) [5] and board-to-board

(10cm ∼ 1m) [6] communications already contain optical networks in some fastest

HPC systems. It is envisioned that this trend of using optical communications at an

ever-smaller scale will continue to grow, so that in future HPC platforms will play the

main role in node-to-node and even intra-node communications [7, 8].

Then silicon-on-insulator (SOI) material platform is regarded as one of the most

appealing approaches to integrate photonics into chip-level networks, due to its unique
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characteristics listed below:

1. High index contrast. The relatively large refractive index difference between

silicon (Si) (nSi ∼ 3.46) and cladding, which can be either buried-oxide substrate

(nSi02 ∼ 1.45) or air (nair = 1), makes possible to tightly confine and guide light

in optical waveguides with deep-subwavelength transverse dimensions [9–11].

2. Broad-band transparency window. Silicon is transparent beyond 1.2 µm up to the

mid-Infrared region, which allows for ultrahigh bandwidth data communications

[12].

3. Dispersion and nonlinearity engineering. The strong light confinement enables

to greatly engineer the dispersion of Si waveguides, either by changing the

transverse size of the waveguides or by nano-patterning them. In addition, Si

possesses very large third-order nonlinearities in a broad spectral range, which

means that key active optical functionalities, such as Raman amplification, self-

phase modulation (SPM), cross-phase modulation (XPM), four-wave mixing

(FWM), and pulse self-steepening can be easily implemented by using this opti-

cal material [11, 13].

4. Good compatibility with the CMOS electric circuitries [14–16]. All basic com-

ponents of the desired photonic networks have already been implemented in

the SOI platforms, including optical amplifiers [17, 18], modulators [19–21],

switches [22–24], receivers [25, 26], and frequency converters [27, 28].

5. High thermal conductivity and high optical damage threshold [29]. Silicon en-

compasses optical damage threshold of 1−4 GWcm−2 and thermal conductivity

of 148 Wm−1 K−1, facilitating excellent mid-Infrared Raman lasers and ampli-

fiers [30].

Importantly, the recent breakthroughs in the photonic device integration [31, 32] make

Si photonics more pervasive for the chip-level information networks.

In addition to the constant drive towards downscaling the size of optical intercon-

nects, an equally daunting challenge pertaining to exascale computing systems is to

decrease the per-bit power consumption to levels that allow cost-effective operation.
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Photonic structures provide a versatile solution that addresses both these issues, as they

allow one to engineer both the linear and nonlinear properties of the optical intercon-

nects. To be more specific, by nano-patterning Si photonic strip waveguides (Si-PhWs)

and photonic crystal (PhC) waveguides (Si-PhCWs), optical properties of these struc-

tures can be tuned. A salient example of such structure are Si-PhCWs [33, 34], which

are commonly implemented by introducing a line defect in a periodic dielectric ma-

trix. In particular, the group-velocity (GV), vg, of optical signals propagating in PhC

waveguides can be reduced by orders of magnitude, which leads to a dramatic change

of the linear and nonlinear optical properties of photonic devices [35–37]. One key

consequence of this so-called slow-light (SL) effect is that the characteristic disper-

sion and nonlinear lengths, and implicitly the device footprint, could decrease signif-

icantly. On the other hand, optical losses and nonlinear effects, such as SPM, XPM

and two-photon absorption (TPA), which impair the quality of transmitted optical sig-

nals, are enhanced in the SL regime, too. Moreover, if Si waveguides are employed in

wavelength-division-multiplexing (WDM) enabled applications, photogenerated free-

carriers (FCs) provide an additional mechanism for inter-channel cross-talk, which is

an example of a detrimental effect that is enhanced in the SL regime. The advantages

provided by the SL operation of photonic devices are therefore not a priori transpar-

ent, especially if multi-channel operation is considered, and consequently an in-depth

analysis of these ideas is needed.

Furthermore, intensive investigation of main optical phenomena in Si photonic

waveguides have been carried out experimentally and theoretically in recent years. Ra-

man scattering in the Si waveguides was firstly observed in 2002 [38], followed by

the exploration of anti-Stokes Raman scattering (CARS) in 2003 [39]. Simultaneously,

several other important nonlinear phenomena were discovered, i.e., SPM [40], TPA

[41], XPM [42], FWM [43], supercontinuum generation [44], and soliton generation

[45]. In addition, research efforts have also been devoted to linear effects like optical

loss [46], GV dispersion (GVD) [47], and third-order dispersion (TOD) [48].

Up to now, even though almost all components of Si photonics ecosystem exist,

including the fundamental study (e.g., UCSB), design (e.g., Photon Design), foundries

(e.g., ST), devices (e.g., LIGHTWIRE), systems (e.g, IBM, CISCO, HUAWEI), and

end-customers (e.g., Facebook), the large scale manufacturing of Si photonic waveg-



27

uides for the optical chips is still in its infancy [49]. It will be of critical importance

to have a set of tools suitable for estimating the bit error rate (BER) of optical data

streams transmitted among different nodes of the nextworks-on-chip (NoC). In partic-

ular, a reliable characterization of the performance photonic NoC can be achieved via

a bottom-up approach, in which one first determines at the physical layer the optical

signal impairments introduced by each of the components of the NoC, are firstly deter-

mined at the physical layer, this information being then used to evaluate at the system

level the overall performance of the photonic network. Therefore, the aim of this disser-

tation is to propose a rigorous theoretical and computational software platform, which

can not only facilitate the physics of Si photonic waveguides, but also evaluate the BER

performance of photonic systems under different circumstance. In the next section, the

main objectives of this dissertation will be explained.

1.1 Main Objectives of the Work
The two main objectives of this dissertation will be discussed in this section. Aiming

at developing a set of theoretical models and computational tools for the analysis of

optical signal transmission in silicon photonic systems, both cases of continuous-wave

(CW) and pulsed optical signals will be extensively investigated. Achieving each of

the objectives amounts to employing different mathematical algorithms and numerical

implementations, which will be explained in details below.

To start with, I will use a rigorous theoretical model to describe the propagation

of optical signals in a single-mode silicon-on-insulator strip waveguide. In particular, a

superposition of a nonreturn-to-zero (NRZ) ON-OFF keying (OOK) modulated optical

signal and an additive white Gaussian noise is selected as the optical input, which

can also be analyzed by utilizing a linearized propagation model. These models fully

incorporate all essential linear and nonlinear optical effects. The BER of the output

signal will be measured via the time-domain Karhunen-Loève series expansion (KLSE)

method after direct-detection. For a better understanding of how waveguide dispersion

and nonlinearity determine the signal quality, I will present a comparative study of the

influence of the normal and anomalous dispersion regimes in Si-PhWs on the system

BER.

Subsequently, I will present an in-depth investigation of the NRZ CW optical sig-
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nal transmission in the optical system containing PhC Si waveguides operating in the

slow- and fast-light regimes. Particularly, SL spectral regions can be accessed by sig-

nificantly reduced GV, vg. This results in increased waveguide dispersion and effective

waveguide nonlinearity, as these physical quantities scale with vg as v−1
g and v−2

g , re-

spectively. Correpsondingly, the influence of SL effects on the optical field and carrier

dynamics will be also thoroughly explored.

In addition, I will also theoretically and numerically evaluate the BER in Si pho-

tonic systems employing high-order phase-shift keying (PSK) modulation formats. Par-

ticularly, both Si-PhWs and Si-PhCWs are included in the investigated systems, as well

as direct-detection receivers suitable to detect PSK and amplitude-shaped PSK signals.

Notably, the system BER will be calculated by applying a frequency-domain approach

based on the KLSE. The emphasis of this comprehensive analysis will be on how the

optical power, types of PSK modulation, and group-velocity characterize the transmis-

sion BER, as well as the relation between the influence of these factors on BER and

system nonlinearity.

Furthermore, I will illustrate a multi-wavelength optical signal propagating either

in a Si-PhW or in a Si-PhCW, with each channel consisting of a CW NRZ OOK mod-

ulated signal. As an extension of the single-wavelength signal transmission case, M̃

sets of coupled linearized equations will be utilized to describe M̃-wavelength signals

co-propagation. Both time- and frequency-domain KLSE methods will be employed to

calculate the BER of the transmitted signal. The numerical simulations will highlight

the importance of carefully selecting the waveguide types and dimensions, number of

channels, and optical input power, when taking the system performance into consider-

ation.

The second objective of this dissertation is to extensively study the performance of

Si photonic systems operating in the pulsed regimes. To fulfill this goal, I will employ

the full theoretical model to characterize the single-wavelength optical pulse propa-

gation in a Si-PhW or a Si-PhCW, and a Fourier-series KLSE method to estimate the

system BER. Then, I will demonstrate the impact of signal parameters (pulsewidth, data

rate, wavelength, power) and waveguide parameters (dispersion regions, SL regimes)

on the quality of transmitted signal. One remarkable feature of the rigorous models

mentioned above is that they can account for all types of optical signals and be easily
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extended to the multi-channel system evaluation cases.

A related point to consider is that the performance analysis engine, which will be

described in this dissertation, is of the capability to characterize more complicated pho-

tonic systems. To be more specific, this engine can be easily extended to other types of

optical waveguides, waveguide-based devices and chip-scale optical networks of prac-

tical interest. Moreover, the formalism of signal propagation theory can be modified

to incorporate additional nonlinear effects such as FWM and stimulated Raman scat-

tering, which could become important optical effects in nanoscale waveguides. A brief

summary of the whole dissertation will be given in the next section.

1.2 Outline
Chapter 2 presents the literature review of Si photonics, optical characterization of Si

waveguides, and the configuration of the photonic systems investigated in this work.

Further to that, rigorous theoretical models for the single- and multi-wavelength signal

propagation will be presented, aiming at incorporating all relevant linear and nonlinear

optical effects and the mutual interaction between FCs and the optical field. Addition-

ally, the linearized version of the full propagation model mentioned above is presented

for the case of CW signals, which is validated in the low-noise power regime. There-

after, the numerical routines regarding the full and linearized propagation models will

be described. Specifically, the former models employ the Split-step Fourier Method

(SSFM) plus a fifth-order Runge-Kutta method, whereas a Matlab built-in function is

used to solve ordinary differential equations (ODEs) in the latter models. This chapter

provides the physical background and signal propagation routines for the remaining

chapters in this dissertation.

Chapter 3 describes the computational methods for the BER calculation in Si pho-

tonic systems. Firstly, a concise literature review of the BER evaluation methods will

be introduced. Next, three types of KLSE approaches (the time-domain, frequency-

domain and Fourier-series) which are adopted in this dissertation, will be described in

details. I will then present a numerical technique called saddle-point approximation,

which is applied to derive the system BERs based on the moment-generating function

(MGF) calculated with these KLSE methods. This chapter can be viewed as containing

all the essential implementation related to the system evaluation models.
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Chapter 4 describes the numerical implementation of the system evaluation mod-

els, including the signal propagation theory in Chapter 2 and BER calculation methods

in Chapter 3. This numerical and computational tool is capable of accounting for differ-

ent types of Si waveguides, various formats of signal modulation , and varied numbers

of transmission channels. The program flow of this system evaluation engine will be

illustrated in this chapter, followed by the specification of the key parameters and the

characterization of the numerical algorithms utilized in the computer program.

In Chapter 5 and Chapter 6, I discuss the transmission of an OOK modulated

optical CW signal in the single-channel optical systems containing a Si-PhW and a

Si-PhCW, respectively, in presence of an additive white Gaussian noise. In these two

chapters, both full and linearized theoretical single-channel CW models are adopted

to describe the propagation of the optical signal in Si waveguides, whereas the time-

domain KLSE method is used to evaluate the BER. Importantly, in Chapter 5, I com-

prehensively investigate the influence of parameters characterizing the Si-PhWs on the

transmission BER, while I present and discuss the dependence of BER on the key sys-

tem parameters in Chapter 6, including group-velocity, input power, and signal-to-noise

ratio.

In Chapter 7, I focus on the evaluation of a higher-order PSK modulated opti-

cal CW signal transmitted in the single-channel strip and photonic crystal Si systems.

The modified nonlinear Schrödinger equation (NLSE) that governs the propagation of

the noisy PSK signals in Si waveguides is employed, as well as the frequency-domain

KLSE method for BER calculation. Moreover, the description of the advanced mod-

ulation formats and the details of direct-detection are also presented in this chapter.

The system performance corresponding to several PSK formats is rigorously analyzed,

considering varied key system parameters.

For completeness, in Chapter 8, I present a comparative analysis of the perfor-

mance of the multi-channel photonic systems containing a Si-PhW or a Si-PhCW, with

each channel propagating the OOK modulated CW signals. The optical properties of

the investigated Si waveguides are described in this chapter. Furthermore, the system of

M̃ coupled NLSE equations is applied to measure the propagation of a M̃-wavelength

noisy signal in these two Si waveguides, taking into account the nonlinear phenomena

like XPM and the overall FCs accumulated from these signals, whereas the time- and
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frequency-domain formulation of the KLSE method are used to compute system BER.

The impact of white Gaussian noise on BER is thoroughly studied, in presence of Kerr

nonlinearity, frequency dispersion, and FCs.

What follows next is the investigation of the single-channel Si photonic inter-

connects exploiting optical pulsed signals, as discussed in Chapter 9. Firstly, the full

single-channel pulse propagation model is utilized to describe the evolution of a single-

channel pseudorandom binary sequence (PRBS) noisy Gaussian signal. The details of

the investigated Si Photonic waveguides are also exhibited in Chapter 8, considering

frequencies (1550nm, 1300nm), dispersion regions (normal, anomalous), and GV (SL,

FL). Then, the Fourier-series KLSE method is employed to evaluate the system per-

formance. Several simulation results regarding the pulse properties and waveguide

parameters are displayed in this chapter as well, in order to provide a reference for the

photonic systems operating in the pulsed regime.

In Chapter 10, I summarize the main conclusions of this dissertation, and stresses

the main contributions of this dissertation to the field of Si optical interconnects. Future

perspectives of this work are also included in this chapter.
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Chapter 2

Background

2.1 Introduction
Silicon photonics denotes as the widespread investigation and utilization of Si medium

based photonic systems. To date, various studies of Si devices have been carried out,

aiming at constructing telecommunication systems at subwavelength scale. After the

Si waveguides were first introduced by Soref in 1985 [1], rapid progress has been made

on the Si optical modulators [2], waveguides [3], polarizers [4], interferometers [5],

filters [6] and switches [7] in the 1990s. However, it was not until the beginning of

2000s that big breakthroughs were achieved in the Si mode converters [8], receivers

[9], couplers [10], splitters [11], amplifiers [12] and photonic integrated circuits [13].

Recent improvements have been made on the Si lasers (i.e., Si Raman lasers), giving

rise to the extremely compact Si chips and efficient on-chip amplification. In parallel

to that, Si photonics has also been utilized to optical sensing, nonlinear optics engi-

neering and mid-Infrared applications, such as airport security systems, environment

monitoring and personalized health care.

Silicon waveguides play a crucial role in the field of Si photonics. With regard

to the structure, Si waveguides can generally be divided into four types [14]: (1) Strip

waveguides. This type of waveguides is basically a strip core medium surrounded by

the cladding materials (see Fig. 2.1(a)), and has wide applications in the Mach-Zehnder

interferometers (MZIs), lasers and integrated optical circuits; (2) Rib waveguides. The

guiding layers of these waveguides consist of the slabs and with the strip media on

top, as shown in Fig. 2.1(b). They are commonly used for light confinement; (3) Slot

waveguides. Their main structure comprises two ridges of the core materials, where a
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Figure 2.1: Structure of four types of Si waveguides, including (a) a strip waveguide, (b) a rib
waveguide, (c) a slot waveguide and (d) a photonic crystal waveguide.

narrow gap exists in between, as illustrated in Fig. 2.1(c). Typically, these waveguides

are suitable for the mode field manipulation and optical sensing; (4) Photonic crystal

waveguides. They are usually photonic crystal structures containing a constant cross-

section region (shown in Fig. 2.1(d)), which allows the light propagation in specific

direction. One remarkable feature of this type of waveguides is the SL regimes, where

the device size and footprint can be easily downscaled. In this work, our main research

interest is in the strip and photonic crystal waveguides.

This chapter describes the background of this dissertation, which provides essen-

tial theoretical knowledge for the following chapters. Specifically, Sec. 2.2 introduces

the optical phenomena for the Si nanowire waveguides. Sec. 2.3 discusses important

linear and nonlinear optical parameters of strip and photonic crystal Si waveguides,

which occupies a fundamental part of this dissertation. Moreover, the schematics of the

investigated single- and multi-channel Si photonic systems are illustrated in Sec. 2.4.

Sec. 2.5 describes the basic types of optical signals used in this work. Next, the signal

propagation theory will be presented, which is one of the key aspects in the system

evaluation models. In particular, the full propagation theory that incorporates all the

essential optical effects in Si waveguides is presented in Sec. 2.6, whereas their lin-

earized version is outlined in Sec. 2.7. In the end, the computational algorithms of both

signal propagation models are discussed in Sec. 2.8.
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2.2 Optical Properties of Silicon Nanowire Waveguide
Silicon waveguides are generally light guiding devices which are placed on top of the

SOI and a oxide layer. A simple example of such waveguide is illustrated in Fig. 2.2.

In the last two decades, Si waveguides have become an increasingly important area

in the ultra-dense photonic integration [15]. This popularity originates from the fab-

rication of low loss Si waveguides, in which the waveguide loss can be reduced to

0.026dBcm−1 or even lower [16, 17]. Moreover, Si waveguides exhibit unique optical

nonlinearity: (1) their second-order nonlinear optical susceptibility is zero, due to the

symmetry property of crystalline Si. (2) the third-order optical susceptibility turns out

to be particularly large [18], which allows for the control of the optical nonlinearity

within the Si waveguides in order to furnish various functionalities. In this section, we

will mainly present the optical characterization of the general Si nanowire, and explain

the underlying physics with explicit mathematical formula.

W

h

SiO2

Si

Figure 2.2: The generic structure of strip Si photonic waveguides.

2.2.1 Frequency Dispersion of Silicon Nanowire Waveguide

Optical dispersion, a vital part of linear optical effects, represents the dependence of

phase velocity of an electromagnetic wave on the frequency when propagating in an

optical waveguide. In this section, a brief introduction regarding the optical disper-

sion of Si nanowires will be presented. The calculation of optical dispersion in the

Si nanowire waveguides was first reported by Chen et al [19]. The successive experi-

mental measurements were carried out on the GVD and TOD effects in the same year

[20, 21]. These studies suggest that the waveguide geometry determines the optical

dispersion in the Si nanowires, due to the subwavelength cross section and high index
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contrast. An analytic expression is used to describe the waveguide dispersion, by ex-

panding the mode propagation constant β (ω) in a Taylor series at the carrier frequency

ω0 [22, 23]:

β (ω) = n(ω)
ω

c

= β0 +(ω−ω0)β1 +
1
2!
(ω−ω0)

2
β2 +

1
3!
(ω−ω0)

3
β3 ++

1
4!
(ω−ω0)

4
β4...

(2.1)

where n(ω) is the refractive index, c is the speed of light, β0 ≡ β (ω0) is the propa-

gation constant at ω0, and βm =
(

dmβ

dωm

)
ω=ω0

represents the mth order dispersion co-

efficient. β1 is the inverse of the group velocity (vg = 1/β1), which is an important

parameter in the multi-wavelength signal co-propagation and several nonlinear phe-

nomena like FWM. β2 represents the GVD coefficient and determines the degree of

pulse broadening. Additionally, the GVD parameter D, with the mathematical defini-

tion of D= dβ1
dλ

=−2πc
λ 2 β2, is also widely used in the optical communications. β3 and β4

are useful parameters for optical pulses with femtosecond pulsewidth or even smaller.

To be more specific, the TOD effect would lead to the spectral asymmetry, whereas

the fourth dispersion effect has a significant contribution to the nonlinear frequency

mixing.

Dispersion engineering offers an effective approach to achieve the integration of

ultra-small optical devices on Si chips. Therefore, accurate theoretical description of

the dominant dispersive opticals effects (i.e., GVD and TOD) within Si nanowires is

indeed necessary to fulfill the goal mentioned above.

Group velocity dispersion means that each frequency component of optical signal

propagates at different speed, thus resulting in the optical pulse broadening. In par-

ticular, a zero-dispersion (ZGVD) wavelength λD usually exists in a Si nanowire [19],

which indicates a fact that no GVD effect occurs at λ = λD. The wavelength λD is of-

ten used to separate the normal dispersion (β2 > 0) and anomalous dispersion (β2 < 0)

regimes. Furthermore, the sign of β2 also influences the nonlinear optical effects in the

Si nanowires. A prominent example is the optical soliton, which is only generated in

anomalous dispersion regions. Additionally, the characteristic length of GVD is de-

noted as LD = τ2

|β2| (τ is the pulsewidth, unless otherwise is specified), which is used
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to measure the minimum length where the GVD effect begins to strongly influence

the pulse evolution. Specifically, when the transmission distance is much larger than

LD (L� LD), the GVD effect must be included in the theoretical description of pulse

dynamics.

Third-order dispersion effect can be easily observed when the optical pulse pos-

sesses the wavelength of λD, where no GVD occurs. As mentioned earlier, TOD can

also be important for optical signals with femtosecond pulsewidth or smaller. The TOD

effect is responsible for the pulse reshaping and distortion. Precisely, the positive (neg-

ative) value of β3 indicates that the oscillatory structure appears at the trailing (leading)

edge of the pulse. Similar to GVD, the characteristic length of TOD is denoted as

L
′
D = τ3

|β3| , indicating that the TOD affects the pulse propagation when L
′
D ≤ LD.

With respect to the calculation of these dispersion coefficients, the finite element

method (FEM) is applied on Eq. (2.1) in conjunction with the Sellmeier relation, which

for Si is written as [24]:

n(λ ) = ε +
A
λ 2 +

Bλ 2
1

λ 2−λ 2
1
, (2.2)

where λ1 = 1.1071µm, ε = 11.6858, A = 0.939816µm2, B = 8.10461×10−3.

2.2.2 Nonlinear Optical Properties of Silicon Nanowire Waveguide

Nonlinear optics represents a significant branch of the light-matter interactions, where

the waveguide response to the optical field behaves in a nonlinear manner. Various

optical effects are included in this field, namely the frequency-mixing process (e.g.,

second-harmonic generation, third-harmonic generation, and optical parametric gener-

ation), the optical Kerr effect (e.g., SPM and optical solitons), XPM, FWM, and the

Raman amplification [18]. In particular, the Si nanowires discussed in this dissertation

exhibit a strong anisotropic Kerr effect [25, 26], which is quantified by the third-order

susceptibility tensor χ(3) of Si. Due to the symmetry property of Si crystalline struc-

ture, two independent components, χ
(3)
1111 and χ

(3)
1122, are selected to represent the 21

nonzero elements of χ(3). Moreover, χ(3) can be further simplified to one-component

independent variable, according to such relation, χ
(3)
1111/χ

(3)
1122 = 2.36 [23, 25]. From

physical point of view, both the Kerr effect and TPA govern the third-order susceptibil-

ity in Si nanowires.

The nonlinear coefficient γ , a χ(3) related parameter, is introduced to determine
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the waveguide nonlinearity:

γ =
3ωΓ

4ε0Anlv2
g
, (2.3)

where Γ measures the effective nonlinear susceptibility, ω is the carrier frequency, Anl

is the cross sectional area of the Si waveguides, ε0 is the permittivity of free space,

and vg represents the GV [27]. Equation (2.3) shows that γ has strong dependence on

the operational frequency and the waveguide geometry. Different from silica fibers,

the nonlinear coefficient γ in Si nanowires is a complex number, which consists of

the real (γ ′) and imaginary (γ ′′) part. To be more specific, γ ′ corresponds to the SPM

effects [28] – the nonlinear response of the optical phase shift caused by the Kerr effect,

leading to optical spectral broadening. The corresponding nonlinear length is given by

LNL = 1/(γ ′P), where P is the power. γ ′′ quantifies the TPA effects [29], an optical

process describing the absorption of two photons in order to excite a molecule to a

higher energy state. Note also that TPA is a strong power-dependent phenomenon.

Further to that, possessing the SL spectral regions of the dispersive photonic-guiding

structures can increase the effective waveguide nonlinearity [30], since the nonlinearity

scales with vg as v−2
g .

With regard to the multi-wavelength signal co-propagation in the same waveguide,

new nonlinear optical processes have to be taken into consideration, such as XPM [31],

multi-mode mixing, FWM and stimulated Raman scattering [23]. Among these effects,

only the XPM effect is added in the coupled-mode theory utilized in this dissertation.

XPM describes an optical process where the refractive index change is induced by one

pulse but probed by a second co-propagating pulse [32]. Therefore, two sets of stan-

dard nonlinear coefficients γi and γik are defined, in order to characterize the nonlinear

interaction between the co-propagating optical pulses [23]:

γi =
3ωiΓi

4ε0Anlv2
g,i
, (2.4a)

γik =
3ωiΓki

4ε0Anlvg,ivg,k
, (2.4b)

γi and γik describe SPM and XPM interactions, respectively, with i or k the ith or kth

pulse during transmission channel. Γi is the effective nonlinear susceptibility for ωi,

while Γki measures the nonlinear susceptibility interaction between ωk and ωi. The
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other relevant coefficients have been defined earlier in this section. More specific cases

regarding the nonlinear coefficients are discussed in Sec. 2.6.1 and Sec. 2.6.2.

2.2.3 Free Carrier Dynamics in Silicon Nanowire Waveguide

The carrier mechanism describes the interaction between FCs and the optical field in

Si nanowires, by means of including additional linear absorption and changing the

refractive index [33]. Apart from SPM, FCs make another contribution to the change

of refractive index. In general, the carrier density is a function of the time and distance.

The carrier relaxation time tc is a key parameter in the carrier dynamics, since FCs

can significantly influence signal reshaping when the signal pulsewith is larger than

tc. Thus, two relevant nonlinear effects are specified here, namely the FC absorption

(FCA) and FC-induced dispersion (FCD), with their mathematical formulas given by

[34]:

αFC =
e3N

ε0cnω2

(
1

µem∗2ce
+

1
µhm∗2ch

)
, (2.5a)

δnFC = − e2

2ε0nω2

(
N

m∗ce
+

N0.8

m∗ch

)
, (2.5b)

where δnFC characterizes the refractive index change induced by FCD, αFC stands

for the FCA coefficient, N is the FCs density, e is the electric charge of the electron,

m∗ce = 0.26 m0 and m∗ch = 0.39 m0 are the effective masses of the electron and the hole,

m0 is the mass of the electron, and µe(µh) is the electron (hole) mobility. Regarding

Eq. (2.5b), it is important to mention that this equation is only validated when N is

in unit of cm−3 [34]. Generally, the FCs relaxation time tc of Si nanowires is set to

be 0.5 ns [35]. Additional explanation for the evolution of FCs will be introduced in

Sec. 2.6.1 and Sec. 2.6.2.

2.3 Types of Silicon Photonic Waveguides
In this section, we present two specific types of Si waveguides utilized throughout this

dissertation: The first waveguide is a single-mode Si photonic waveguide (Si-PhW)

with uniform cross-section, and buried in SiO2 cladding, as shown in Fig. 2.3(a). It

has a fixed height, h = 250nm, but tunable width, w, which offers the possibilities to

engineer the optical properties. From theoretical point of view, any dimensions of the
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(a) (b)

Si

SiO
2

Si

Figure 2.3: (a) A strip Si photonic waveguide with uniform cross section; (b) A Si photonic
crystal waveguide.

waveguide cross-section can be simulated. However, our collaborators from Columbia

University can validate our simulation results of dispersion coefficients experimentally

when the height is 250nm (a typical height used in the fabrication of Si waveguides).

This explains why we choose a fixed height (250nm) for Si-PhWs. The second waveg-

uide is a Si photonic crystal waveguide (Si-PhCW), which consists of a line defect

along the ΓK direction of a PhC slab with hexagonal air hole lattice, as illustrated in

Fig. 2.3(b). Its lattice constant, hole radius and slab thickness are a, r = 0.22a and

h = 0.6a, respectively. In the following sections, both linear and nonlinear optical

properties of Si-PhWs and Si-PhCWs will be illustrated.

2.3.1 Strip Silicon Photonic Waveguides

Si-PhWs are classified as one simple case of Si photonic waveguides, whose guiding

waveguides are rectangular and the cladding material is SiO2. In this section, the fun-

damental optical properties of Si-PhWs, as well as their correlation with the waveguide

cross-section and carrier frequencies, will be presented.
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Figure 2.4: Dispersion maps of propagation constant β for certain widths of Si-PhWs with
fixed hight of h = 250nm.
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The waveguide mode and mode propagation constant are the physical parameters

to be studied first. The mode propagation constant β , with the definition of optical sig-

nal’s phase variation per length during transmission, is often used to measure the evo-

lution of the signal amplitude and phase. Figure. 2.4 shows the modal dispersion of the

optical guiding modes within Si-PhWs, accounting for the dependence on waveguide

width w and carrier wavelength λ . Specifically, we use a finite-element mode solver

(Femsim by Rsoft [36]) to determine β and the fundamental TE-like mode for differ-

ent wavelength (1.3µm≤ λ ≤ 2.3µm) and waveguide width (500nm≤ w≤ 1500nm).

One can easily observe that the propagation constant β changes nonlinearly with the

waveguide width w at a fixed carrier wavelength. In addition, this nonlinear depen-

dence becomes stronger when the carrier wavelength turns larger. To conclude, the

propagation constant β is determined by the geometry of Si-PhWs at certain frequency.
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Figure 2.5: Dispersion maps of (a) group index ng = c/vg; (b) GVD coefficient β2; (c) TOD
coefficient β3; (d) fourth-order coefficient β4; for certain widths of Si-PhWs with
constant height h = 250nm.

Furthermore, the frequency dependence of several other dispersive coefficients

on the waveguide geometry is also discussed in this section. To illustrate this, the

group index, the GVD coefficient, the TOD coefficient, and the fourth-order dispersion

coefficient are displayed in Fig. 2.5. Notably, these high-order dispersion coefficients
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are calculated by fitting β (λ ) with a twelfth-order polynomial and then finding the

derivatives with respective to λ . One useful finding is that the strong correlation exists

between the optical parameters mentioned above and the operational wavelength λ and

the waveguide width w. Figure 2.5(b) shows that by tuning λ or w width one can easily

switch the nature of pulse propagation from the normal dispersion regime (β2 > 0) to

anomalous dispersion (β2 < 0). For small width, w ≤ 887nm, and wavelengths, λ ≤

2.187µm, the GVD coefficient β2 can have large (in absolute value) negative values.

The normal and anomalous dispersion regimes are separated by a zero-dispersion curve

(β2 = 0), depicted in Fig. 2.5(b) by a black line. Note that close to the ZGVD curve,

where the effect of GVD is very weak, the third- and fourth-order coefficients, that is,

β3 and β4 shown in Fig. 2.5(c) and Fig. 2.5(d), respectively, play the dominant role

in the dispersion induced pulse reshaping. In addition, the values of β2, β3 and β4

in the Si-PhWs are more than one order of magnitude larger than that of silica fibers,

thus resulting in relatively smaller dispersion lengths. This property allows for the

dispersion manipulation in the chip-level Si devices.
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Figure 2.6: Real (a) and imaginary (b) part of nonlinear coefficients for Si-PhW waveguides
with several widths and a specific hight of h = 250nm.

Similar to the dispersive phenomena, the nonlinear optics in the Si-PhWs is also

determined by the waveguide geometry. Figure 2.6 shows the dispersive maps of the

real (γ ′) and imaginary (γ ′′) part of the nonlinear coefficients in Si-PhWs. It can be

easily seen that both values of γ ′ and γ ′′ can increase under conditions of either smaller

waveguide width or shorter carrier wavelength. More precisely, the magnitude of γ ′

is at least 3 × larger than γ ′′ in the Si-PhWs, with both values much larger than silica

fibers. The nonlinearity within Si-PhWs can further reduce the footprint of Si devices.
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2.3.2 Silicon Photonic Crystal Waveguides

Photonic crystals, denoted as one-, two- and three- dimensional periodic photonic struc-

tures with high refractive index contrast, have become an attractive area for the light

manipulations today. A photonic bandgap (PBG) usually exists in such a PhC, which

represents a frequency range where the light transmission is prevented in all direc-

tions. Thus, the PhCs containing PBGs can be widely employed for light guiding [37].

In particular, by inserting one-dimensional (1D) waveguide into the two-dimensional

(2D) photonic crystal structure made of Si, an optical waveguide with new functionality

is achieved.

0.29

0.25

0.21

ω
a/

2π
c

0.3 0.4 0.5
βa/2π

Mode B

Mode AodM d A

Figure 2.7: Projected band structure. Dark yellow and green ares correspond to slab leaky and
guiding modes, respectively. The red and blue curves represent the y-even and y-
odd guiding mode of the 1D waveguides. Light grey shaded regions correspond to
SL regime, ng > 20.

The Si-PhCWs studied in this dissertation is an hexagonal lattice of air holes

within a Si slab, with one row of holes filled by Si in the transmission direction, as

illustrated in Fig. 2.3(b). Similarly, the optical properties of Si-PhCWs are also gov-

erned by the waveguide geometry, hence the lattice constant a should be carefully de-

signed. This can be illustrated by exploring the projected band structure of Si-PhCWs.

In Fig. 2.7, βa/2π and ωa/2πc stand for the dimensionless wavevector and frequency,

respectively. There are two fundamental TE-like guiding modes in the bandgap: Mode

A (y-even) possesses two flat-curve areas, which represent the SL regimes according

to such expression of vg = 1/β1 = (dω/dk); Mode B (y-odd) consists of only one SL

region. In order to access the switch between the FL and SL regimes with larger flexi-

bility, we select Mode A as the investigated guiding mode for all Si-PhCWs simulations

in this dissertation.

Slow-light is an interesting phenomenon that has attracted intensive research ef-
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forts in the last decade, where both dispersion and nonlinearity are found to be en-

hanced. This effect is often applied in the field of pulse reshaping, all-optical memories

storage and optical buffers [38]. Particularly, the utilization of SL in nanoscale Si

devices can help reduce the power consumption and the resulted operation cost [39].

However, the optical properties of Si waveguides within the SL regimes have to be care-

fully designed, in order to avoid the dramatically increased waveguide dispersion and

nonlinearity. Based on the above circumstances, it is of great importance to extensively

investigate the SL spectral domains within Si-PhCWs.
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Figure 2.8: (a), (b), (c), and (d) Frequency dependence of waveguide dispersion coefficients
ng = c/vg, β2, β3 and β4, respectively, determined for the Mode A (red) and Mode
B (blue). Light green, blue, and brown shaded regions correspond to SL regime,
ng > 20.

What follows is the description for the frequency dependence of the first four

dispersion coefficients (β1, β2, β3 and β4) in the Si-PhCWs, considering both Mode A

and Mode B. In Fig. 2.8, the shaded areas indicate the spectral SL regions, with the

corresponding threshold ng > 20 to reach that region. One major observation is that

the two SL regimes of Mode A are located at the band-edge (λ ≈ 1.6 µm) and the

area with center wavelength of λ ≈ 1.52 µm. Unlike Mode A, just one SL spectral

domain exists in the band-edge of Mode B (λ ≈ 1.67µm). Furthermore, the Mode A

can access both positive and negative GVD regions, with the ZGVD placing at λ =
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1.56µm, whereas in Mode B only the normal GVD (β2 > 0) is available throughout the

whole spectrum. Last but not least, the value of β2, β3 and β4 of Si-PhCWs are several

orders of magnitude larger than that of Si-PhWs and silica fibers.
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Figure 2.9: Real (a) and imaginary (b) parts of nonlinear coefficients for Si-PhCW waveguides
versus wavelength, in cases of Mode A (red) and Mode B (blue). Light green, blue,
and brown shaded regions correspond to SL regime, ng > 20.

In terms of optical nonlinearity within Si-PhCWs, we also specify the difference

between SL and FL spectral regimes. Several important findings can be derived from

Fig. 2.9: firstly, both real and imaginary parts of nonlinear coefficients are much larger

in the SL regimes than in the FL regimes; secondly, much stronger nonlinear processes

can be observed in Si-PhCWs when compared with Si-PhWs. For instance, in this

dissertation, the SL effect only exists in the Si-PhCW instead of the Si-PhW, with the

nonlinearity in the SL regimes of the first waveguide two orders of magnitude larger

than the latter waveguide; finally, the real value of the nonlinear coefficient (γ ′) is more

than 3 times larger than the imaginary part (γ ′′). Importantly, the strong nonlinearity

of Si-PhCWs can further reduce optical characteristic lengths, and thus providing the

functionality of highly-compact on-chip photonic integration.

In conclusion, although both the Si-PhWs and Si-PhCWs are dispersive with car-

rier frequencies, the essential optical properties of the Si-PhWs are governed by the

waveguide cross-section, while the periodicity determines the optical processes within

the Si-PhCWs.

2.4 Silicon Photonic System Models
Generally, Si photonic systems consist of similar optical devices as the modern optical

fiber transmission systems [40], but with devices made of Si and scaled to subwave-
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length size [41, 42]. In fact, all the basic components of photonic NoC have already

implemented in the SOI platform, including the optical lasers [43], optical amplifiers

[44, 45], modulators [46, 47], multiplexers and demultiplexers [48], optical switches

[49–51], receivers [53, 54] and frequency converters [55, 56]. Taking device func-

tionalities and practical requirements into account, modeling of photonic systems must

be carefully designed. For instance, the photodiodes are usually modeled to obey the

square-law rule. However, the cases like the gain profile and amplified spontaneous

emission (ASE) noise [57] require more realistic theoretical analysis. Therefore, the

configuration of the investigated photonic systems is presented in this section, acting

as the prerequisites of the rigorous theoretical models in this dissertation.

ModulatorLaser

Waveguide

O-filter E-filter

Transmitter Receiver

Figure 2.10: (a) Schematic of the single-channel photonic system, containing two types of
waveguides: a uniform single-mode Si photonic wire and a Si photonic crystal
slab waveguide. The receiver contains an optical filter, an ideal square-law pho-
todetector and an electrical filter.

To start with, a single-channel Si photonic system is investigated in this disserta-

tion, with its schematic shown in Fig. 2.10. This system is composed of a transmitter, a

Si waveguide and a direct-detection receiver. Specifically, the receiver is usually com-

posed of an optical filter, an ideal square-law photodetector and an electrical filter. With

regard to the transmitter, it is simplified by using several types of optical signals: (1) an

OOK modulated NRZ optical CW signal; (2) a PSK modulated optical CW signal; (3)

an OOK modulated optical pulsed signal. Even though other formats of signal mod-

ulation like frequency-shift keying (FSK) and polarization-shift keying (POLSK) are

not studied in this dissertation, they can be easily included by modifying the relevant

receiver model. Moreover, we assume that a complex additive white Gaussian noise is

placed at the front-end of the waveguide, together with the optical signals mentioned

above. The configuration of the input signals enables the observation of the nonlinear

interaction between the pure optical signal and noise in the Si waveguides. For simplic-

ity, the inphase and quadrature noise components are assumed to be uncorrelated at the
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beginning, a constraint that can be easily relaxed if needed. Further to that, the optical

waveguide in the single-channel system is either a Si-PhWs or a Si-PhCW, the optical

properties of have already been discussed in Sec. 2.3.
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Transmitter

Figure 2.11: Schematic of the multi-channel photonic system, consisting of an array of lasers,
a MUX, a Si waveguide, a DEMUX and direct-detection receivers containing an
optical band-pass filter, photodetector, and an electrical low-pass filter. Two types
of waveguides are investigated: a strip waveguide with uniform cross-section and
a specially designed PhC waveguide.

Moreover, the schematic of a multi-channel Si photonic system is shown in

Fig. 2.11. This multi-channel system is composed of three blocks–a transmitter (lasers,

modulators, a MUX), a Si waveguide and a set of direct-detection receivers (a DEMUX,

optical filters, photodiodes and electrical filters). Apart from a MUX and a DEMUX,

more than one set of laser source and receiver are needed in the multi-channel system,

which corresponds to the number of signal wavelengths. Both Si-PhWs and Si-PhCWs

can support multi-wavelength signal transmission, making themselves very attractive

to the on-chip interconnects, due to the large capacity and broad bandwidth provided

by the WDM techniques.

As mentioned earlier, the theoretical evaluation models for the Si photonic sys-

tems should comprise two main aspects, namely, the signal propagation theory and the

signal detection theory. Before proceeding to the mathematical details of these the-

oretical models, the definition of the optical signals will be given in Sec. 2.5, which

represents an ideal case that the optical transmitter can generate the desired optical

signals. Afterwards, the main signal propagation models will introduced in Sec. 2.6

and Sec. 2.7. And the mathematical models that used in the signal detection will be

exhibited in Chapter 3.
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2.5 Optical Signal Modulation Formats
The demand to construct the broadband and high-capacity information networks is

ever-increasing each year. Some technologies are hopeful to satisfy and maintain such

great demand, such as the WDM technology. Apart from the improvement on the de-

vice layer, the utilization of advanced optical processing techniques is also viewed as a

efficient solution [58]. In particular, advanced optical modulation formats have been in-

tensively investigated over the recent years [59], as they can potentially become viable

alternatives to more commonly used OOK modulation. In the context of optical fiber

communications it has become clear that, among the advanced modulation formats

of optical signals, PSK modulation provides unique advantages, including increased

spectral efficiency, superior tolerance to chromatic dispersion and polarization-mode

dispersion, and less stringent bandwidth requirements [60, 61]. Moreover, higher spec-

tral efficiency can be achieved by employing PSK modulation schemes with increased

complexity, such as quadrature PSK (4PSK) and 8-ary PSK (8PSK) modulation for-

mats, or by combining amplitude-shift keying (ASK) and PSK formats, which we call

here ASK-PSK modulation schemes. Importantly, whereas high-order modulation for-

mats have been studied extensively in the context of optical fiber and other commu-

nication systems [59, 62, 63], currently a similar theoretical analysis addressing the

performance of such modulation schemes when used in photonics systems containing

silicon based optical communication links is not available.

Several types of optical signals are introduced in this section, including the OOK

modulated CW signals (uOOK), the PSK modulated CW signals (uPSK) and the OOK

modulated Gaussian pulsed signals (uG), in presence of the complex white gaussian

noise. Therefore, their explicit expressions for a given bit are illustrated below:

uOOK(z, t) = [
√

P(z)+a(z, t)]e− jΦ(z), (2.6a)

uPSK(z, t) = [
√

P(z)e jΦ0 +a(z, t)]e− jΦ(z), (2.6b)

uG(z, t) = [
√

P(z)e−t2/2T 2
0 +a(z, t)]e− jΦ(z), (2.6c)

Here, P represents the peak power of input signal, a is the complex white noise, Φ(z)

stands for the general phase, T0 is the pulsewidth, and Φ0 is defined by the PSK signal

modulation formats. In particular, Φ(z) is set to 0 (in unit of rad) when at z = 0. It
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is important to stress that in our model the pure signal and white noise have different

phase. This is so because the noise function, a(z, t), is complex-valued and therefore

an additional phase is introduced. As for the ASK-PSK modulation, there would be

at least two different power levels involved. More details about the PSK modulation

formats will be discussed in Sec. 7.3.

2.6 Theory of Optical Signal Propagation in Silicon

Waveguides

Instrumental insights into the optical properties of both Si-PhWs and Si-PhCWs can be

obtained by analyzing the evolution of the optical field and FCs in the Si waveguides.

Thus, the theory of signal propagation will be presented in this section. Different from

the pulse propagation model for silica fibers, the nonlinear optical susceptibilities of

Si-PhWs and Si-PhCWs are mathematically described as tensors instead of scalars.

Moreover, the FCs dynamcis is included in the case of Si waveguides, but not silica

fibers. Generally, this signal propagation model designed for Si waveguides is based on

a NLSE describing the optical pulse propagation and a rate equation for FCs [64, 66].

Moreover, the SSFM and a fifth-order Runge-Kutta method are applied in order to de-

rive semi-analytical solutions with regard to the coupled equations mentioned above,

with their numerical implementation described in Sec. 2.8.1. Both single- and multi-

wavelength pulse propagation will be considered in this dissertation, with the corre-

sponding mathematical models described in Sec. 2.6.1 and Sec. 2.6.2, respectively.

2.6.1 Theory of Single-wavelength Optical Signal Propagation

The strategy for simplifying the evolution of the optical field in Si waveguides, is to

divide the waveguide into an unperturbed part and a perturbed part. In particular, the

nonlinear effects (SPM, TPA) and the change of the dielectric constant act as the in-

fluence sources for the electromagnetic field propagation in the perturbed waveguides

[23]. Therefore, we start the mathematical description with the Lorentz reciprocity

theorem [67]:
∂

∂ z

∫
A∞

F · ezdA =
∫

A∞

∇ ·FdA, (2.7)
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where the vector field F is defined blow:

F = EL
∗×HNL +ENL×HL

∗, (2.8)

Here, two sets of variables are defined as follows: (EL,HL) = (E0,H0) is the guid-

ing mode in the unperturbed waveguides, whereas (ENL,HNL) = (E,H) represents the

mode for the perturbed waveguide. By combining with the source-free Maxwell equa-

tions, Eq. (2.7) can cast in the following:

∂

∂ z

∫
A∞

(
EL
∗×HNL +ENL×HL

∗) · ezdA = iω
∫

A∞

δP ·ELdA (2.9)

where δP is the total mode polarization, which contains a linear and a nonlinear ele-

ment, namely δP = δεE = δPL+δPNL. To be more specific, δPL stands for the change

of dielectric constant, according to δPL = δεLE. Here, the parameter δεL is defined be-

low:

δεL(ω) =
iε0cnαin

ω
+2ε0nδnFC +

iε0cnαFC

ω
, (2.10)

where ε0 is the vacuum permittivity and αin is the intrinsic loss coefficient. δnFC and

αFC represent the FC-induced change in refractive index and FCA coefficient, respec-

tively, with their mathematical definition given by Eq. (2.5b) and Eq. (2.5a). Further-

more, the nonlinear polarization δPNL is described by the formula below:

δPNL(ω) =
3
4

ε0χ
3(ω;ω,−ω,ω)

...E(ω)E∗(ω)E(ω), (2.11)

where χ3(ω;ω,−ω,ω) is the third-order susceptibility coefficient. The second step is

to extract the explicit expression for the perturbed electromagnetic fields. The unper-

turbed fields (E0,H0) are defined below, with the total power P0:

E0 =
1
2

√
Z0P0

A0
e(rt ,ω0)ei(β0z−ω0t), (2.12a)

H0 =
1
2

√
P0

Z0A0
h(rt ,ω0)ei(β0z−ω0t), (2.12b)



56

where Z0 =
√

µ0/ε0, e(rt) and h(rt) are the electromagnetic fields in the xy plane.

Normalization is then performed on e and h in our mathematical analysis,

1
4A0

∫
∞

(e×h∗+ e∗×h) · ezdA = 1. (2.13)

For convenience, a slowly varying normalized complex envelope u(z,ω) is defined,

whose input peak amplitude equals to 1 in the time domain. Therefore, in the perturbed

part, the electromagnetic field (E,H) with total power of P0|u(z,ω)|2 are obtained:

E =
1
2

√
Z0P0

A0
u(z,ω)e(rt ,ω)ei(β z−ωt), (2.14a)

H =
1
2

√
P0

Z0A0
u(z,ω)h(rt ,ω)ei(β z−ωt), (2.14b)

Finally, we can derive the perturbed NLSE for normalized amplitude u(z, t) by com-

bining Eqs. (2.9), (2.10), (2.12), (2.13), (2.14)and performing the Fourier Transform

on the resulting equation from the frequency domain to the time-domain:

j
(

∂u
∂ z

+
1
vg

∂u
∂ t

)
− β2

2
∂ 2u
∂ t2 −

jβ3

6
∂

3u
∂ t3 =− jcκ

2nvg
(αin +αFC)u−

ω0κ

nvg
δnFCu− γ|u|2u,

(2.15)

The terms in Eq. (2.15) describe well known linear and nonlinear optical effects.

Specifically, the second and third terms on the left-side describe the GVD and TOD, re-

spectively. Notably, the dispersion coefficients, β1 = 1/vg, β2 and β3 are derived from

Eq. (2.1) at the carrier frequency of ω0. Moreover, from the right-side of Eq. (2.15),

the first term corresponds to the intrinsic waveguide loss and FCA, the second term

describes the FCD, whereas the last term represents nonlinear effects, namely the SPM

and TPA. In terms of the nonlinear parameters, the structures of the Si waveguides need

to be taken into account. Particularly, the nonlinearity in the Si-PhWs is determined by

their cross-section, while for Si-PhCWs the lattice constant a is the dominant factor.

The corresponding nonlinear coefficients are given by:

γ̄ =
3ωε0

16v2
g

Γ̄

W 2 , (2.16a)
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γ̃ =
3ωε0a
16v2

g

Γ̃

W 2 , (2.16b)

Here and in what follows of this chapter, bar and tilde symbols represent that the phys-

ical quantities refer to Si-PhWs and Si-PhCWs, respectively, unless otherwise is speci-

fied. W and W are the optical mode energy per unit length of Si-PhW and optical mode

energy contained in a unit cell of Si-PhCW, with the expression listed below:

W =
1
4

∫
S

[
ε(r)|e(r,ω)|2 +µ0|h(r,ω)|2

]
dS, (2.17a)

W =
1
4

∫
Vcell

[
ε(r)|e(r,ω)|2 +µ0|h(r,ω)|2

]
dV. (2.17b)

As mentioned earlier, e(r,ω) and h(r,ω) are the electric and magnetic field respec-

tively. S and Vcell are the cross-section area of Si-PhWs and the unit cell volume of

Si-PhCWs, correspondingly. Furthermore, the coefficients Γ̄ and Γ̃ are the mode medi-

ated nonlinear susceptibility for the Si-PhWs and Si-PhCWs, respectively:

Γ̄ =
∫

Snl

e∗(r) · χ̂(3)(ω,−ω,ω)
...e(r)e∗(r)e(r)dS, (2.18a)

Γ̃ =
∫

Vnl

e∗(r) · χ̂(3)(ω,−ω,ω)
...e(r)e∗(r)e(r)dV, (2.18b)

In order to facilitate a comparison between the optical properties of Si-PhWs and Si-

PhCWs, we recast Eqs. (2.3) in a new form of Eqs. (2.16). Furthermore, κ̄ and κ̃

measure the overlap integral between the active area of Si-PhWs and Si-PhCWs and

the optical mode, whose mathematical formulae are expressed as:

κ̄ =
n2 ∫

A0
|e(rt)|2dA∫

A∞
n2(rt)|e(rt)|2dA

, (2.19a)

κ̃ =
an2 ∫

A0
|e(r)|2dA∫

VCell
n2(rt)|e(r)|2dV

, (2.19b)

Equations. (2.19) suggest that only a fraction of the power from the electromagnetic

mode affects the FCs generation, since the mode profile only partially overlaps with Si

waveguides.

A modified rate equation is used to describe the carrier dynamics during the trans-
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mission in Si waveguides:

∂N
∂ t

=−N
τc

+
γ
′′

h̄ω0Anl
|u|4, (2.20)

where N represents the FCs density, τc is the FC relaxation time, and Anl is the effective

mode area. We use Anl = wh (Anl = ah) for the Si-PhW (Si-PhCW) systems, although

more accurate formulae for Anl exist [23, 64, 65, 68]. Since we consider high-index

contrast systems, the optical field is strongly confined in the waveguide, so that using

the geometrical area for Anl is a reasonable approximation. Here and in what follows

ζ ′ (ζ ′′) represents the real (imaginary) part of the complex number, ζ . In conclusion,

both Eq. (2.15) and Eq. (2.20) are described to describe the single-wavelength pulse

propagation.

2.6.2 Theory of Multi-wavelength Optical Signal Propagation

As an expansion of the single-wavelength propagation model, the multi-wavelength

propagation model will be presented in this section to fully capture the evolution of

multi-wavelength optical fields in coupled with FCs. Note that the FWM terms are not

included in our multi-wavelength propagation model, since the phase-match condition

is not satisfied with the values of wavelength used in this dissertation. Thus, the multi-

wavelength model can be derived by adding the XPM term in Eqs. (2.15) and (2.20)

[19, 64, 68]:

j
∂ui

∂ z
+ j
(

1
vg,i
− 1

vg,ref

)
∂ui

∂T
−

β2,i

2
∂ 2ui

∂T 2 =−ωiκi

nvg,i
δnFCui−

jcκi

2nvg,i
(αin +αFC)ui

−
(

γi|ui|2 +2 ∑
k 6=i

γik|uk|2
)

ui, (2.21a)

∂N
∂ t

=−N
τc

+∑
i,k

Cik|ui|2|uk|2, (2.21b)

Here, i and k indicate the transmission channel index with the carrier frequency ωi and

ωk, and the channel index ranges from 1 to M (M is the total number of channels).

ui(z,T ) is the ith pulse envelope, measured in
√

W, z and T are the distance along the

Si waveguide and time in a reference system moving with velocity vg,ref, respectively.

Specifically, T = t− z/vg,ref, where t is the physical time. The definitions of vg,i, β2,i,

κi, δnfc, αfc, αin, γi and τc can be found in Sec. 2.6.1, with the central frequency to be
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ωi this time. γik is the nonlinear coefficient corresponding to the XPM effect in the Si

waveguide. For completeness, we present not only the mathematical formula for the γik

within Si-PhWs and Si-PhCWs, but also for γi:

γ̄i =
3ωiε0

16v2
g,i

Γ̄i

W 2
i
, γ̄ik =

3ωiε0

16vg,ivg,k

Γ̄ik

WiWk
, (2.22a)

γ̃i =
3ωiε0a
16v2

g,i

Γ̃i

W 2
i
, γ̃ik =

3ωiε0a
16vg,ivg,k

Γ̃ik

WiWk
. (2.22b)

The optical mode energy per unit length (Wi) and per unit cell (Wi) at ωi have been

given by Eqs. (2.5). Additionally, the nonlinear susceptibility coefficients, Γi and Γi j,

are defined below:

Γ̄i =
∫

Snl

e∗i (r) · χ̂(3)(ωi,−ωi,ωi)
...ei(r)e

∗
i (r)ei(r)dS, (2.23a)

Γ̄ik =
∫

Snl

e∗i (r) · χ̂(3)(ωk,−ωk,ωi)
...ek(r)e

∗
k(r)ei(r)dS, (2.23b)

Γ̃i =
∫

Vnl

e∗i (r) · χ̂(3)(ωi,−ωi,ωi)
...ei(r)e

∗
i (r)ei(r)dV, (2.23c)

Γ̃ik =
∫

Vnl

e∗i (r) · χ̂(3)(ωk,−ωk,ωi)
...ek(r)e

∗
k(r)ei(r)dV, (2.23d)

With regard to the carrier dynamics in the multi-wavelength propagation, we use

the coefficient Cik in Eq. (2.21b) to quantify the rate at which the optical energy is

transferred to FCs. And this important parameter, Cik, is denoted as:

Cik =


γ
′′
i

h̄ωiAnl
, i = k,

4γ
′′
ik

h̄(ωi +ωk)Anl
, i 6= k.

(2.24)

The explicit description of the effective mode area Anl has been given in the last para-

graph of Sec. 2.6.1. More rigorous definitions related to the multi-wavelength propa-

gation can be found in refs. [68, 69].

2.7 Linearized Theoretical Model for CW Noise Dy-

namics
The linearized models for CW signal propagation in Si waveguides are presented in this

section. Similar to the propagation theory introduced in Sec. 2.6, both linearized mod-
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els regarding single- and multi-wavelength propagation will be introduced in Sec. 2.7.1

and Sec. 2.7.2, respectively. These models assume that the nonlinear noise-noise in-

teraction during transmission can be negligible [70, 71], due to the fact that the power

of noise at the input of waveguides is much smaller than that of optical signal. Thus,

two resulting approximations are proposed: firstly, all quadratic and higher-order noise

terms are neglected; secondly, δnFC is proportional to carrier density N. Particularly,

a numerical ODE solver is employed in the linearized propagation models, in order to

reduce the computational time and maintain the simulation reliability, which will be

introduced in Sec. 2.8.2.

2.7.1 Single-channel CW Noise Linearization

In single-channel Si waveguides, both an OOK modulated CW signal (uOOK) and a PSK

modulated CW signal (uPSK) will be thoroughly studied [72, 73]. After comparing the

definition of these two signals via Eq. (2.6a) and Eq. (2.6b), one can tell that PSK

signals contain an extra term of Φ0, which increases the complexity of the linearized

propagation model. However, uOOK can be written in the form of uPSK by setting Φ0 =

0 in Eq. (2.6b). Therefore, one common linearized propagation model is proposed in

this section, which is capable of describing the evolution of these two types of CW

signals in the single-channel Si waveguides.

Firstly, the FCs dynamics (Eq. (2.20)) is considered in the stationary regime,
∂N
∂ t = 0. Then, the steady state FCs density, Ns, is obtained:

Ns(z) =
tcγ
′′

h̄ω0Anl
P2(z)≡ ξ P2(z). (2.25)

A self-consistency condition for the validity of our model is that the FC induced disper-

sion is small, namely δnfc . 10−3. In addition, stationary regime can be reached only if

the bit window is much smaller than the FC relaxation time, a condition satisfied in all

our numerical simulations. This serves as one of the necessary conditions to construct

the linearized propagation models. In the small noise limit, Eq. (2.15) can be linearized

and transformed to a system of ODEs, which is much less demanding computationally.

The next step is to substitute Eq. (2.6b) into Eq. (2.15), and discard all quadratic

and higher-order terms of a(z, t) in the resulted equation. Notably, the TOD and fourth-
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order dispersion terms will not be included in the linearized models, since their effects

are negligible for pulse widths of picoseconds and larger when compared with the GVD

effect. Then, in conjunction with Eq. (2.25), we arrive to the following system of

equations for uOOK and uPSK:

dP
dz

=− cκ

nvg
αinP− cκ

nvg
σαξ P3−2γ

′′P2, (2.26a)

dΦ

dz
=− ω0κ

nvg
σnξ P2− γ

′P, (2.26b)

∂a
∂ z

=− j
β2

2
∂ 2a
∂ t2 −

cκ

2nvg
αina− γ

′′Pa+ j2γPe jΦ0(cosΦ0a′+ sinΦ0a′′)

− cκ

2nvg
σαξ P2[a+4e jΦ0(cosΦ0a′+ sinΦ0a′′)]

+ j
4ω0κ

nvg
σnξ P2e jΦ0(cosΦ0a′+ sinΦ0a′′). (2.26c)

Here, σn and σα quantify the influence of FCs on the linear optical properties of silicon

via δnfc = σnN and αfc = σαN, and have values of σα = 1.45×10−21(λ/λ0)
2 (in units

of m2) and σn =σ(λ/λ0)
2 (in units of m3), with σ being a power-dependent coefficient

[74] and λ0 = 1550nm is a reference wavelength. Here and in what follows a′(z, t) and

a′′(z, t) represent the real and imaginary parts of the noise a(z, t), respectively. It can

be seen from Eqs. (2.26) that the optical power P can be calculated independently of

other signal parameters and, as expected, it decays due to intrinsic losses, FC absorption

(FCA), and two-photon absorption (TPA). On the other hand, the variation of the global

phase, Φ, is determined by the FC dispersion (FCD) and self-phase modulation (SPM)

effects. Importantly, the initial phase Φ0 of PSK modulation formats does not affect the

evolution of the signal power and global phase, thus allowing uOOK and uPSK to share

the same mathematical formulation for these two physical quantities.

In order to simplify the noise calculations, we transform Eq. (2.26c) to a system

of ODEs. For this, we combine this equation with its complex conjugate and Fourier

transform the resulting equations for the in-phase and quadrature noise components,

a′(z, t) and a′′(z, t), respectively. These calculations yield:

dA′

dz
=− β2

2
Ω

2A′′− cκ

2nvg
αiA′−

cκ

2nvg
σαξ P2[A′+4cosΦ0(cosΦ0A′+ sinΦ0A′′)]

− 4ω0κ

nvg
σnξ P2 sinΦ0(cosΦ0A′+ sinΦ0A′′)− γ

′′PA′
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−2(γ ′ sinΦ0 + γ
′′ cosΦ0)P(cosΦ0A′+ sinΦ0A′′), (2.27a)

dA′′

dz
=

β2

2
Ω

2A′− cκ

2nvg
αiA′′−

cκ

2nvg
σαξ P2[A′′+4sinΦ0(cosΦ0A′+ sinΦ0A′′)]

+
4ω0κ

nvg
σnξ P2 cosΦ0(cosΦ0A′+ sinΦ0A′′)− γ

′′PA′′

+2(γ ′ cosΦ0− γ
′′ sinΦ0)P(cosΦ0A′+ sinΦ0A′′). (2.27b)

where Ω = ω −ω0 and A′(z,Ω) = F{a′(z, t)} and A′′(z,Ω) = F{a′′(z, t)} are the

Fourier transforms of the two noise components. Furthermore, a detailed comparison

between the full propagation model and its linearized version was carried out for the

single-channel systems in Chapter 5, the conclusion being that for practical values of

the system parameters the linearized model is accurate.

To this end, both the full propagation model and its linearized version have been

derived for the single-channel optical system. In addition, these models can be easily

extended to other types of optical waveguides or more complicated optical devices.

2.7.2 Multi-channel CW Noise Linearization

In this section, the linearized approach for multi-wavelength propagation are presented,

considering only the OOK CW signal propagation in each channel. To begin with, the

superposition of the optical signal and noise propagating in the ith channel of a Si-PhW

or Si-PhCW photonic system is expressed as [75]:

ui(z,T ) =
[√

Pi(z)+ai(z,T )
]
e− jΦi(z), (2.28)

where Pi(z), ai(z,T ) and Φi(z) represent the power of OOK CW signal, the complex

additive white noise, and the global phase shift in the ith channel, respectively.

In the stationary regime, ∂N
∂ t = 0, so that Eq. (2.21b) implies that the steady-state

FC density, Ns, is given by:

Ns(z) = ∑
i,k

ξikPi(z)Pk(z), (2.29)

where ξik = τcCik and Cik is defined by Eq. (2.24).

In order to linearize Eq. (2.21) w.r.t. the noise amplitudes, ai(z,T ), i = 1, . . . ,M,

we substitute Eq. (2.28) into Eq. (2.21) and discard all quadratic and higher-order
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terms in ai(z,T ). Then, in conjunction with Eq. (2.29), the zeroth- and first-order of

Eq. (2.21) become:

dPi

dz
=− cκi

nvg,i

(
αin +σαNs

)
Pi−2

(
γ
′′
i Pi +2 ∑

k 6=i
γ
′′
ikPk
)
Pi (2.30a)

dΦi

dz
=−ωiκi

nvg,i
σnNs− γ

′
i Pi−2 ∑

k 6=i
γ
′
ikPk, (2.30b)

∂ai

∂ z
=−

( 1
vg,i
− 1

vg,ref

)
∂ai

∂T
−

jβ2,i

2
∂ 2ai

∂T 2 −
cκi

2nvg,i

×
[
(αin +σαNs)ai +2σα

√
Pi ∑

kl
Pk
√

Pl(ξkl +ξlk)a′l
]

+2 j
ωiκi

nvg,i
σn
√

Pi ∑
kl

Pk
√

Pl(ξkl +ξlk)a′l +2 jγiPia′i

− γ
′′
i Piai +2 ∑

k 6=i

√
Pk(2 jγik

√
Pia′k− γ

′′
ik

√
Pkai), (2.30c)

These equations clearly show that the power in a specific channel decays due to

intrinsic losses, FCA, TPA, and XAM. Importantly, the terms proportional to Ns in

Eqs. (2.30a) and (2.30b) reveal an interchannel cross-talk mechanism that does not

have a counterpart in optical fiber systems, namely a FC-mediated interaction between

optical signals propagating in different channels. To be more specific, as an optical

signal propagates in a certain channel, part of its energy is optically absorbed leading

to generation of FCs. As a result, the index of refraction and absorption coefficient of

the waveguide changes, which leads to a phase shift and increased optical absorption

of an optical signal propagating in a different channel.

By adding to and subtracting Eqs. (2.30) from its complex conjugate, two coupled

differential equations are obtained for the in-phase and quadrature noise components,

a′i(z,T ) and a′′i (z,T ), respectively. Taking the Fourier transform of both sides of the

resulting equations leads to the following system of coupled ordinary differential equa-

tions:

dA′i
dz

= j
( 1

vg,i
− 1

vg,ref

)
ΩiA′i−

β2,i

2
Ω

2
i A′′i −

cκi

2nvg,i

×
[
(αin +σαNs)A′i +2σα

√
Pi ∑

kl
Pk
√

Pl(ξkl +ξlk)A′l
]

−3γ
′′
i PiA′i−2 ∑

k 6=i

√
Pk(γ

′′
ik

√
PkA′i +2γ

′′
ik
√

PiA′k), (2.31a)
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dA′′i
dz

= j
( 1

vg,i
− 1

vg,ref

)
ΩiA′′i +

β2,i

2
Ω

2
i A′i +2

ωiκi

nvg,i
σn

×
√

Pi ∑
kl

Pk
√

Pl(ξkl +ξlk)A′l−
cκi

2nvg,i
(αin +σαNs)A′′i

+(2γ
′
i A
′
i− γ

′′
i A′′i )Pi−2 ∑

k 6=i

√
Pk(γ

′′
ik

√
PkA′′i −2γ

′
ik
√

PiA′k), (2.31b)

where Ωi = ω − ωi, A′i(z,Ωi) = F{a′i(z,T )} and A′′i (z,Ωi) = F{a′′i (z,T )}, i =

1, . . . ,M, are the Fourier transforms of the noise components. Moreover, the detailed

comparison between the full and linearized models regarding the multi-wavelength sig-

nal propagation will be given in Chapter 8.

2.8 Computational Algorithms of Signal Propagation

Computational solvers are often needed in the exploration of the signal propagation in

Si waveguides, since the two mathematical models discussed in Sec. 2.6 and Sec. 2.7

will not lead themselves to the analytical solutions. To serve this purpose, many nu-

merical approaches have been developed, with a brief review summarized in Sec. 4.1.

Among them, two specific algorithms are utilized in this dissertation, namely, the mod-

ified SSFM in Sec. 2.8.1 and the computational solver for ODEs in Sec. 2.8.2.

2.8.1 Split Step Fourier Method

The SSFM method is a pseudospectral method that provides semi-analytical solutions

for nonlinear partial equations, such as a NLSE. Particularly, the main strategy of this

method is to split the distance into small segments, and then perform the linear and

nonlinear operations separately. In this process, the Fast Fourier Transform (FFT) is

applied to transfer the optical field between the time- and frequency-domain, in order

to improve the computational speed. Importantly, the SSFM method has to be modified

for Si waveguides in order to account for the FCs dynamics, which is one of the major

differences between Si waveguides and silica fibers.

The SSFM algorithm for Si waveguides is presented as follows. The start point

of the SSFM is to separate Eq. (2.15) into the linear and nonlinear parts, which is

expressed as:
∂u
∂ t

= (D̂+ N̂)u, (2.32)
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where

D̂ = − iβ2

2
∂ 2

∂ t2 +
β3

6
∂ 3

∂ t3 −
icκ

2nvg
αin, (2.33a)

N̂ = iγ|u|2− cκ

2nvg
αFC +

iωκ

nvg
δnFC. (2.33b)

Here, D̂ represents a differential operator that determines the linear optical effects, and

N̂ acts as the nonlinear operator that corresponds to the nonlinearity of Si waveguides.

In particular, the mathematical terms of FCA (αFC) and FCD (δnFC) in Eq. (2.33b) are

related to the FCs dynamics (Eq. (2.20)) in form of Eq. (2.5). Therefore, the evolution

of FCs is needed to be measured simultaneously, which can be solved via a fifth-order

Runge-Kutta method.

Practically, the optical linear and nonlinear effects mutually interact with each

other during transmission. But it is reasonable and realistic to assume that these opti-

cal processes are uncorrelated to each other within a small distance segment h, since

their mutual interaction are relatively small. Therefore, the numerical solution towards

Eq. (2.32) can be derived by performing the linear effects operator D̂ alone on the

electrical field, followed by the nonlinear effects operator N̂. A corresponding mathe-

matical formula is given below:

u(z+h, t) = exp[h(D̂+ N̂)] u(z, t)≈ exp[hD̂]exp[hN̂] u(z, t) (2.34)

This approximation of Eq. (2.34) is made according to the Baker-Hausdorff formula

for two independent operators â and b̂:

exp[â]exp[b̂] = exp[â+ b̂+
1
2
[â, b̂]+

1
12

[â− b̂, [â, b̂]]+ · · ·] (2.35)

where [â, b̂] = âb̂− b̂â. It suggests that Eq. (2.34) provides solution with accuracy of

second-order in the segment h.

To improve the accuracy of the SSFM method, an alternative procedure for

Eq. (2.34) is proposed:

u(z+h, t)≈ exp[
h
2

D̂]exp[
∫ z+h

z
N̂(z1)dz1]exp[

h
2

D̂] u(z, t). (2.36)
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This numerical process is denoted as the symmetric SSFM, which is accurate to the

third order of h. Moreover, the trapezoidal rule is applied to the nonlinear operator in

Eq. (2.36): ∫ z+h

z
N̂(z1)dz1 ≈

h
2
[N̂(z)+ N̂(z+h)] (2.37)

Here, two iteration operations are needed to implement Eq. (2.37) in the SSFM method,

since N̂(z+h) is unknown at z+h/2. Therefore, these two iterations are described as

follows: firstly, N̂(z+h) is replaced by N̂(z) at the beginning; secondly, the calculation

of A(z+ h, t) is performed according to the relation of Eq. (2.36), which provides the

new value for N̂(z+ h) in turn. This provides the numerical process to capture the

nonlinear effects. Till now, all the essential mathematical formula to calculate u(z+h, t)

from u(z, t) is achieved.

z0 z1 z2 znzn-2 zn-1

h

z0+h/2 z1+h/2 zn-1+h/2

Linear operator & FCsNonlinear operator

Figure 2.12: Schematic illustration of the symmetric SSFM that introduced for Si waveguides.

To conclude, the main computational procedure of the symmetric SSFM method

is demonstrated in Fig. 2.12. The main idea is to divide the distance L into n sections

equally (L = nh), and then calculate the optical field at each h: firstly, the linear ef-

fects operator D̂ is carried out on the electrical field in the frequency-domain during

a distance segment of h/2; next, at the mid-segment of z+ h/2, the electrical field in

the time domain is multiplied by a nonlinear operator N̂, which represents the overall

waveguide nonlinearity along h; along the second h/2, the electrical field only includes

the linear effects, where this calculation is done in the frequency domain; furthermore,

the FCs evolution is calculated in the above linear effect steps, by means of using the

fifth Runge-Kutta technique presented in Appendix B to solve Eq. (2.20). In order to
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reduce the computational time, the following expression is used to obtain the output

signal after n successive steps:

u(L, t)≈ e−
h
2 D̂
( n

∏
j=1

ehD̂ehN̂
)

e
h
2 D̂u(0, t) (2.38)

Additionally, the values of the computational time window, the number of temporal

sampling points (or the FFT points) and the distance step, have to be chosen carefully

in order to ensure the computational accuracy as well as speed up the computational

process. More information about the numerical implementation of this algorithm will

be introduced in Sec. 4.3.1.

2.8.2 Computational Solvers for Ordinary Differential Equations

The Matlab standard solver, ode45, is employed to calculate the ODEs introduced in

Sec. 2.7 [91]. By definition, the Matlab function ode45 is designed to implement the

fifth-order Runge-Kutta routine to solve the typical mathematical problem as follows:

dy
dt

= f(t,y), y(t0) = y0 (2.39)

Here, t represents the evaluation points, such as time and distance, and y is a t-related

array waiting to be calculated from Eq. (2.39). In this function, the initial conditions of

y(t0) = y0 and the interval of integration tspan are needed to be provided for a specific

mathematical problems.

When considering the propagation of a noisy CW signal in the Si waveguides, the

Matlab function ode45 is used to solve all the coupled first-order ODEs numerically.

For instance, with regard to Eqs. (2.26) and (2.27) for single-channel signal propaga-

tion, we can firstly select four important vector variables as A = P, B = Φ, C = A′ and

D = A′′. Then, based on their interrelations explained in such form:

D↔C↔ A→ B (2.40)

the simplified version of the first-order ODEs (Eqs. (2.26) and (2.27)) can be derived
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below, with the evaluation points to be the distance z:

dA
dz

= f1(A), (2.41a)

dB
dz

= f2(A), (2.41b)

dC
dz

= f3(A,C,D), (2.41c)

dD
dz

= f4(A,C,D), (2.41d)

where the initial conditions, A(0) = A0 stands for the input power of CW signals,

B(0) = B0 represents the initial global phase of optical signal, C(0) = C0 and D(0) =

D0 are the real and imaginary part of the input white noise in the frequency domain.

Eventually, with the initial condition of y0 = [A0;B0;C0;D0] and the integration interval

of tspan, the solver ode45 can be performed on a Matlab function that is programmed

based on Eq. (2.41). This can facilitate accurate numerical results in an efficient way.

Importantly, tspan can be designed in a form of tspan = [t0, t1, t2, · · · , t f ], in order to

control the distance step. In addition, the number of sampling points in y0 has to be ad-

equately large, aiming at maintaining the accuracy of computation. The mathematical

principle of ode45 is introduced in Appendix B.
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Chapter 3

Mathematical Concepts Used in BER

Calculation

3.1 Introduction
The nonlinearity would normally exist in the current waveguides and receivers, and

even in the next-generation optical communication nextworks, which only allow for

small bit-rate transmission. This suggests that neither traditional analytical approaches

nor standard Monte-Carlo methods are suitable for BER calculation in the systems

mentioned above. To date, some new BER calculation methods have been proposed to

account for the influence of waveguide nonlinearity, noise and signal patterns. Specif-

ically, these calculation mechanisms can be categorized into four types: (1) CW noise

method. This method was initially proposed by Hui et al. [1], and only designed for

the CW optical signals. Its main idea is to separate the noise amplification from nonlin-

ear optical effects by using mathematical manipulation. (2) Covariance matrix method.

This approach was originally raised by Holzlöehner et al. [2] for the BER estimation

in a highly nonlinear optical system via linearization. (3) Receiver model. This numer-

ical algorithm has been developed by Bosco et al. [3] and Forestieri et al. [4] for the

calculation of BER in the optical pre-amplified receivers. (4) Multicanonical Monte

Carlo method. This numerical scheme was firstly introduced by Berg et al. [5, 6], and

is based on the efficient biased Monte Carlo simulations. In this chapter, several KLSE

approaches will be presented to compute the BER for both single- and multi-channel

optical systems. Specifically, these methods can be performed via the time-domain

[7–9], frequency-domain [9–11] and Fourier-series routines [4]. A major advantage of
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these KLSE methods is their capability of characterizing various factors that influence

the system BER [12], e.g., waveguide nonlinearity.

This chapter is organized as follows. The mathematical formulation of the time-

domain KLSE method designed for the CW signals will be introduced in Sec. 3.2.

Similarly, Sec. 3.3 will describe another KLSE method for the evaluation of CW signals

via the frequency domain. In addition, Sec. 3.4 will present the Fourier-series KLSE

method for the analysis of all types of signal modulation formats. In the last section,

a specific computational approach, denoted as the saddle-point approximation, will be

introduced for the BER calculation. This algorithm is based on the moment-generating

function (MGF) from Sec. 3.2, Sec. 3.3 and Sec. 3.4.

3.2 Time-domain Karhunen-Loève Expansion Method
The time-domain KLSE serves as an efficient approach to calculate the transmission

BER at the back-end of the receiver. As mentioned earlier, this numerical approach is

constructed only for the estimation of CW optical signals. According to the schematic

of a single-channel OOK system shown in Fig. 2.10, a generic direct-detection receiver

is composed of a Lorentzian optical filter with impulse response, ho(t), followed by an

ideal photodetector and an integrate-and-dump electrical filter, whose impulse response

is he(t). However, the receiver configuration is more complicated for the PSK optical

signals, with more details discussed in Sec. 7.3. Notably, the electrical noises of the

receiver have not been taken into account, as in most cases the thermal and shot noises

can be negligible in the systems where the white noise enhancement plays the domi-

nant role in limiting the system performance [8, 13]. Moreover, in the WDM system

(see Fig. 2.11) we assume that no additional statistical correlations among signal prop-

agating in each channel are introduced during signal demultiplexing. For simplicity,

the case of kth channel is selected to stand for both cases of single-channel and multi-

channel system detection. Note also that this choice of kth channel representation is

also made in the other two KLSE methods described in Sec 3.3 and Sec 3.4.

To start with, we present the complex envelope of the optical signal at the front

of the kth receiver as r1,k(t) = Sk + ai,k(t)+ jaq,k(t), where ai,k(t) and aq,k(t) are the

in-phase and quadrature noise components, respectively, and Sk is the amplitude of the

CW signal. We consider that Sk = 0 (S2
k = Pk) when a “0” (“1”) is transmitted, where
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Pk is the power of optical signals in the kth channel. Moreover, it is assumed that the

carrier propagates unchanged through an optical filter, which amounts to Ho(0) = 1

with Ho( f ) = F{ho(t)}. Hence, the signal after the optical filter can be written as,

r2,k(t) = Sk + vi,k(t)+ jvq,k(t), where vµ,k(t) = ho(t)⊗aµ,k(t)(µ = i,q). After passing

through the ideal square-law photodetector and the electrical filter, the electrical sig-

nal, yk(t) = he(t)⊗|r2,k(t)|2, so that at the back-end of the receiver it is given by the

following expression:

yk(t) =
∫

∞

−∞

he(t)
{[

Sk + vi,k(t− t ′)
]2
+ v2

q,k(t− t ′)
}

dt ′. (3.1)

The noise components of kth channel at the output of the waveguide are assumed

to be stationary and completely determined by their power spectral density matrix [14]:

G a,k( f ) =

G i
a,k( f ) G iq

a,k( f )

G qi
a,k( f ) G q

a,k( f )

 , (3.2)

where G i
a,k and G q

a,k are the power spectral densities of the in-phase and quadrature

noise components from the kth channel, respectively; G iq
a,k and G qi

a,k symbolize the cross-

spectral power density, obeying G iq
a,k = G qi

a,k. Note that even if at the input of the Si

waveguide the in-phase and quadrature noise components are assumed to be uncorre-

lated, the mutual interaction mediated by the FCs and optical nonlinearity makes them

to become correlated by the time they reach the back-end of the waveguide.

Upon passing through the optical filter, the power spectral density matrix of the

noise, G v,k( f ), becomes [14]:

G v,k( f ) = H o( f ) ·G a,k( f ) ·H †
o( f ), (3.3)

where “†” represents Hermitian conjugation operation. The real value optical filter

matrix H o is given by:

H o =

H i
o( f ) −Hq

o ( f )

Hq
o ( f ) H i

o( f )

 . (3.4)

where H i
o( f ) =F{h′o(t)} and Hq

o ( f ) =F{h′′o(t)} are the Fourier transform of the real
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and imaginary parts of the optical filter impulse response, respectively.

Next, the signal, Sk, and both components of the noise, vi,k(t) and vq,k(t), are

expanded in KLSE series. The deterministic functions, {φ k
α(t)} and {ψk

α(t)}, will be

defined in the expansions, and are both orthonormal to he(t) [15]:

Sk = ∑
α≥1

sk
αφ

k
α(t), (3.5a)

vi,k(t) = ∑
α≥1

pk
αφ

k
α(t), (3.5b)

vq,k(t) = ∑
α≥1

qk
αψ

k
α(t), (3.5c)

where the expansion coefficients, {sk
α}, {pk

α} and {qk
α}, are random variables. By

applying the orthonormality conditions,

∫
∞

−∞

he(t)φ k
α(t)φ

k,∗
β

(t)dt = δαβ , (3.6a)∫
∞

−∞

he(t)ψk
α(t)ψ

k,∗
β

(t)dt = δαβ , (3.6b)

these KLSE expansion coefficients can be proven to be in such forms:

sk
α = Sk

∫
∞

−∞

he(t)φ
k,∗
α (t)dt, (3.7a)

pk
α =

∫
∞

−∞

he(t)vi,k(t)φ
k,∗
α (t)dt, (3.7b)

qk
α =

∫
∞

−∞

he(t)vq,k(t)ψ
k,∗
α (t)dt. (3.7c)

What follows is to combine Eqs. (3.1), (3.5) and (3.6) together and use the stationary

condition of vi,k(t) and vq,k(t). Thus, the electrical signal can be rewritten as:

yk = ∑
α≥1
|sk

α + pk
α |

2
+ ∑

α≥1
|qk

α |
2
. (3.8)

This equation indicates the fact that the statistics of the electrical signal is com-

pletely determined by the probability distributions of the random variables {sk
α}, {pk

α}

and {qk
α}, which in turn are defined by the functions {φ k

α(t)} and {ψk
α(t)}. Then

our emphasis is shifted to compute {φ k
α(t)} and {ψk

α(t)}. Importantly, the random

variables {pk
α} and {qk

α} are mutually uncorrelated, namely, E{pk
α pk,∗

β
} = µk

αδαβ
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and E{qk
αqk,∗

β
} = νk

αδαβ . By using simple mathematical manipulations, {φ k
α(t)} and

{ψk
α(t)} are proven to be eigenfunctions of the second kind homogeneous Fredholm

integral equations, with {µk
α} and {νk

α} to be the corresponding eigenvalues:

∫
∞

−∞

he(τ)ρ
k
i (t− τ)φ k

α(τ)dτ = µ
k
αφ

k
α(t), (3.9a)∫

∞

−∞

he(τ)ρ
k
q(t− τ)ψk

α(τ)dτ = ν
k
αψ

k
α(t). (3.9b)

Here, ρk
i (t) and ρk

q(t) are the autocorrelation functions of the noise functions vi,k(t)

and vq,k(t), respectively, which are symbolized by ρk
i (t) = F−1{G i

v,k} and ρq(t) =

F−1{G q
v,k}. In order to find numerical solutions for Eqs. (3.9), the Gauss-Hermite

quadrature method (see Appendix. A) is employed to calculate the integrals. Simulta-

neously, the time variable t is discretized over the same grid points as the abscissas τl

in the Gauss-Hermite quadrature method, namely, tl = τl, l = 1, . . . ,M. To this point,

this problem is transferred to find the eigenvalues ({µk
α}, {νk

α}) and eigenfunctions

({φ k
α(tl)}, {ψk

α(tl)}) for the two resulted matrix. However, the in-phase and quadra-

ture noise components turn to be correlated after propagation, E{pk
αqk,∗

β
} ≡ σ k

αβ
6= 0.

which should also be included in the computational analysis. Then, by performing

mathematical operations on Eqs. (3.7), we can easily derive the following relation:

∫
∞

−∞

he(t)he(τ)ρ
k
iq(τ− t)ψk

β
(τ)dτ = ∑

α≥1
σ

k
αβ

φ
k
α(t), (3.10)

where ρk
iq(t) stands for the cross correlation between vi,k(t) and vq,k(t), with the expres-

sion of ρk
iq(t) = F−1{G iq

v,k}. Similarly, the Gauss-Hermite quadrature technique is also

operated on Eq. (3.10). By solving the resulted linearized equations, we can obtain the

matrix {σ k
αβ
}. Hence, the complete form of the noise correlation matrix, Rk, can be

derived after direct-detection:

Rk =

Λk
µ Σ

k

Σk,† Λk
ν

 , (3.11)

where Λk
µ = diag(µk

α) and Λk
ν = diag(νk

α) are diagonal matrices and Σk
αβ

= σ k
αβ

.

The last step is to discretize the analytical formula mentioned above, in order
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to derive the semi-analytical solution rigorously. First of all, after the optical filter,

the complex noise is written as a column vector, nk = [pk
1 · · · pk

M qk
1 · · ·qk

M]T ( T is the

transpose operation, unless otherwise is specified), containing two random variables

({pk
α} and {qk

α}). In the meanwhile, the signal is expressed as sk = [sk
1 · · ·sk

M 0 · · ·0]T .

Thus, the electrical current Eq. (3.8) can be written in a new form:

yk = xk
† · xk =

2M

∑
α=1
|xk

α |
2
, (3.12)

where xk = [xk
1 · · ·xk

2M]T ≡ nk + sk. Note that the signal and the noise are uncorrelated,

E{nk
αsk,∗

β
} = 0, and also E{nk

α} = 0, ∀α,β = 1 . . .2M. Secondly, a unitary matrix Uk

is used to diagonalize the correlation matrix Rk, obtaining an ideal diagonal matrix

∆
k = diag(δ k

α):

Uk,† Rk Uk = ∆
k, (3.13)

where {δ k
α}(α = 1 . . .2M) are the eigenvalues of Rk. Since the unitary matrix Uk con-

serves to the norm of vectors, Eq. (3.12) can be recast into:

yk = wk
† ·wk =

2M

∑
α=1
|wk

α |
2
, (3.14)

where wk =Uk,†xk. Then, the statistical properties of wk can be easily obtained:

E{wk}=Uk,† E{nk + sk}=Uk,† sk ≡ ηk = [ηk
1 · · ·ηk

2M]T , (3.15a)

E{wk ·wk
†}=Uk,† E{xk · xk

†}Uk =Uk,† Rk Uk = ∆
k. (3.15b)

From Eq. (3.15b), one can see that the noise correlation matrix {wk
α} is diagonal. To

calculate the BER, the MGF, Ψyk(ζ ), is calculated for the random variable yk [16]:

Ψyk(ζ ) = E{e−ζ yk}=
2M

∏
α=1

exp
(
− |η

k
α |

2
ζ

1+2δ k
α ζ

)
√

1+2δ k
αζ

, (3.16)

where δ k
α are the eigenvalues of the correlation matrix, and ηk

α are the average values of

yk from Eq. (3.14). The detailed mathematical process of calculating the system BER
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from the MGF will be described in Sec. 3.5.

3.3 Frequency-domain Karhunen-Loève Expansion

The frequency-domain KLSE method [11] is presented in this section, aiming at esti-

mating the BER performance of Si photonic systems in a accurate and efficient way.

This algorithm is only designed for the CW optical signals, in presence of the complex

white noise. When compared with the time-domain method described in Sec 3.2, this

method shows strength in its good transferability for more complicated optical systems.

Here, the kth channel is selected to be the representative for both cases of single- and

multi-channel detection.

Before proceeding to construct the mathematical models, the configuration of the

direct-detection receiver is specified in the frequency domain: a lorentzian optical

filter, Ho( f ), an ideal square-law photodetector and an integrate-and-dump electrical

filter, He( f ). Particularly, Ho( f ) and He( f ) are the Fourier transform of ho(t) and

he(t), which are impulse response function of optical and electrical filters mentioned in

Sec. 3.2. Here, Xk( f ) is defined as the Fourier transform of the receiver input signals

xk(t). Therefore, the photocurrent at the output of the receiver can be written as:

yk(t) =
∫

∞

−∞

∫
∞

−∞

X∗k ( f1)D( f1, f2)Xk( f2)e2π j( f2− f1)td f1d f2 (3.17)

where the Hermitian kernel D represents the receiver functionalities, including an op-

tical filter, an electrical filter and a photodetector, which is given by:

D = H∗o ( f1)He( f2− f1)Ho( f2), (3.18)

As suggested in Sec. 3.2, the derivation of the MGF is indeed the fundamental part of

the BER calculation when using the KLSE method. In order to determine the MGF of

yk(t), the crucial step is to compute the correlation matrix Rk in frequency domain. To

fulfil this goal, we firstly discretize the Hermitian kernel and the electrical field with a

step δ f : D̃m,n = D( fm, fn)δ f , x̃k,n = Xk( fn)e2πi fnt
√

δ f , where fm = mδ f , fn = nδ f

(m,n =−Q, ...,Q, Q is a large integer). Thus, the Eq. (3.17) can be expressed in a new
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form:

yk(t) =
Q

∑
m,n=−Q

x̃∗k,m D̃m,n x̃k,n, (3.19)

Secondly, we recast the new electrical field x̃k,n into a real-value form: xk =

(x̃′k,−Q, ..., x̃
′
k,Q, x̃

′′
k,−Q, ..., x̃

′′
k,Q)

T . In this dissertation, ′ and ′′ denote the real and imag-

inary part of a physical variable, unless otherwise is specified. And the real-value

receiver matrix is symbolized as W = [D̃
′
,−D̃

′′;D̃ ′′,D̃ ′]. Thus, the decision vari-

able yk(t) can be written in the new form, yk(t) = xk
T W xk. Moreover, the optical

signal at the input of the receiver is expressed as xk(t) = Sk +ai,k(t)+ jaq,k(t), as men-

tioned in Sec 3.2. Then, the Fourier transform of the noise ai,k + jaq,k is denoted as

ÃRI = (ÃR, ÃI)
T , where ÃR and ÃI are real. The Fourier transform of ai,k and aq,k are

given by ǍR and ǍI , respectively, forming a new complex variable ǍRI = (ǍR, ǍI)
T .

More details about ÃRI and ǍRI can be found in [11]. It can be proved mathematically

that the power spectral density matrix Škk of noise can be expressed in such form:

Škk(z,ω) =
〈

ǍRI (z,ω)ǍRI(z,ω)†
〉
, (3.20)

Note that Škk obeys such symmetric properties: Š†
kk(z,ω) = Škk(z,ω), Š∗kk(z,ω) =

Škk(z,−ω). Regarding the new noise form, Ã±RI = [ÃR(ω), ÃR(−ω), ÃI(ω), ÃI(−ω)]T ,

the cross correlation matrix is derived mathematically:

Fk(ω) =
〈
Ã±RI Ã±T

RI
〉
=

s+ t

t s−

 , (3.21)

where s± = Š11
kk (ω)1±σ1

2 + Š22
kk (ω)1∓σ1

2 + Im[Š12
kk (ω)]σ3, t = Re[Š12

kk (ω)]σ1. Here, σ1,

σ2 and σ3 stand for 2×2 Pauli matrices. Due to the symmetry properties of Škk, we only

need to calculate the elements of Eq. (3.21) with ω ≥ 0. To this end, the correlation

matrix Rk can be obtained by using mathematical manipulation of Fk, according to

relation listed below:

(
Rk
)

ρa,ρb

= (Fk)ab|ω=2π fn

ρa = (1+n,2Q+1−n,2Q+2+n,4Q+2−n),
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n = 0, ...,2Q,

a,b =1, ...,4

(3.22)

Furthermore, the Cholesky factorization is utilized to decompose the correlation matrix

Rk in form of a lower triangular matrix L , i.e., Rk = L L T . To diagonalize the real

symmetric matrix L T W L , an orthogonal matrix U is used to obtain eigenfunctions

and eigenvalues:

(U T L T W L U )p,q = Λ (3.23)

where Λ = diag(λ1, ... ,λ4Q+2), with λp (p = 1, ...,4Q+ 2) real value. Moreover, the

total electric field xk is composed of signal sk and noise nk, where
〈
nk
〉
= 0 and

〈
xk
〉
=

sk. Thus, according to Eq. (3.23), the new signal and noise elements can be obtained:

zk = U T L −1(xk− sk), (3.24a)

ζk = U T L −1sk, (3.24b)

Hence, the decision variable ik(t) can be rewritten in a simple form:

yk(t) =
4Q+2

∑
n=1

λn(zk,n +ζk,n)
2, (3.25)

Therefore, by combining the analysis towards the signal s̄k, the noise n̄k, the shift vari-

able ζk, the decision variable yk(t) and the correlation matrix Rk, the MGF in frequency

domain, Ψyk(s), is obtained:

Ψyk(s) =
4Q+2

∏
n=1

exp
(

λn|ζk,n|2s√
1−2λns

)
√

1−2λns
, (3.26)

In the end, the system BER can be computed by applying the mathematical technique

introduced in Sec. 3.5 on Eq. (3.26).
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3.4 Fourier-series Karhunen-Loève Expansion

The Fourier-series KLSE approach [4] is described in this section to quantify the system

BER after the direct-detection receivers. As a complementary, the perturbation theory

is first used to characterize the transmission matrix and further the noise correlation

matrix in the central channel of single- and multi-channel transmission systems. In

this section, we select the kth channel to be the central channel, and carry out the

BER calculation in the kth channel to represent both single- and multi-channel systems.

Specifically, the central channel refers to the kth channel for the M̄-channel photonic

systems, where k = M̄/2 when M̄ is an even integer, or k = (M̄−1)/2 when M̄ is odd.

As for the single-channel systems, the central channel is itself.

Before we describe the mathematical approach for system BER calculation, we

present the perturbation theory used to determine the noise dynamics in Si waveg-

uides. To this end, we express the complex envelope of the optical field at the input of

the waveguide as xk(t) = sk(t)+wk(t), where sk(t) = 〈xk(t)〉 represents the noise-free

signal and wk(t) is the complex additive white Gaussian noise. Here, the symbol 〈·〉

denotes the statistical expectation operator. Furthermore, the noise wk is expanded in

Fourier series, namely, wk = ∑
N/2−1
l=−N/2 nl,ke jΩlt , where Ωl = 2πl/Ttot and Ttot = NtotT0,

with Ntot being the total number of transmitted bits. Then, a (4Q+ 2)-dimensional

noise Fourier vector is defined as, wk = (n′−Q,k, . . . ,n
′
Q,k,n

′′
−Q,k, ...,n

′′
Q,k)

T , where xT de-

notes the transpose of x. Importantly, in order to reduce the computational time, Q is

chosen such that 2Q+ 1 is more than 100 times smaller than N. The reason why this

is a valid choice is that most of the information pertaining to the noise can be collected

from the central part of the spectra.

The next step of the algorithm is to calculate the noise covariance matrix, Rk =〈
wk wk

T〉, at the output of the waveguide. This can be expressed in terms of Rk(0) as:

Rk(L) = R Rk(0)RT , (3.27)

where R is the transmission matrix of the Si waveguide. To calculate Rk(L), it is

necessary to compute first R. To this end, we perturb the input noise-free optical signal,

s0(t,0), by a small amount proportional to the β -th frequency mode, ∆e jΩβ−Q−1t , with
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β = 1, . . . ,(2Q+1) and ∆ a small quantity. This perturbed optical signal,

sβ (t,0) = s0(t,0)+∆e jΩβ−Q−1t , (3.28)

is then launched into the waveguide. By numerically solving Eq. (2.15), we com-

pute the corresponding optical signal at the back-end of the waveguide, denoted as

sβ (t,L). We then calculate the Fourier coefficients vector, wβ , of the difference

δ sβ (t) = sβ (t,L)− s0(t,L) and subsequently the matrix elements Rαβ of the trans-

mission matrix via the relation:

Rαβ = wβ

α/∆, (3.29)

where α = 1, . . . ,(4Q + 2). In these calculations, ∆ is chosen to be a real positive

number when α ≤ (2Q+ 1) and an imaginary number with ∆′′ > 0 if α > (2Q+ 1).

Finally, the (4Q+2)×(2Q+1) complex transmission matrix R is extended to a (4Q+

2)× (4Q+2) real matrix defined as R̃ = [R ′,R ′′].

Following this procedure, the noise covariance matrix G (L) can be determined

using Eq. (3.27), since the matrix G (0) can be calculated directly from the input noise.

Once the noise correlation matrix at the output of the Si waveguide has been calculated,

the Fourier-series KLSE is applied to compute the BER at the back-end of the direct-

detection receiver. Similar to the frequency-domain method presented in Sec. 3.3, the

first step of the Fourier-series KLSE is based on Eqs. (3.17), where Xk( f ) is the Fourier

transform of the signals at the input of the receiver and the Hermitian kernel is given

by D( f1, f2) = H∗o ( f1)He( f2− f1)Ho( f2). Then, we define the real receiver matrix as

W = [D ′,−D ′′;D ′′,D ′].

We now move to the main part of this algorithm, that is we compute the MGF

of y(t). To begin with, we use the Cholesky factorization to decompose the covari-

ance matrix as Rk = L L T , where L is a lower-triangular matrix. For the sake of

simplicity, we introduce a real symmetric matrix, L T W L , which contains all the in-

formation about the receiver matrix and the correlation matrix, and diagonalize this

newly introduced matrix via an orthogonal matrix, U [11]:

U T L T W L U = Σ, (3.30)
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where Σ = diag(σ1, . . . ,σ4Q+2) is a real-valued matrix. Since the receiver and noise

are characterized in the frequency domain, we describe the noise-free signal, s0
k(t),

after propagation in the waveguide in the frequency domain, too. Thus, we expand in

Fourier series s0
k(t) taken in the interval [t0−T0/2, t0+T0/2], with t0 an arbitrary time,

s0
k(t) =

∞

∑
p=−∞

s̃p,k e j2π pt/T0, t0−T0/2 < t < t0 +T0/2 (3.31)

and define a (2Q+ 1)-dimensional column-vector, s̄q, associated with the noise-free

signal Fourier coefficients {s̃p} at the time spot tq [9]:

s̄p,q = s̃p−Q−1,k e j2π(p−Mo−1)tq/T0, p = 1, ... ,2Q+1 (3.32)

This (2Q + 1)-dimensional complex-valued vector is extended to a (4Q + 2)-

dimensional real-valued vector by separating the real and imaginary parts, that is

s̃q = [s̄q
′, s̄q
′′]T . With these definitions, the transformed signal is given by:

χq = U T L −1s̃q. (3.33)

This transformed signal and the matrix Σ are then used to calculate the MGF of

yk(t) using the following formula:

Ψyk(s) =
4Q+2

∏
p=1

exp
(

σp|χq|2s√
1−2σps

)
√

1−2σps
. (3.34)

Importantly, we set the detection clock time, tq, at the middle of each bit interval, which

is also the place where the peak pulse is located. Finally, by applying the saddle-points

approximation that will be introduced in Sec. 3.5, the BER contributions of a “0” bit

and a “1” bit can be calculated in a rigorous and efficient way.

3.5 Saddle-point Approximation Approach for Proba-

bility Density Function Calculation
The saddlepoint approximation method is a mathematical technique that evaluates the

integral of the MGF in the complex plane, in order to derive the probability density
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function (PDF) of a distribution with great accuracy. It was originally proposed by

Daniels [17], and successive research of this method has been carried out intensively,

in aspects of the extensions and applications [12, 18–20]. In this section, the math-

ematical description of the saddle-point approximation approach in the BER calcula-

tion will be presented. Considering the difference of the MGF between Eq. (3.16)

(time-domain KLSE method) and Eq. (3.26) (frequency-domain KLSE method) and

Eq. (3.34) (Fourier-series KLSE method), the strategy of mathematical description here

is to first provide semi-analytical solutions for BER derived from Eq. (3.16), and then

make a complementary for BER calculated from the other two MGFs (Eq. (3.26) and

Eq. (3.34)). Note also the kth channel is the selected to represent the cases of single-

and multi-channel BER detection in this section. To start with, we use the following

relation to derive the system BER calculation:

P =
1
2

[
P(yk > yth,k|Sk = 0)+P(yk < yth,k|Sk =

√
Pk)
]
, (3.35)

where the first (second) term represents the probability for an error to occur when a “0”

(“1”) bit is transmitted in the kth channel and yth,k is the decision threshold. Then the

PDF Pyk(t) can be calculated by applying the Riemann-Fourier inversion formula on

the MGF Ψyk(ζ )

Pyk(t) =
∫

ζ0+ j∞

ζ0− j∞

Ψyk(ζ )

2π jζ
eζ tdζ (3.36)

Then, the explicit expressions of the probabilities for signal “1” and signal “0” can be

acquired for the MGF of Eq.( 3.16) [21]:

P(yk > yth,k|Sk = 0) =−
∫ −|ζ0|+∞

−|ζ0|−∞

Ψyk(ζ |Sk = 0)
2π jζ

eζ yth,kdζ , (3.37a)

P(yk < yth,k|Sk =
√

Pk) =
∫ |ζ0|+∞

|ζ0|−∞

Ψyk(ζ |Sk =
√

Pk)

2π jζ
eζ yth,kdζ , (3.37b)

where ζ0 is a real constant that defines the integration path in the complex plane, ζ .

Importantly, by employing the saddle-point approximation, the simpler mathematical
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formulae for the probabilities are obtained [9]:

P(yk > yth,k|Sk = 0) =
exp[Φyk(s

−
o )]√

2πΦ′′ik(s
−
o )

, (3.38a)

P(yk < yth,k|Sk =
√

Pk) =
exp[Φyk(s

+
o )]√

2πΦ′′yk
(s+o )

, (3.38b)

where Φ′′yk
denotes as the second-order derivative of the phase function Φyk , whose

mathematical formula is given by:

Φyk(s) = ln
[

Ψyk(s)
exp(yth,ks)
|s|

]
, s ∈R (3.39)

where s+o and s−o correspond to the positive and negative saddle points on the real s axis

of exp[Φyk(s)]. And their values can be calculated by minimizing exp[Φyk(s)], with this

process numerically solved by using the Golden Section Algorithm. More details about

this algorithm is presented in Appendix C.

Similar mathematical expressions of the PDFs can also be derived by using the

Riemann-Fourier inversion on the MGFs of Eq. (3.26) and Eq. (3.34), which corre-

spond to the frequency-domain and Fourier-series KLSE methods, respectively:

P(yk > yth,k|Sk = 0) =−
∫ |ζ0|+∞

|ζ0|−∞

Ψyk(ζ |Sk = 0)
2π jζ

e−ζ yth,kdζ , (3.40a)

P(yk < yth,k|Sk =
√

Pk) =
∫ −|ζ0|+∞

−|ζ0|−∞

Ψyk(ζ |Sk =
√

Pk)

2π jζ
e−ζ yth,kdζ , (3.40b)

And by applying the saddle-point approximation, these formula of the PDFs can be

simplified as:

P(yk > yth,k|Sk = 0) =
exp[Φyk(s

+
o )]√

2πΦ′′ik(s
+
o )

, (3.41a)

P(yk < yth,k|Sk =
√

Pk) =
exp[Φyk(s

−
o )]√

2πΦ′′yk
(s−o )

, (3.41b)

where the phase function Φyk has a different analytical expression:

Φyk(s) = ln
[

Ψyk(s)
exp(−yth,ks)

|s|

]
, s ∈R (3.42)
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It is obvious that the value of saddle points (so) changes from negative to positive, when

the method that measures the PDF for signal “0” switches from the time-domain KLSE

to the frequency-domain and Fourier-series KLSE. And a similar situation can observed

in the case of signal “1”. This is caused by the sign of eigenvalues in the square-root

term of Eq. (3.16), Eq. (3.26) and Eq. (3.34), but will not affect the computational

accuracy and efficiency of these KLSE approaches.
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Chapter 4

Numerical Implementation of Main

Computational Methods

4.1 Introduction
The numerical implementation of the complete system evaluation models will be de-

scribed in this chapter. It is a Matlab tool [1] based on the signal propagation theory in

Sec. 2 and the BER calculation approaches in Sec. 3. This numerical tool can support

accurate modeling for Si-based photonic systems, accounting for single- and multi-

wavelength propagation, various signal modulation formats and different types of Si

waveguides.

The optical signal propagation simulators are essential parts in the characterization

and design of optical waveguides and other optical devices. A number of numerical al-

gorithms have been developed for the signal propagation. There are two big branches:

the first branch is based on the time-domain methods, whose representatives are the

SSFM [2], the FEM [3], and the Finite-Difference Time-Domain Method [4]; the other

branch is built in the frequency domain, including the Eigenmode Expansion Method

[5], the Transfer Matrix Method [6], and the Beam Propagation Method [7]. Among

these algorithms, the SSFM is such a straightforward routine that can be easily im-

plemented in numerical codes, and incorporating all the essential linear and nonlinear

optical effects within the optical waveguides. The currently available SSFM softwares

comprise the Nonlinear Schrödinger Equation Solver [2], the OptSim by Rsoft [8] and

SSPROP [9]. Even though they are of high reliability, these SSFM softwares are devel-

oped only for optical fibers.
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Furthermore, regarding the performance evaluation (i.e., BER, eye-diagrams) of

optical systems, a number of ready-to-use softwares have been developed in the last

two decades. The freely available software like SIMFOCS [10], and the commercial

softwares, such as OptSim by Rsoft [11]and PHOTOSS [12], can all provide accurate

system evaluation, which are extremely useful for the construction and characterization

of the optical networks in practice. However, some of these tools are designed for

optical fibers, and may not provide platforms for users to customize the types of optical

waveguides and modify the underlying computational routines. On the other hand, what

is appealing about the self-developed numerical routine is that it can not only provide

full access to the original codes, but also flexibility and extendability to include more

complicated optical systems.

The rest of this chapter is organized as follows. Sec. 4.2 presents the program flow

of the system analysis model and discuss the details of its numerical implementation.

Additionally, several specific numerical algorithms and their correlation with the math-

ematical formulae will be explained in Sec. 4.3. In the last section, the key features of

this numerical tool for Si photonic systems will be summarized.

4.2 Program Flow for System Analysis Models
The goal of the computational tool presented in this dissertation is to facilitate the de-

sign and optimization of different optical waveguides, waveguide-based devices and

sophisticated optical systems. In the process of constructing this numerical engine,

the mathematical algorithms and numerical parameters are needed to be carefully se-

lected, in order to ensure the computational precision and reliability. In this section, the

architecture of this theoretical and numerical tool will be described.

According to the program flow shown in Fig. 4.1, every simulation towards the

performance analysis encompasses the following main steps, namely, simulation setup,

system evaluation and output. To be more specific, the first step is of great impor-

tance but relatively simple, because it is supposed to guarantee the accuracy of the

simulated results by initializing all the essential parameters. As for the third step, the

results are programmed to generated automatically. Furthermore, the key part of the

whole computational process is the second step, which comprises the modules of the

preparation engine, the propagation simulator and the BER calculator. Notably, the
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Figure 4.1: Program flow of the system evaluation model.

method of error counting is not used to verify the BER results calculated via the KLSE

approaches, since this method is extremely time-consuming and subsequently makes

itself infeasible especially at larger values of BER. However, the verification tests re-

garding BERs have been carried out, with more details described in Sec. 4.3.6. In the

following paragraphs, the thorough computational procedures of this implementation

will be presented.

In the first step, the initial conditions of the whole simulation process are prepared,

including the specific components of a Si photonic system and the simulation parame-
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ters. To start with, a photonic system can be constructed by defining several groups of

physical parameters illustrated in the first stage of Fig. 4.1: (1) Optical signal parame-

ters. Generally, the signal modulation formats, the central carrier frequency, the signal

power and the bit sequence pattern, as well as the white noise, all have to be properly

selected in order to fulfill the research purpose; (2) Waveguides optical parameters and

dimensions. In particular, the dispersion and nonlinear coefficients of Si waveguides

are required to be calculated. In this dissertation, we obtain the waveguide parameters

of Si-PhWs and Si-PhCWs by using Femsim by Rsoft [13] and MIT Photonic Bands

(MPB) [14], respectively; (3) Receiver schematics. The mathematical expressions will

be given for the direct-detection optical receiver, which contains an band-pass opti-

cal filter, an ideal photodetector and a low-pass electrical filter. As for a M̄-channel

system, the M̄ sets of optical filters, photodetectors and electrical filters, as well as a

demultiplexer are used in the direct-detection.

Another significant aspect of the simulation setup is the numerical parameters. Ba-

sically, they can be divided into the following groups according to different numerical

algorithms: (1) the temporal sampling points (or FFT points), the distance step and the

time window for the SSFM method and the ODE model; (2) the Cash-Karp parameters

[15] and Dormand-Prince parameters [16] for the fifth-order Runge-Kutta method (see

Appendix. B); (3) the temporal sampling points, bit-rate (or bit interval), weights and

abscissas of Gaussian-Hermite rule for the time-domain KLSE method; (4) the number

of frequency points for both the frequency-domain and Fourier-series KLSE methods.

Moreover, the output parameters determines the types of results. Apart from the es-

sential simulation parameters, we also define the scanner variables. One or more input

parameters can be automatically scanned in the simulation process, such as the signal

power, the pulsewidth, the bit-rate and the waveguide length. Notably, the numerical

parameters are not suggested to be scanned. Since the computational accuracy can only

be ensured by choosing suitable values of these parameters, there is no point to con-

tinue the simulation if this condition can not be satisfied. Importantly, the values of all

the relevant parameters are given in Sec. 4.3.6.

Moving on now to consider the core of the numerical scheme – the system eval-

uation. The system evaluation process is composed of three stages. In particular, the

first stage is the preparation engine. In this stage, two decision operations will be per-
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formed: one is to choose the types of simulators (or runs), i.e., the serial run and the

parallel run; the other is to identify the shape of the optical signals, namely, CW and

pulse. To be more specific, the parallel run is often employed in the variable scanning,

in order to speed up the whole computational process. The parallel run refers to the

Matlab built-in function par f or [17], where these simulations will be treated as inde-

pendent tasks and then a specific number of tasks will be performed simultaneously.

Additionally, the serial run is adopted in the single simulation operation or the case

where the computational environment (e.g, a single processor) can not support paral-

lel operations. Furthermore, the shape of optical signals decides a specific numerical

routine used in the propagation section, which will be demonstrated in the next stage.

The second stage of the system evaluation engine is the propagation simulator.

Take the case of single-wavelength propagation for instance. Firstly, the optical signals

of Eqs. (2.6) will be placed at the input of Si waveguides. Then, the semi-analytical

solutions regarding the output signals can be derived by using either the full propagation

algorithm (Eqs. (2.15) and (2.20)) or the linearized version ( Eqs. (2.26) and (2.27)).

Precisely, both types of simulators can be selected for the CW signals (uOOK , uPSK),

whereas only the first simulator is capable of simulating the pulsed signal (uG). In case

of the multi-wavelength co-propagation, the analysis is carried out by first extracting

the mathematical expression for signals in each channel (e.g., Eq. (2.28)), and then

modifying the single-channel numerical routines to the multi-channel case by using

Eqs. (2.21) and Eqs. (2.30), (2.31), respectively. Therefore, the explicit numerical

implementation details for full and linearized propagation models will be presented in

Sec. 4.3.1 and Sec. 4.3.2, respectively.

Another important stage is the BER calculator. From Fig. 4.1, we can see that

the time-domain, frequency-domain and Fourier-series KLSE calculators are available

in the BER estimation. The system BERs are determined by Eqs. (3.35), (3.38) and

(3.41). The numerical procedures to implement these calculators will be explained

in Sec. 4.3.3, Sec. 4.3.4 and Sec. 4.3.5. Particularly, the time- and frequency-domain

KLSE calculators are only suitable for CW signals, while the third KLSE calculator

can be applied to all shape of optical signals. At this stage, the numerical discretization

must be carefully performed in order to guarantee the convergence and accuracy. Once

the simulation operation is completed, the whole evaluation will enter the output stage.
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Last but not least, the output of the whole system evaluation is illustrated in the

final part of Fig. 4.1. Specifically, four important output characteristics will be gen-

erated, namely BER, eye diagrams, signal dynamics and noise dynamics. The BER

results are exported in form of DAT files, and can be viewed via softwares like Matlab

and Python. Moreover, the eye diagrams can be inspected either at the output of optical

filters or at the back-end of the receiver. In addition, the signal dynamics and the noise

dynamics can be exported by utilizing either the propagation simulator or the entire

simulation engine, with the difference existing between the optical dynamics and the

electrical dynamics correspondingly.

4.3 Algorithms in the System Evaluation Engine
In this section, different numerical algorithms employed in the system evaluation en-

gine will be presented. Moreover, the complementary explanation regarding the KLSE

computational routines will be made for the case of multi-channel system performance

analysis.

4.3.1 Full Algorithm of Signal Propagation

The full signal propagation models provide an accurate description for the evolution of

the optical field and FCs in Si waveguides, which incorporate all the essential linear

and nonlinear optical effects, as shown in Sec. 2.6. Note that the theoretical algorithm

of SSFM has been introduced in Sec. 2.8.1. Before proceeding to the SSFM imple-

mentation, it is also important to briefly discuss the choice of time and distance steps.

For convergence, we first choose a specific time and distance steps, and get the result

data. Then we test with smaller values of both steps until the results are matchable

with previous one. Eventually, we will choose certain values for both time and distance

steps according to the computational accuracy and efficiency. In this section, I will first

introduce the numerical procedure to construct full model of the single-wavelength sig-

nal propagation, followed by the implementation of full propagation model with regard

to the multi-wavelength optical signals.

Firstly, the full details of implementing single-channel model numerically are ex-

plained as follows:

1. Obtain the linear operator D̂ and nonlinear operator N̂ in forms of Eq. (2.33a)
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and Eq. (2.33b), respectively.

2. Choose a distance step h and calculate the optical field at each h. h can be ob-

tained by dividing the transmission distance L into n segments, namely, h = L/n.

Then, the output optical field is computed via Eq. (2.38). Importantly, the calcu-

lation of FCs density is operated in the linear step, where the fifth-order Runge

Kutta method in AppendixB is employed.

3. Record the simulation results in a DAT file.

When compared with the case of single-wavelength signal propagation, the nu-

merical implementation of multi-wavelength signal propagation model requires more

steps:

1. Derive the linear operator D̂i and nonlinear operator N̂i in the i channel (i =

1, ...,M̄, M̄ is the total number of signal wavelengths), by using Eqs. (2.21a) and

(2.32).

2. Divide the transmission distance L into n segments, with distance step h. Ac-

cording to Eq. (2.38), the linear operator D̂i will be performed on the electrical

field of the i channel in the frequency domain, during a distance of h/2. Impor-

tantly, this process must be carried out by using a loop, in order to construct the

M̄ coupled NLSE. Then, calculate the overall FCs density at h/2 by applying the

fifth-order Runge Kutta method on Eq. (2.21b).

3. Build a distance loop to derive the semi-analytical solutions for the optical signal

ui at the distance point z j = jh, j = 0, ...,n−1:

(a) Repeat step 2 during a distance from z j to z j +h/2.

(b) Compute the nonlinear operator N̂i at z j + h/2, by using the FCs density

calculated from last step. Then multiply the electrical field of the ith channel

with N̂i in the time domain, and repeat this operation for the remaining

channels in a loop.

(c) Repeat step 2 during a distance from z j +h/2 to z j+1.

4. Inverse step 2 by using −D̂, and write the results of each channel in a separate

DAT file.
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In both procedures mentioned above, the FFT technique is applied for the conversion

of optical signal between frequency-domain and time-domain.

4.3.2 Linearized Algorithm of Signal Propagation

The linearized propagation algorithms are designed for the CW signals, which requires

less computational time but with high accuracy. As mentioned in Sec. 2.7, two as-

sumptions are made for the linearization: one is that the terms containing quadratic

and higher-order noise are discarded under low noise power condition; the other is

that the FC-mediated coefficients αfc and δnFC are assumed to be related to the carrier

density N under this approximation: δnfc = σnN and αfc = σαN, where N is the FC

density, σα = 1.45×10−21(λ/λ0)
2 (in units of m2), and σn = σ(λ/λ0)

2 (in units of

m3), with σ and λ0 = 1550nm being a power dependent coefficient [18] and a reference

wavelength, respectively. Two numerical routines regarding the linearized propagation

models will be described in this section.

The first numerical routine is developed for the single-channel CW signal propa-

gation. This routine works for both the OOK modulated CW signal (Φ0 = 0) and the

PSK modulated CW signal. The main steps are listed as follows:

1. Recast Eqs. (2.26) and (2.27) in forms of Eqs. (2.41), where A = P, B = Φ,

C = A′ and D = A′′. Then implement these ODEs in a Matlab function.

2. Obtain the initial conditions of input field y0 = [A0;B0;C0;D0] and distance steps

tspan = [t0, t1, t2, · · · , t f ].

3. Use the Matlab function ode45 to compute the optical field evolution.

4. Write the output data in a DAT file, including signal power, global phase, in-

phase and quadrature noise components.

Furthermore, the second routine is designed for the multi-wavelength signal co-

propagation. The formulae of the multi-wavelength OOK optical signal propagation

are given in Sec. 2.7.2. It is important to mention that these mathematical expressions

are ODEs. Therefore, the computational procedure regarding M̄-wavelength linearized

model is illustrated below:
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1. Derive the M̄ coupled ODEs from Eqs. (2.30) and (2.31), and write up the cor-

responding Matlab functions. As an expansion of the single-channel CW signal

case, these functions are organized by a loop, with the iteration number equaling

to the total channel number. Inside of this loop, the numerical operations are the

same as the numerical implementations for single-channel CW signal case. Note

also that the coefficients of these ODEs have to be calculated simultaneously

inside the loop.

2. Perform the Matlab function ode45 on the functions obtained from Step 1, and

use the initial conditions, which contain the M̄-channel input field, distance steps

and total channel number.

3. Record the results of signal power, global phase, in-phase and quadrature noise

components in a DAT file, for all channels.

Numerical tests shows that this algorithm has good agreement with the full propagation

models.

4.3.3 Time-domain KLSE Algorithm in BER Calculation

The computational algorithm of the time-domain KLSE method is illustrated here to

evaluate the transmission BER in Si waveguides. Implemented as the Matlab codes,

this numerical routine is relatively simple to construct, due to its logic consistency.

However, the difficult part of the time-domain method is the derivation of the noise

correlation matrix at output of the receiver. The whole process regarding the noisy CW

signal transmission and detection are briefly summarized below:

1. Run the main simulation loop for the noisy signal propagation in the Si waveg-

uides.

(a) Setup the essential simulation condition by loading a input file which in-

cludes all necessary physical and numerical parameters, namely, the signal

properties (e.g., input power, bit sequence and pulsewidth), the waveguide

linear and nonlinear optical parameters, as well as the computational time

window, FFT points and distance step;

(b) Use either the SSFM demonstrated in Sec. 4.3.1 or the ODEs solvers pre-

sented in Sec. 4.3.2 to derive the output signal from the waveguides.
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2. Calculate the receiver-output noise correlation matrix in the time-domain, and

compute the new signal-related variable.

(a) Separate the noise and signal at the input of the receiver;

(b) Calculate the noise correlation matrix before and after the optical receiver,

by applying Eqs. (3.2) and (3.3);

(c) Apply the Gauss-Hermite technique by deriving the explicit formulas for

Eqs. (A.2), (A.3) and (A.4), and then obtain the correlation matrix at the

end of the receiver according to Eq. (3.11);

(d) Expand the signal and complex noise components after the optical filter in

form of Eqs. (3.5), and use the relevant expansion coefficients, {sk
α}, {pk

α},

and {qk
α} to construct new vector variables sk and nk.

3. Compute the system BER according to the time-domain noise correlation matrix

and the related MGF:

(a) Diagonalize the correlation matrix by using Eq. (3.13), and recast the signal

vector in new form of Eq. (3.15a);

(b) Derive the MGF function format based on Eq. (3.16);

(c) Calculate BER by applying the saddle-point approximation in Sec. 3.5 on

the MGF function via Eqs. (3.35) and (3.38);

(d) Record the BER in a DAT file.

With regard to the multi-channel system, the computational process is quite similar

to the algorithm mentioned above. However, there are two major difference between

the multi-channel and single-channel numerical implementation. One is that the input

files, the SSFM simulator and the ODEs simulator in Step 1 all have to be switched to

the multi-channel case. In addition, the signal detection (Step 2 and Step 3) is applied in

each receiver that corresponds to one independent channel, and then the overall system

BER is calculated by averaging the BER from each channel. This implementation is

reasonable, due to the fact that the functionality of a demultiplexer in our model is

to separate the signals with different wavelength, but without inducing any electrical

noise.
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4.3.4 Frequency-domain KLSE Algorithm in BER Calculation

Similar to the time-domain KLSE routine, the full computational algorithm of the

frequency-domain KLSE method is also implemented in Matlab. Moreover, this al-

gorithm is focused on the noisy CW signal as well. In particular, the frequency-domain

KLSE is numerically easy to be extended to other applications, such as WDM systems

and the optical systems that employ advanced modulation formats. The numerical pro-

cess for the frequency-domain KLSE is described below:

1. Start a simulation loop for the signal transmission, similar to the first step in

Sec. 4.3.3. Here, we need to specify a new central frequency points 2Q+ 1 for

the noisy signal.

2. Simulate the receiver-output noise correlation matrix in the frequency domain,

and compute the related phase-shifted signal variable.

(a) Derive the photocurrent at the end of the receiver and the related Hermitian

kernal, in forms of Eqs. (3.17) and (3.18), repsectively;

(b) Discretize the Hermitian kernel and then multiply the with frequency step

δ f , yielding new forms of the receiver matrix and the electrical field, as

well as the photocurrent that is expressed as Eqs. (3.19);

(c) Rewrite the receiver matrix and the electrical field into real-valued matrixes.

(d) Compute the correlation matrix in frequency-domain by applying

Eqs. (3.20), (3.21) and (3.22);

3. Compute the final BER by deriving the noise correlation matrix in frequency-

domain and further the MGF:

(a) Derive the eigenfunction and eigenvalues by using an orthogonal matrix to

diagonalize the noise correlation matrix at the receiver output, according to

Eq. (3.23);

(b) Calculate the phase-shift signal vector by using the expansion in

Eq. (3.24b);

(c) Compute the MGF by using Eq. (3.26);
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(d) Derive the transmission BER by using the saddle-point approximation on

the MGF, obtaining Eqs. (3.35) and (3.41), as illustrated in Sec. 3.5;

(e) Save all the BER results in an easily-traceable file.

As was pointed out in Sec. 4.3.3, there are also two changes in the numerical

scheme for the multi-channel system analysis in the frequency domain, when compared

with the single-channel case. Therefore, the corresponding implementation regarding

multi-channel systems in frequency domain can refer to the last paragraph in Sec. 4.3.3.

4.3.5 Fourier-series KLSE Algorithm in BER Calculation

The numerical calculations of the PDFs for Signal “1” and Signal “0” can also be done

by using the Fourier-series KLSE method in combination with the perturbation theory.

Specifically, the optical signal propagation in Si waveguides and the followed BER

detection and calculation are all implemented in Matlab. The implementation routine

for the single-channel systems is presented as follows:

1. Setup a main simulation process for the noise-free optical signal (s0(t,0)) trans-

mission in Si waveguides:

(a) Read a input file with initial conditions for all necessary physical and nu-

merical parameters;

(b) Run the SSFM numerical simulator according to Sec. 4.3.1. Then obtain

the output signal in the central channel as s0(t,L), and save it.

2. Calculate the noise correlation matrix at the end of the Si waveguide. To start

with, compute the correlation matrix Rk(0) based on the input complex white

noise, with the matrix dimension of (4Q+ 2)× (4Q+ 2). After obtaining the

noise free signal s0(t,L) in the central channel at z = L, we then continue with

the simulation process for different input signal in the same channel:

(a) Obtain sβ (t,0) by perturbing s0(t,0) in the β -th frequency mode with

an extremely small amount ∆, in correspondence to Eq. (3.28). Here,

β = 1, ...,(2Q+ 1), (2Q+ 1) is the chosen frequency points in the central

part of signal spectrum. Particularly, we use two values of ∆ in the signal

initialization, which are a real positive number and an imaginary positive
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number for the same 1 to (2Q+ 1) frequency components. Then launch

sβ (t,0) at input of the Si waveguide;

(b) Calculate the waveguide output signal sβ (t,L) by solving Eqs. (2.15) and

(2.20);

(c) Compute δ sβ (t) = sβ (t,L)− s0(t,L) and its Fourier coefficients, wβ ;

(d) Find the (4Q+ 2)× (2Q+ 1) transmission matrix R by using Eq. (3.29).

Then recast R into a (4Q+2)× (4Q+2) real-valued matrix.

(e) Obtain the noise correlation matrix after transmission according to

Eq. (3.27).

3. Computation of the System BER based on the Noise Correlation Matrix:

(a) Read the output noise-free signal and transfer it into the frequency domain.

And then load the noise correlation matrix at the output of Si waveguide,

Rk.

(b) Calculate the real receiver matrix W from W = [D ′,−D ′′;D ′′,D ′], where

D is a Hermitian kernel.

(c) Diagonalize the combined matrix of the Rk(L) and W ;

(d) Calculate the signal shift variable χq based on Eqs. (3.31), (3.32) and

(3.33);

(e) Compute the MGF function from Eq. (3.34);

(f) Calculate BER by performing the saddle-point approximation presented in

Sec. 3.5 on the MGF, referring to Eqs. (3.35) and (3.41);

(g) Save BER and write them into a recorded file.

Importantly, the correlation matrix calculation in multi-channel systems are slight

different from that of single-channel systems. The basic idea is to compute only the

noise correlation matrix in the central channel, by perturbing the signal in the central

channel and leaving the other channels to be noise free. It has been verified that the

cross correlation between the noise in the investigated channel and the noise from the

rest channels can be neglected, when compared with noise correlation in the central

channel. The remaining part of BER calculation is identical to that of single-channel.
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4.3.6 Comparative Study of Alternative Algorithms

As mentioned earlier, the theory of signal propagation and the KLSE-based BER cal-

culation approaches are two fundamental components of this dissertation. Importantly,

only by carefully choosing the numerical parameters can the validation of these theo-

retical methods be guaranteed. In this section, I will present the values of simulation

parameters used in this dissertation and prove the consistency of the relevant algorithms

in each computational branch.

In terms of signal propagation, the number of temporal sampling points for one

bit is set to 1024, the number of distance steps is 512, and the time-window is usually

chosen to be 20× larger than the signal pulsewidth. The above condition is applied

to both full and linearized propagation algorithms, but in the first algorithm additional

Cash-Karp parameters, presented in Table B.1, are need for the calculation of FC den-

sity. Notably, the utilization of the linearized propagation model in this dissertation is

due to its high computational accuracy and faster convergence when compared with

the full model. Even though suitable to simulate different types of optical signals, the

full propagation model is only adopted in the detailed performance analysis of systems

using pulsed signals, which is presented in Chapter 9. Furthermore, a detailed compar-

ison between the full propagation model and its linearized version was carried out for

both single-channel and multi-channel systems, with the results illustrated in Fig. 5.3

and Fig. 8.4, respectively. This proves that for practical values of the system parameters

the linearized model is accurate.

With regard to the KLSE-base BER calculation methods, the configuration of

the numerical parameters is described as follows. The number of temporal sampling

points within one bit is determined by the same parameter from the signal propa-

gation theory, namely 1024, and bit-rate will be given in latter chapters for a spe-

cific case. Additionally, in the time KLSE algorithm the number of weights used

in the Gaussian Hermite rule is 58, whereas the number of frequency points is cho-

sen to be 201 in both the frequency-domain and Fourier-series KLSE methods. In

order to prove the accuracy of these KLSE methods with the above parameters, we

first illustrate BER results calculated for a simple case of CW signal along with a

real additive white Gaussian noise, in comparison with the method of Gaussian ap-

proximation [19]. The corresponding conclusions are summarized in Fig. 4.2, where
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Figure 4.2: (a) Comparison of the system BER calculated via the time-domain (TD),
frequency-domain (FD) and Fourier-series (FS) KLSE approaches, as well
as the Gaussian approximation method (red line). (b) The relative
BER difference between these KLSE approaches and Gaussian approxima-
tion. This agreement is quantified by ∆r log10(BER) = |[log10(BER)ii −
log10(BER)Gaussian]/ log10(BER)Gaussian|, where ii = 1,2,3, with each value rep-
resenting the TD, FD and FS, respectively. The plots correspond to a CW signal in
presence with a real additive white Gaussian noise, with a initial signal power of
P = 5mW. Note that no waveguide is included in this case.

we plot the BER of the absolute value and the relative difference between the BERs

calculated via the above four methods. This quantity of relative difference is de-

fined as ∆r log10(BER) = |[log10(BER)ii − log10(BER)Gaussian]/ log10(BER)Gaussian|,

where ii= 1,2,3, with each value representing the time-domain, frequency-domain and

Fourier-series KLSE, respectively. In addition, the method of Gaussian approximation

is selected as the reference. The curves presented in Fig. 4.2 show that the predictions

of the four algorithms are in good agreement, which proves the accuracy of the KLSE

approaches. Notably, though the BER range of 10−1 to 10−15 is more meaningful for

the practical optical systems, the plots in Fig. 4.2(a) provide the validation of the KLSE

approaches over a large scale of SNRs.

For completeness, we also include a second comparison of BER results calcu-

lated via the three KLSE methods in a system containing the Si waveguide, where the

nonlinear noise dynamics has to be taken into account. As illustrated in Fig. 4.3(a),

one can see the absolute value of BERs derived from the time-domain, frequency-

domain and Fourier-series KLSE methods, in case of a single-channel photonic sys-

tem that consists of a SPW and a direct-detection receiver. The initial power of the

optical CW signal is P = 5mW, the bit-rate is Br = 10Gb/s, and the length of a Si-

SPW is L = 5 cm, with other waveguide parameters listed in Table 4.1. In addition, a
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Figure 4.3: (a) Comparison of the system BER calculated via the time-domain (TD),
frequency-domain (FD) and Fourier-series (FS) KLSE approaches. (b) The rel-
ative BER difference between the frequency-domain KLSE and the other two
KLSE emthods. This agreement is quantified by ∆r log10(BER) = |[log10(BER)ii−
log10(BER)FD]/ log10(BER)FD|, where ii = 1,2, with each value representing the
TD and FS, respectively. The plots correspond to a single-channel Si-PhW system
using a NRZ CW signal together with a complex additive white Gaussian noise.
The initial power of the CW signal is P = 5mW, Br = 10Gb/s, L = 5 cm and the
other waveguide parameters is illustrated in Table 4.1.

vivider picture about the difference of these three KLSE methods is shown in Fig. 4.3

(b), where the evaluation quantity is denoted as ∆r log10(BER) = |[log10(BER)ii −

log10(BER)FD]/ log10(BER)FD|, where ii= 1,2, with each value representing the time-

domain and Fourier-series KLSE, respectively. Here, the frequency-domain KLSE is

selected as the reference. To conclude, these curves in Fig. 4.3 suggest that the time-

domain, frequency-domain, and Fourier-series KLSE methods are matching with each

other very well, which in turn ensures the accuracy of simulation results in the latter

chapters.

Table 4.1: Main parameters for a Si-PhW used in Fig. 4.3.

w [nm] h [nm] λ [nm] β2 [ps2 m−1] κ γ ′ [W−1 m−1] γ ′′ [W−1 m−1]
900 250 1550 0.54 0.9685 166.8403 50.8236

Last but not least, we also validate the accuracy of the KLSE methods in multi-

channel photonic systems. Thus, another comparison of BERs calculated by employ-

ing the time- and frequency-domain methods for three different 8-channel Si photonic

systems is presented in Fig. 8.6. The information that conveys in Fig. 8.6 strength-

ens the idea that these two KLSE algorithms are in agreement with each other. As

stated earlier, the Fourier-series KLSE method is only utilized for the single-channel
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performance analysis in this dissertation, which is the reason why this algorithm is not

included in the multi-channel BER comparison.

4.4 Conclusions
In this chapter, the computational implementation details of the entire system evalu-

ation model is discussed. This numerical tool can support not only accurate investi-

gations of the signal propagation in Si waveguides, but also precise evaluation of the

overall system performance. Moreover, the current numerical algorithms are also of ex-

cellent expandability, which can be applied in other optical devices and more sophisti-

cated photonic systems. To our knowledge, this is the first time to provide the complete

numerical implementation of the linearized propagation models for Si waveguides.
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Chapter 5

Calculation of Bit Error Rates in

Optical Systems with Strip Silicon

Photonic Wires

5.1 Introduction
In this chapter, we perform a theoretical analysis of the transmission BER in a system

consisting of a Si-PhW linked with a direct-detection optical receiver containing an

optical filter, an ideal square-law photodetector, and an electrical filter (see Fig. 5.1).

We assume that the bandwidth of the optical filter is larger than the bit rate of the

optical signal, whereas the bandwidth of the electrical filter is close to the bit rate. In

particular, an integrate-and-dump electrical filter is employed in this work, which can

be viewed as a matched filter for the nonreturn-to-zero (NRZ) signals. At the front-end

of the system the optical field is assumed to be a superposition of an ON-OFF keying

(OOK) modulated NRZ optical signal, with ON and OFF power values of P0 and zero,

respectively, and a stationary additive white Gaussian noise containing an in-phase and

a quadrature component. For simplicity, we assume that these two noise components

are uncorrelated, a constraint that can be easily relaxed if needed. To describe the

optical field propagation in the Si-PhW we use a rigorous model [1] that incorporates

linear and nonlinear optical effects, including free-carrier (FC) dispersion (FCD), FC

absorption (FCA), self-phase modulation (SPM), and two-photon absorption (TPA), as

well as the FCs dynamics and the interaction between the FCs and the optical field.

A linearized system governing the optical noise dynamics in the presence of FCs is
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Figure 5.1: Schematic of the investigated photonic system, consisting of a Si-PhW linked to a
receiver containing an optical filter with impulse response function, ho(t), a pho-
todetector, and an electrical filter with impulse response function, he(t).

also derived and used to analyze the noise propagation in Si-PhWs. The system BER

is calculated using the time domain Karhunen-Loève (KL) series expansion (KLSE)

method [2], an algorithm that has also been used to analyze the performance of optical

fiber communication systems [3, 4].

The remaining of the paper is organized as follows. In Sec. 5.2 we present the

theoretical model that describes the propagation of the optical signal in the Si-PhW,

whereas in Sec. 5.3 we briefly summarize the time domain KL expansion method used

to evaluate the BER. The results of our analysis are presented in Sec. 5.4, the main

conclusions of our study being summarized in the last section.

5.2 Theoretical Signal Propagation Model in Strip Sili-

con Photonic Wires
The mathematical description for the single-wavlength optical signal propagation in a

Si-PhW, is based on the coupled dynamics of the optical signal and FCs, which are

governed by Eq. (2.15) and Eq. (2.20). The terms in Eq. (2.15) describe well known

linear and nonlinear optical effects. Specifically, on the left-hand side, the second term

describes the GVD, while on the right-hand side, the first term corresponds to the in-

trinsic waveguide loss and FCA, the second term describes the FCD, and the last term

represents the nonlinear effect of SPM. Since all the relevant optical parameters have

been defined in Sec. 2.6.1, their actual values will be specified here for the simulations

in this chapter. In particular, the intrinsic loss coefficient αi was set to 0.2 dBcm−1
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Table 5.1: Main parameters for the Si-PhWs used in our simulations.

Type w [nm] β2 [ps2 m−1] β3 [ps3 m−1] κ γ ′ [W−1 m−1] γ ′′ [W−1 m−1]
A 800 0.26 2.8×10−3 0.9663 183.1 55.8
B 675 -0.2 3.8×10−3 0.9611 207.7 63.3

unless otherwise specified, the FC relaxation time tc was assumed to be tc = 0.5 ns, FC-

induced refractive index change (δnfc) and FC loss coefficient (αfc) and are given by

δnfc = σnN and αfc = σαN, where N is the FC density, σn =−2.68×10−26(λ/λ̄ )2 (in

units of m3), and σα = 1.45×10−21(λ/λ̄ )2 (in units of m2) [5], the reference wave-

length being λ̄ = 1550 nm.

The superposition of the optical signal and noise propagating in the Si-PhW can

be expressed as,

u(z, t) = [
√

P(z)+a(z, t)]e− jΦ(z), (5.1)

where P(z) is the power of the CW signal, a(z, t) is the complex additive Gaussian

noise, and Φ(z) is a global phase shift. Also, a linearized model of Eqs. (2.26a),

(2.26b) (2.27) is utilized for the simulations investigated in this chapter. Notably, the

global phase is set to be Φ0 = 0 for all the simulations in this chapter. It is also worth

to mention that the full model Eq. (2.15), and its linearized version Eq. (2.27) can be

extended to other devices, too, the main difference being that the resulting mathemati-

cal description could potentially become much more intricate. For example, waveguide

splitters, ring modulators coupled to a waveguide, multi-wavelength signals propagat-

ing in single- or multi-mode waveguides can all be described by systems of coupled

equations similar to Eq. (2.15) and its linearized version Eq. (2.27). Therefore, the

approach presented in this study can be applied to a multitude of chip-level photonic

devices, thus underlying the generality of our approach.

We have determined the optical field at the output of the Si-PhW both by integrat-

ing the full system (Eqs. (2.15), (2.20)), using a standard SSFM, and also by solving

the linearized system (Eqs. (2.26a), (2.26b), (2.27)) via a fifth-order Runge-Kutta

method, with the numerical implementation details demonstrated in Sec. 2.8. In the

latter case, we first found the spectra of the noise components, then by inverse Fourier

transforming these spectra we calculated the optical noise in the time domain. More-

over, in order to gain a more complete understanding of the factors that affect the BER,
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we considered Si-PhWs with both normal and anomalous dispersion. Thus, since the

linear and nonlinear properties of stripe Si-PhWs depend strongly on the waveguide

geometry [1], the waveguide parameters (dispersion and nonlinear coefficients) can be

varied over a wide range of values by properly choosing the waveguide height, h, and

its width, w. In particular, unless otherwise specified, we assumed that the Si-PhW

has constant height h = 250 nm [6] and width, its optical waveguide parameters being
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Figure 5.2: (a) Time and (b) spectral domain evolution of a noisy signal with P0 = 5 mW and
T0 = 100 ps in a 5 cm-long Si-PhW with anomalous dispersion (see the text for the
values of β2, β3, and γ). (c) Carrier density variation along the waveguide.
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thus independent of the distance along the waveguide, z. By adjusting the width w of

Si-PhWs, it can be easily achieved the switch from the normal dispersion region to the

anomalous dispersion. The main waveguide parameters are listed in Table 5.1.

An example of time and wavelength domain evolution of a noisy signal in a 5 cm-

long Si-PhW with anomalous dispersion is shown in Fig. 5.2, the bit sequence being

“01011000”. For completeness, we also show in Fig. 5.2(c) the dynamics of the pho-

togenerated FCs. It can be seen that the optical field is fairly weakly distorted during

propagation, which means that for the optical power considered in these simulations

the nonlinear effects are small. The most notable feature revealed by these plots is the

signal decay, which is due to the intrinsic losses, FCA, and TPA. The generation of the

FCs that produce FCA is illustrated in Fig. 5.2(c), where the increase in the FC density

induced by each “1”-bit can be clearly seen.

In order to determine the accuracy with which the linearized system (Eq. (2.26))

describes the propagation of the optical field in the Si-PhW, we calculated the signal

and noise at the back-end of the waveguide by using both the linearized model and full

system Eqs. (2.15), (2.20). The conclusions of this analysis, summarized in Fig. 5.3,

suggest that the linearized system describes fairly accurately the dynamics of the CW

signal and noise, especially when the noise power is small. Thus, Figs. 5.3(b) and

5.3(c) show that both models predict a larger parametric amplification of the quadrature

noise (a finding also supported by the power spectral densities of the two noises, not

shown here) and similar values of the average phase, ϑ , of the noise, which is equal

to the slope of the red lines in these plots. This is a known effect, a larger parametric

gain amplification of the quadrature noise being observed in optical fiber systems, too

[7]. In the case when the linearized system was used, the phase ϑ was calculated

from the relation, ϑ = E{arg[a(z, t)]}, where E{·} denotes the statistical expectation

operator. When the full system was used, the CW signal parameters were extracted

from the relation,
√

P(z)e− jΦ(z) =E{u(z, t)}, and then the noise was found as a(z, t) =

[u(z, t)−E{u(z, t)}]e jΦ(z). Note that in Figs. 5.3(b) and 5.3(c) we plot a(z, t)e− jΦ(z),

calculated at z = L = 5 cm.

A good agreement between the two models can also be observed in their predic-

tions of the dependence of the CW signal power and phase on the distance, z, as per

Fig. 5.3(d). Expectedly, the differences between the results inferred from the two mod-
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els decrease with the signal-to-noise ratio (SNR) as the effects due to the nonlinear

noise propagation and noise interaction with FCs, which are neglected in the linearized

model, become less important as the SNR increases. In particular, as compared to the

full system, the linearized system overestimates the power of the CW signal and under-

estimates its phase. In our simulations we define the SNR of the optical signal at the

front-end of the Si-PhW as the ratio between the power of the CW signal, P0, and the

average of the sum of the powers of the in-phase and quadrature noise components,

SNR =
P0

E
{

a′2 +a′′2
}∣∣∣

z=0

, (5.2)

Additionally, the resolution bandwith of the SNR measurement is 0.1 nm.
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Figure 5.3: (a) In-phase and quadrature noise components at the input of the Si-PhW and (b),
(c) waveguide output, determined from the full system (Eqs. (2.15), (2.20)) and
linearized system (Eq. (2.26)), respectively. The propagation length, L = 5 cm,
and SNR = 20 dB. The red lines indicate the average phase of the noise. The Si-
PhW is the same as in Fig. 5.2. (d) Power P(z) and phase Φ(z) calculated using
the linearized system (red lines) and full system for SNR = 20 dB (blue lines) and
SNR = 15 dB (black lines).
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5.3 Calculation of BER
The time-domain KLSE method that demonstrated in Sec. 3.2 is employed to calcu-

late the transmission BER at the back-end of the receiver, with the numerical routine

clearly described in Sec. 4.3.3. Particularly, in this chapter, we assume that the direct-

detection receiver is composed of a Lorentzian optical filter with impulse response,

ho(t), followed by an ideal photodetector, and an integrate-and-dump electrical filter,

whose impulse response is he(t). The electrical noise of the receiver has not been taken

into account, as in most cases it can be neglected. These considerations are extremely

important when implementing the time-domain KLSE algorithm. As a final note on the

BER calculation, we stress that this KL-based method produces significantly more ac-

curate results when the parametric gain amplification of the noise cannot be neglected,

as compared to the commonly used Gaussian approximation [3].

5.4 Results and Discussion
In order to illustrate how our approach can be applied in practical cases to calculate

the system BER, we consider a single-channel OOK system (λ0 = 1550 nm) with NRZ

pulses in a back-to-back configuration, the bit window being T0 = 100 ps throughout

our investigations. Here, a PRBS of 29− 1 bits plus a zero bit is employed, which

contains possible 9-bit sequence patterns. To model the direct-detection receiver, we

assume that the electrical filter is a low-pass integrate-and-dump filter with the 3-dB

bandwidth equal to Be = 10 Gbs−1, whereas the optical filter is a bandpass Lorentzian

with 3-dB bandwidth, Bo = 4Be. Specifically, the two filters are described by the fol-

lowing transfer functions,

H i
o( f ) =

Γ2
o

f 2 +Γ2
o
, Hq

o ( f ) =− Γo f
f 2 +Γ2

o
, (5.3a)

H i
e( f ) =

 1, | f | ≤ Be/2

0, | f |> Be/2
Hq

e ( f ) = 0, (5.3b)

where Γo = Bo/2.

In our calculations of the system BER, we considered Si-PhWs with both normal

and anomalous dispersion and in both cases we assumed that the waveguide length,

L = 5 cm. For comparison, we also examined the case of a system without the Si-PhW,
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Figure 5.4: System BER vs. SNR, calculated for Si-PhWs with normal (solid line) and anoma-
lous (dashed line) dispersion (see the text for the values of β2, β3, and γ). The
waveguide length, L = 5 cm. The dotted line indicates the BER in the case of a
system without the silicon waveguide. The horizontal black solid line corresponds
to a BER of 10−9.

so that the contribution of the waveguide to the system BER can be easily assessed. The

dependence of the system BER on the SNR, calculated for several values of the input

power, P0, is presented in Fig. 5.4. The results summarized in Fig. 5.4 demonstrate that

a better system performance is achieved in the normal dispersion regime, which is pri-

marily due to the fact that the Si-PhW with anomalous dispersion has a larger nonlinear

coefficient and consequently it generates a larger parametric gain amplification of the

noise. Moreover, because the parametric gain also increases with the optical power, one

expects that increasing P0 would lead to larger BER, a conclusion fully validated by the

plots in Fig. 5.4. This figure also shows that the Si-PhW has a significant contribution
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Figure 5.5: System BER vs. SNR, calculated for several different values of the waveguide loss
coefficient, αi. The panels (a) and (b) correspond to waveguides A (β2 > 0) and B
(β2 < 0), respectively. In all simulations P0 = 5 mW and L = 5 cm. The horizontal
black solid line corresponds to a BER of 10−9.
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to the signal degradation, especially for large SNR, when compared with the simulation

result for the system without no Si-PhW included (black-dotted line).

Depending on the width of the waveguide and specific fabrication processes,

the intrinsic loss coefficient, αi, can usually vary from 0.03 dBcm−1 to more than

3 dBcm−1. We therefore considered the two Si-PhWs with positive and negative dis-

persion coefficient and in both cases calculated the system BER for several values of

αi. In all these calculations we chose P0 = 5 mW and L = 5 cm. The results of these

simulations, plotted in Fig. 5.5, demonstrate that as the waveguide loss coefficient in-

creases the system performance improves, which is reflected in a smaller transmission

BER. This conclusion is in agreement with the dependence of BER on pulse power

illustrated in Fig. 5.4. To be more specific, when αi increases the power of the signal

upon its propagation in the Si-PhW decreases and therefore a smaller parametric gain

amplification of the noise is produced. This results in a larger SNR at the output facet

of the waveguide and consequently a reduced BER. Note also that, similarly to the de-

pendence illustrated in Fig. 5.4, the variation of the BER with αi, for the same value of

the SNR, is smaller for the waveguide A (β2 > 0) as compared to the case of waveguide

B (β2 < 0).

Due to the strong confinement of light in Si-PhWs with submicrometer transverse

size, the waveguide parameters characterizing their linear and nonlinear optical proper-

ties are strongly dependent on the waveguide width. It is therefore of particular interest

to investigate the dependence on the waveguide width of the system BER. To this end,

we considered several Si-PhWs with widths ranging from 500 nm to 1000 nm and con-

stant height, h = 250 nm, and for all these waveguides we determined their waveguide

parameters; the corresponding values are presented in Table 5.2. We stress that for

the range of widths considered here the waveguides are single-mode [6]. Note that as

the waveguide width varies within the specified bounds, the second-order dispersion

coefficient, β2, changes from anomalous to normal dispersion regime.

After the waveguide parameters have been determined, we have calculated the

system BER corresponding to each of the waveguides considered. In all cases we set

P0 = 5 mW and L = 5 cm. As illustrated in Fig. 5.6, the main conclusion that can be

drawn from this analysis is that the BER decreases as the waveguide width increases.

This result can be readily understood if one considers the variation of the waveguide
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Figure 5.6: System BER vs. SNR, calculated for Si-PhWs with different width, w. The waveg-
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Table 5.2: Waveguide parameters used to obtain the results presented in Fig. 5.6

w [nm] c/vg β2 [ps2 m−1] β3 [ps3 m−1] κ γ ′ [W−1 m−1] γ ′′ [W−1 m−1]
500 4.2 -1.2455 3.73×10−3 0.9399 251.64 76.68
600 4.05 -0.595 4.33×10−3 0.9552 225.16 68.60
700 3.96 -0.0921 3.57×10−3 0.9624 202.29 61.63
800 3.93 0.258 2.80×10−3 0.9663 183.08 55.77
900 3.87 0.504 2.21×10−3 0.9685 166.84 50.83

1000 3.84 0.684 1.73×10−3 0.9699 153.02 46.62

nonlinear coefficient, γ ′, with the waveguide width, w (see Table 5.2). Thus, it can

be seen that as w increases the waveguide nonlinearity decreases, and therefore the

parametric gain amplification is weaker. As a result, the SNR increases, which leads to

a smaller BER.
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Figure 5.7: Contour maps of log10(BER) vs. power and SNR. (a), (b) correspond to Si-PhWs
with normal and anomalous dispersion, respectively, the waveguides being the
same as in Fig. 5.4. The black contours correspond to BER = 10−9.
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Since both the nonlinear optical effects and FC dynamics are mainly determined

by the optical power, we proceeded to analyze in more in-depth the dependence of the

system BER on the input power of the CW signal. The results of this study, determined

for the waveguides A and B described in Sec. 5.2, are presented in Fig. 5.7 as contour

maps of log10(BER). While confirming the conclusions illustrated in Fig. 5.4, it can

be seen that the maps in Fig. 5.7 reveal additional features. Thus, at low power the

BER is almost independent of P0, which is explained by the fact that in this situation

the signal and noise propagates in the linear regime. If the power increases beyond

P0 ≈ 5 mW, however, the FCs generated via TPA as well as the nonlinear effects begin

to strongly affect the signal propagation and as a result the BER varies nonlinearly

with P0. Moreover, as expected, low signal degradation is observed at small P0 and

large SNR (the boundary of the domain where the BER has values that are tolerable in

regular practical systems, namely log10(BER) ≤ −9, is shown as the black contour in

Fig. 5.7).
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Figure 5.8: Maps of log10(BER) vs. γ ′ and SNR. (a), (b) correspond to Si-PhWs with normal
and anomalous dispersion, respectively. In both cases γ ′′/γ ′ = 0.3, P0 = 5 mW, and
L = 5 cm. The black contours indicate a BER of 10−9.

Additional insights into the contribution of nonlinear effects to the system signal

degradation are provided by the dependence of the system BER on the waveguide non-

linear coefficient, the corresponding contour maps being presented in Fig. 5.8. We have

investigated Si-PhWs with normal (β2 = 1 ps2 m−1) and anomalous (β2 = −1 ps2 m−1)

dispersion, in both cases the ratio γ ′′/γ ′ = 0.3 being kept constant. A comparison be-

tween the results shown in Fig. 5.8(a) and Fig. 5.8(b) reveals several interesting features

of the system BER. Thus, for Si-PhWs with normal dispersion the BER depends only

slightly on γ ′, as in this case the parametric gain is relatively small. By contrast, the
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Figure 5.9: Contour maps of log10(BER) vs. waveguide length and SNR. Panels (a) and (b)
correspond to Si-PhWs with normal and anomalous dispersion, respectively, the
waveguides being the same as in Fig. 5.4. The input power is P0 = 5 mW. The
black contours correspond to a BER of 10−9.

BER in the anomalous dispersion regime depends much stronger on γ ′, due to a much

larger parametric gain amplification of the noise. In particular, for the same waveguide

(γ) and optical signal (P0 and SNR) parameters, the system signal degradation is more

pronounced in the anomalous dispersion regime.

A key property one employs when assessing the feasibility of using Si-PhWs as

on-chip optical interconnects is the relationship between the waveguide transmission

BER and the waveguide length, L. In order to characterize this dependence, we have

determined the system BER as a function of L, the main results of this study being sum-

marized in Fig. 5.9. We considered Si-PhWs with normal and anomalous dispersion,

the calculations being performed for a CW signal with power, P0 = 5 mW. One im-

portant result illustrated by this figure is that a BER smaller than 10−9 can be achieved

even when the waveguide length is as large as 10 cm, provided that the SNR is suitably

large, namely SNR & 15 dB. Moreover, as before, it can be seen that the system signal

degradation is larger in the case of waveguides with anomalous dispersion.

5.5 Conclusion
In conclusion, we have introduced a novel approach to the evaluation of bit error rates

in optical systems containing silicon photonic wires. In order to describe the evolution

of the mutually interacting optical field and free-carriers in the silicon photonic wire

we employed both a rigorous theoretical model that incorporates all the linear and non-

linear physical effects and the linearized version of this full model, valid in the low

noise power limit. The signal degradation in a link containing such a waveguide and a
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direct-detection optical receiver made of an optical filter, an ideal square-law photode-

tector, and an electrical filter was evaluated by using the time domain Karhunen-Loève

expansion method. This approach was used to study the dependence of the bit error

rate on waveguide and optical signal parameters. In particular, we have determined the

domain in the system parameters space in which the signal degradation remains below

a certain threshold used in practical settings to assess the fidelity of detected signals. It

should be noted that the method introduced here can be easily extended to other silicon

based components of on-chip and chip-to-chip optical networks, including modulators,

amplifiers, optical switches, and frequency converters. Equally important, our formal-

ism can be applied to physical settings in which additional optical effects can become

important. For example, our approach could readily incorporate nonlinear effects such

as four-wave mixing and stimulated Raman scattering, which can become large enough

to affect the bit error rate in properly designed waveguides or for shorter optical pulses.

In the next chapter, the comparative study of the fast-light and SL regimes within

the single-channel silicon photonic crystal systems will be demonstrated, with the sys-

tem using OOK modulated CW signals.
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Chapter 6

Slow-light and Fast-light Regimes of

Silicon Photonic Crystal Waveguides:

A Comparative Study

6.1 Introduction
In this chapter, we present a detailed analysis of the BER in Si-PhCWs, highlighting

the key differences between the dependence of the BER on the parameters defining the

optical signal and waveguide when the signal propagates in the FL or SL regime. With

emphasis on the characteristics of BER in silicon optical interconnects, we consider a

photonic system containing only a Si-PhCW, whose input and output are connected, re-

spectively, to a transmitter and a direct-detection optical receiver, shown in Fig. 6.1(a).

However, our model can easily implement other optical components like the ring res-

onators and multiplexers. We use a pseudorandom bit sequence (PRBS) of 29−1 bits

plus a zero bit, thus including all possible 9-bit sequence patterns, where each bit is

superimposed of an ON-OFF keying (OOK) modulated nonreturn-to-zero (NRZ) optical

signal together with a stationary additive white Gaussian noise. To reveal the statisti-

cal properties of the transmitted signal we employ the time domain Karhunen-Loève

(KL) series expansion (KLSE) method [1–3], whereas the coupled dynamics of the op-

tical field and FCs are described by using a rigorous theoretical model that incorporates

both the linear and nonlinear optical effects pertaining to optical signal propagation in

Si-PhCWs [4]. Importantly, the KL expansion method allows one to use significantly

shorter PRBSs: whereas this method already converges for PRBS-9, Monte-Carlo type
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methods could require PRBSs as long as 232 to reach convergence.
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Figure 6.1: (a) Schematic of the photonic system, containing a Si-PhCW and a direct-detection
receiver composed of an optical filter, ho(t), a photodetector, and an electrical filter,
he(t). (b) Mode dispersion diagram of the Si-PhCW, with grey bands indicating the
SL spectral domains ng > 20.

6.2 Optical Properties of Silicon Photonic Crystal

Waveguides
The PhC slab waveguide considered here consists of a line defect created by filling in

a line of holes oriented along the ΓK direction of a hexagonal hole lattice in a sili-

con slab [see Fig. 6.1(a)]. The PhC has the lattice constant, a = 412nm, hole radius,

r = 0.22a, and slab thickness, h = 0.6a. The photonic band structure of the Si-PhCW,

shown in Fig. 6.1(b), shows that the waveguide has two guiding modes, which are

SL modes within certain spectral domains shown as grey bands in Fig. 6.1(b). In

particular, the mode A has two SL spectral domains, whereas mode B only has one.

In these SL regions the group index, ng = c/vg, second-order dispersion coefficient,

β2 = d2β/dω2, where β is the mode propagation constant, and nonlinear coefficient,

γ = 3ε0aωcΓ/(4vgW )2 [5], with ωc, Γ, and W being the carrier frequency of the signal,

effective waveguide nonlinear susceptibility, and mode energy in the unit cell, respec-

tively, have very large absolute values (see Fig. 6.2). This indicates that in the SL

regime the linear and nonlinear optical effects are strongly enhanced. In particular, we

denote the Si-PhCWs in the FL and SL regime as Si-PhCW-FLs and Si-PhCW-SLs,

respectively. Moreover, the all essential parameters of Si-PhCWs that used the simula-

tions of this chapter, are demonstrated in Table 6.1 and Table 6.2.
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to the SL regime, defined by the relation ng > 20.

6.3 Optical Signal Propagation Approach
The full mathematical analysis for the signal propagation in the Si-PhCWs is described

by a modified nonlinear Schrödinger equation (Eq. (2.15)), coupled to a rate equation

(Eq. (2.20)) for the FCs. Similarly, several optical parameters will be assigned here.

The intrinsic loss coefficient αin was set to αin = 50dBcm−1, whose value is chosen due

to the roughness of Si-PhCWs. However, the intrinsic loss indeed vary with different

values of group index vg in our model, which is suggested by the first term on the right

side of Eq. (2.15). The FC absorption (FCA) coefficient is αfc = σαN, and the FC-

induced refractive index change is assumed to be δnfc = σnN, where λ̄ = 1550nm, N

is the FC density, σα = 1.45×10−21(λ/λ̄ )2 (in units of m2). σn = σ0(λ/λ̄ )2 (in units

of m3), with σ0 being a power dependent coefficient [6]. The FC relaxation time tc is

0.5ns in our analysis. Moreover, all dispersive and nonlinear coefficients of Si-PhCWs

are much larger than that of Si-PhWs, which explains the reason why the waveguide

length of Si-PhCWs is far shorter than the Si-PhWs.

The input noisy signal is expressed as Eq. (5.1), which consists of the optical CW

signal with power P(z) and a complex additive Gaussian noise a(z, t). We have used

two methods to determine the optical field at the output of the Si-PhCW. In the first
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approach we solved numerically the system of Eq. (2.15) and Eq. (2.20), whereas in

the alternative approach we use a computational routine to derive solutions for the lin-

earized model (Eqs. (2.26a)). Note also that the global phase is Φ0 = 0 in this chapter.

The linearized model shows that the power is independent of the phase and noise am-

Table 6.1: Main parameters for the Si-PhCW-FLs used in our simulations.

Parameters ng = 8.64 ng = 10.3 ng = 14.7 ng = 16.1
λ [nm] 1559.2 1538.2 1528.3 1527.1

β2 [ps2/m] -5.09·101 -1.18·103 -5.65·103 -7.95·103

κ 0.9930 0.9947 0.9954 0.9954
γ ′ [W−1m−1] 755.67 880.7671 1.77·103 2.16 ·103

γ ′′ [W−1m−1] 230.28 268.3963 539.89 656.97
αin [dB/cm] 50 50 50 50

L [µm] 500 500 500 500

Table 6.2: Main parameters for the Si-PhCW-SLs used in our simulations.

Parameters ng = 20.2 ng = 23.3 ng = 27.7 ng = 34.3
λ [nm] 1525.1 1524.2 1523.6 1523.1

β2 [ps2/m] -1.8·104 -2.98·104 -5.45·104 -1.15·105

κ 0.9954 0.9953 0.9952 0.9951
γ ′ [W−1m−1] 3.6 ·103 5.05 ·103 7.7 ·103 1.35·104

γ ′′ [W−1m−1] 1.1 ·103 1.54 ·103 2.35 ·103 4.12 ·103

αin [dB/cm] 50 50 50 50
L [µm] 500 500 500 500

plitude, its decay being due to intrinsic losses, FCA, and two-photon absorption (TPA).

In addition, the variation of the total phase of the optical field is determined by the FC

dispersion (FCD) and nonlinearly induced phase shift. Note also that due to the SL

effects (γ ∼ v−2
g ), both P and Φ vary much stronger with z in the SL regime.

The key differences between the characteristics of the propagation of the optical

signal in the FL and SL regimes are illustrated by Fig. 6.3. Thus, we have deter-

mined the time and wavelength domain evolution of a noisy signal in a 500 µm-long

Si-PhCW, both in the FL (ng = 10.3) and SL (ng = 20.2) regimes, the bit sequence

being “01101100”. For completeness, we also show in Figs. 6.3(h) and 6.3(i) the dy-

namics of the photogenerated FCs for one occurrence of the above 8-bit signals. It

can be seen that despite the fact that the bit sequence is preserved upon propagation

in both cases, the optical signal and noise are distorted much more in the SL regime.

In particular, the in-phase noise is strongly compressed in the SL regime, whereas the

increased influence of intrinsic losses, FCA, and TPA on the optical field leads to much
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Figure 6.3: (a) In-phase and quadrature noise components at the input of the Si-PhCW. (b),
(c) the same as in (a), but determined at the waveguide output in the FL and SL
regimes. Second, third, and fourth row of panels show the time domain, spec-
tral domain, and carrier density evolution of a noisy signal with P0 = 10mW and
T0 = 100ps in a 500 µm-long Si-PhCW, respectively, with the left (right) panels
corresponding to the FL (SL) regime.

more rapid decay of the optical signal in the SL regime. As a result of enhanced linear

and nonlinear optical effects, more than a double amount of FCs is generated in the SL

regime, as per Figs. 6.3(h) and 6.3(i). As we will show in what follows, these quali-

tative differences in the dynamics of the optical signal have direct implications on the

BER.
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6.4 Results and Anaylsis

In order to compare the system transmission BER in SL and FL regimes we assumed

a noisy signal propagating in mode A, the carrier frequency, ωc, being chosen in such

a way that the group index varied from ng = 8.64 in the FL regime to ng = 34.3 in SL

case. The signal is assumed to be OOK modulated, with NRZ pulses in a back-to-back

configuration and bit window of T0 = 100ps throughout our investigations. To calcu-

late the transmission BER, we first propagated the optical signal in the Si-PhCW using

linearized model, then determined the signal at the back-end of the direct-detection re-

ceiver, and finally used the time-domain KL series expansion method to evaluate the

BER. Importantly, the linearized model is accurate for the task at hand, and much less

computationally demanding as compared to the full model. Full details of this approach

can be found in Sec. 3.2 and Sec. 4.3.3. To model the direct-detection receiver, we as-

sumed that the electrical filter is a low-pass integrate-and-dump filter with the 3-dB

bandwidth equal to Be = 10Gbs−1, whereas the optical filter is a bandpass Lorentzian

with 3-dB bandwidth, Bo = 4Be. Specifically, the two filters are described by the fol-

lowing transfer functions, with Γo = Bo/2:

H i
o( f ) =

Γ2
o

f 2 +Γ2
o
, Hq

o ( f ) =− Γo f
f 2 +Γ2

o
, (6.1a)

H i
e( f ) =

 1, | f | ≤ Be/2

0, | f |> Be/2
Hq

e ( f ) = 0. (6.1b)

The main parameter that determines the transmission BER is the GV, as both the

linear and nonlinear optical effects affecting the optical signal propagation strongly de-

pend on it. In particular, by simply varying the frequency of the signal one can tune

vg so as the optical signal propagation changes from the FL to the SL regime. To il-

lustrate this, we varied the signal frequency while keeping constant the input power,

P0 = 10mW, and waveguide length, L = 500µm, and determined the dependence of

BER on the signal-to-noise ratio (SNR). The outcomes of this analysis, summarized

in Fig. 6.4(a), show that as the signal is tuned deeper into the SL regime by changing

ng from 8.64 to 34.3 the signal impairments increase dramatically, the BER change of

60 dB when SNR = 25dB. Since in the back-to-back system configuration the BER

is independent of the properties of optical signals (e.g., carrier frequency) and waveg-
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Figure 6.4: Top panels show the system BER calculated for the Si-PhCW with FC dynamics in-
cluded (left) and by neglecting them (right). Bottom panels show the eye diagrams
corresponding to ng = 8.64 (left) and ng = 27.7 (right), both at SNR = 25 dB. In
all panels, P0 = 10 mW and L = 500 µm.

uide coefficients, one can determine the penalty caused by inserting the Si-PhCW after

comparing Fig. 6.4(a) with Fig. 4.2(a) (BER calculated for the system without a Si

waveguide).

Table 6.3: Characteristic length of FCA and TPA for different group-index.

ng LFCA [m] LT PA [m]

34.3 0.0044 0.0226
27.7 0.0095 0.0397
23.3 0.0172 0.0606
20.2 0.0278 0.0851
16.1 0.0583 0.1425
14.7 0.0777 0.1737
8.64 0.3034 0.4231

These results raise a key question: is this signal degradation primarily related to

the linear and nonlinear optical effects in the Si-PhCW or it is due the influence of

the generated FCs on the signal propagation? To answer this question, we investigated

two cases of optical signal propagation in the Si-PhCW, in both instances setting the
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Figure 6.5: (a), (b) System BER vs. SNR, calculated for different P0, in the SL (ng = 27.7) and
FL (ng = 8.64) regimes, respectively. The horizontal black line indicates a BER of
10−9.

FC density to zero by imposing γ ′′ = 0. For a better illustration of the conclusion of

this study, we performed the simulations for the largest and smallest value of ng in

Fig. 6.4(a), the results being shown in Fig. 6.4(b). Thus, it can be seen that the varia-

tion of BER with SNR is extremely weakly dependent on ng, a result that suggests that,

unlike the case of optical fibers, the transmission BER is primarily determined by the

FCs. In order to explore the in-depth physical mechanism for the BER degradation in

Fig. 6.4, we show in Table 6.3 the characteristic lengths of FCA and TPA, LFCA and

LT PA, respectively, calculated for several values of ng and for power P0 = 10mW and

T0 = 100ps. In particular, it can be seen that for all values of ng, LFCA < LT PA. There-

fore, FCA effects play the main role in BER degradation. Moreover, note that although

apparently FCA is a linear effect, because of the implicit dependence of the FCA coef-

ficient on the FCs density (and consequently on optical power), FCA depends nonlin-

early on the optical power - see also Eq. (2.26a). In addition, the system performance

without FCs is far better than in the case when FCs dynamics are included, especially in

the SL regime. The degradation of the transmitted signal when the Si-PhCW operation

is shifted from the FL to the SL regime is illustrated by the eye diagrams presented in

Figs. 6.4(c) and 6.4(d), too. In particular, due to increased optical interactions in the

SL regime, the eye diagram almost completely closes as ng increases from 8.64 to 27.7,

with both strong power fluctuations and bit window shifts being observed in the SL

regime.

Since the optical power is the main parameter that determines the strength of the

nonlinear optical effects, including the TPA as the source of FCs, we have calculated
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the dependence of the BER on the SNR, for different values of P0. The results of

these calculations, presented in Fig. 6.5, show that, irrespective of P0, a much better

system performance is achieved in the FL regime (ng = 8.64) than in the SL regime

(ng = 27.7). This is primarily due to the fact that the Si-PhCW operating in the SL

regime has a much larger nonlinear coefficient, which leads both to a larger parametric

gain amplification of the noise and to increased amount of FCs. To be more specific,

γ is proportional to v−2
g and therefore in the SL regime the parametric gain responsible

for noise amplification (∼γ ′) and TPA (∼γ ′′) are enhanced. Consequently, the signal

degradation increases, leading to larger BER. In addition, TPA increases with P0, too,

which explains why the BER increases with P0. One last idea illustrated by Fig. 6.5 is

that in the SL regime the BER varies much stronger with P0 as compared to this power

variation in the FL regime.

6.5 Conclusion
In conclusion, we studied the transmission BER in silicon photonic crystal waveguides

and contrasted the results obtained in two relevant cases, namely when the optical signal

propagates in the fast- and slow-light regimes. Our analysis revealed that although

slow-light effects provide the key advantage of increased nonlinearity, they also lead

to detrimental consequences, including a significant degradation of the transmission

BER. Theoretical and computational investigations showed that the signal impairments

are primarily due to the generation of free carriers.

When compared with the OOK modulation, the PSK modulated signals have ad-

vantage in increasing the spectral efficiency and enlarging the system capacity. There-

fore, the study of single-channel Si photonic systems that utilizing higher-order PSK

modulation will be described in the next chapter.
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Chapter 7

Exploiting Higher-order PSK

Modulation and Direct-detection in

Single-channel Silicon Photonic

Systems

7.1 Introduction
In this chapter, we study theoretically the performance of photonic systems containing

single-channel Si-PhWs or Si-PhCWs and utilizing PSK, OOK, and ASK-PSK modu-

lated signals. The system investigated in this work consists of a single-mode Si-PhW

or Si-PhCW, the latter being operated either in the fast-light (FL) or slow-light (SL)

regime, linked to a direct-detection receiver containing an intensity-detect branch and

phase-detect branch (see Fig. 7.1). The system dynamics was described by a modi-

fied nonlinear Schrödinger equation governing the propagation of the optical field cou-

pled to a standard rate equation describing the evolution of free-carriers (FCs) [1–5].

Moreover, the statistical properties of the transmitted signal were analyzed using the

frequency-domain Karhunen-Loève (KL) method [6, 7]. This analysis was performed

for different values of key system parameters and for several modulation formats.

The chapter is organized as follows. In Sec. 7.2, we introduce the models that

govern the propagation of the noisy signal in the Si waveguides. Then, in Sec. 7.3, we

describe the advanced modulation formats and the details of direct-detection receivers

considered in this work. This is followed by the description of the bit-error rate (BER)
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Figure 7.1: Schematics of the Si photonic system investigated in this work. It contains a Si
waveguide and a direct-detection receiver with bi-level electrical decisions. The re-
ceiver has two branches, an intensity-detection and a phase-detection branch, with
the latter consisting of N Mach-Zehnder interferometers. Two types of waveguides
are investigated: one is a strip waveguide with uniform cross-section with height,
h = 250nm, and width, w = 900nm and the other one is a PhC waveguide with
lattice constant, a = 412nm, hole radius, r = 0.22a, and slab thickness, h = 0.6a.

calculation method, which is presented in Sec. 7.4. These theoretical and computational

tools are used in Sec. 7.5 to analyze the system performance corresponding to several

modulation formats, for different values of the main system parameters. Finally, the

main results are summarized in the last section.

7.2 Theory of Propagation of Optical Signals in Silicon

Waveguides
In this section, a rigorous theoretical model (Eq. (2.15) and Eq. (2.20)) is utilized to

describe the coupled dynamics of the optical field and FCs in Si waveguides. In this

analysis, the input optical field is assumed to consist of a superposition between the

PSK signal and complex additive white Gaussian noise (AWGN), and the mutual inter-

action between the optical signal and noise is mediated by FCs and nonlinear optical

effects. In order to reduce the computational time, a linearized model of the full propa-

gation model (Eqs. (2.26a)) is also employed, which is derived in the vanishingly small

noise limit.

Two types of Si waveguides are considered in this work, as illustrated in the first

block of Fig. 7.1. Thus, one is a single-mode Si-PhW buried in SiO2, with uniform

cross-section of height, h = 250nm, and width, w = 900nm. The other one is a Si-

PhCW consisting of a line defect along the ΓK direction of a PhC slab waveguide with
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Table 7.1: The optical parameters of silicon waveguides used in numerical simulations.

Waveguide type λ αi [dBcm−1] β2 [ps2 m−1] γ ′ [W−1 m−1] γ ′′ [W−1 m−1]
Si-PhW 1550 1 0.5 166.8 50.8

Si-PhCW-FL 1550 50 -3.3×102 750.1 228.6
Si-PhCW-SL 1524 50 -4.3×104 6.94×103 2.12×103

honeycomb air hole lattice with lattice constant, a = 412nm, hole radius, r = 0.22a,

and slab thickness, h = 0.6a. The Si-PhCW is designed to possess both FL and SL

spectral regions [8], referred to as Si-PhCW-FL and Si-PhCW-SL, respectively, so as

to facilitate the study of the dependence of the system performance on the linear and

nonlinear optical coefficients of the waveguide. More specifically, due to their strong

dependence on the GV, in the SL regime both the linear and nonlinear optical effects

are significantly enhanced as compared to the FL regime. The optical coefficients of

the silicon waveguides are given in Table 7.1, whereas tc is set to 0.5ns [9] in all our

calculations.

7.3 Optical Direct-detection Receivers for High-order

PSK Modulated Signals
In this section, we introduce and briefly discuss the constellation diagrams of PSK and

ASK-PSK signal modulation formats as these tools play a central role in our study.

To this end, we show in Fig. 7.2 the symbols of 2PSK and high-order PSK (4PSK,

8PSK, and 16PSK), as well as those of ASK-PSK (A2PSK and A4PSK). As can be

seen in these diagrams, in the case of PSK modulation formats all symbols have the

same power, whereas for A2PSK and A4PSK each of the two and four symbols are

located on two different power rings.

Let us consider now how the functionality of direct-detection receivers for

high-order PSK signals is implemented using Mach-Zehnder interferometers (MZIs)

[10, 11], that is how to convert phase modulation into intensity modulation before the

photodiode square-law detection stage. To be more specific, in Fig. 7.1 we schemat-

ically illustrate a phase detection scheme employing N MZIs with properly chosen

phase shifts, N representing half of the number of phase states (N = m/2 for mPSK

signals). For each MZI, the delay time is one symbol interval and the particular value

of the phase shift depends on the particular PSK format.
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The direct-detection process pertaining to PSK signals can be briefly summarized

as follows: The received optical signal is filtered by an optical bandpass filter and sub-

sequently passed on to N MZIs, which demodulate the received PSK signal. Then,

the demodulated signals pass through ideal photodiodes yielding photocurrents propor-

tional to the difference between the intensities at the output ports of the previous MZI.

Finally, these photocurrents are lowpass filtered by electrical filters. By performing bi-

level electrical decisions on the resulting N photocurrents, the direct-detection process

of the optical signal is completed. When applied to ASK-PSK signals, an additional

branch for intensity detection must be used for a separate evaluation of the signal in-

tensity. For example, for 4PSK and 8PSK modulation formats, two and four MZIs are

needed for the direct-detection process, respectively [12–14].
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Figure 7.2: Constellation diagrams of the investigated signal modulation formats. (a), (b), (c),
(d), (e), (f), are for 2PSK, 4PSK, 8PSK, 16PSK, A2PSK, and A4PSK modulation,
respectively. (g), (h), (i) The decision boundaries for 4PSK, 8PSK, and 16PSK
modulation formats.
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7.4 Methods for Analysis of Direct-detection of PSK

and ASK-PSK Signals
In this section we present a general formalism for the characterization of direct-

detection of PSK and ASK-PSK signals with particular emphasis on BER calculations.

As an illustration of the general formalism, we show how it applies to the 8PSK mod-

ulation format.

7.4.1 General Case

Our general approach to BER calculations is based on the frequency-domain KL series

expansion of the transmitted signal. Importantly, the KL expansion method allows

one to use much shorter pseudorandom bit sequences (PRBSs): whereas it already

converges for PRBS-9, Monte-Carlo type methods could require PRBSs as long as 232

to reach convergence [11].

The basic idea of KL expansion is to obtain the decision variable as a sum of un-

correlated and independent random variables via a set of orthonormal functions. Thus,

starting from the frequency-domain signal at the output of the waveguide, X( f ), the de-

cision variable for the nth port, n= 1, . . . ,N, is expressed as a double Fourier transform:

yn(t) =
∫

∞

−∞

∫
∞

−∞

X∗( f1)Kn( f1, f2)X( f2)e2πi( f2− f1)td f1d f2, (7.1)

where the kernel Kn( f1, f2) is

Kn( f1, f2) = H∗o ( f2)Ho( f1)He( f1− f2)[H∗n,U( f2)Hn,U( f1)−H∗n,L( f2)Hn,L( f1)]. (7.2)

Here, Ho( f ), He( f ), Hn,U , and Hn,L are the transfer functions of the bandpass optical

filter, lowpass electrical filter, and the upper and lower branch of the nth MZI with the

corresponding couplers included, respectively [12]. The specific forms of Hn,U and

Hn,L depend on the type of the PSK signal. Thus, for mPSK, neglecting the phase error

in MZIs, these functions are:

Hn,U( f ) =
1
2

Cr

(
e−2πi f Ts + eiφn

)
, (7.3a)

Hn,L( f ) =
1
2

Cr

(
e−2πi f Ts− eiφn

)
, (7.3b)
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where Ts is the symbol duration, φn is the phase shift of the nth MZI, and Cr represents

the coupler coefficients for mPSK and are given by Cr = (
√

2/2)r, r = log2 m−1.

The BER calculation for each MZI port is performed by using discrete Fourier

transform. Thus, the frequency interval is discretized to a discrete-frequency vector

with equally spaced values separated by ∆ f . Then, the decision variable in Eq. (7.1)

can be written as a double sum,

y(t) =
2M+1

∑
α=1

2M+1

∑
β=1

x∗αKαβ xβ , (7.4)

where for convenience the port index n has been dropped and

xα = X( fα)e2πi fα t
√

∆ f , (7.5a)

Kαβ = K( fα , fβ )∆ f . (7.5b)

Here, M is an integer chosen such that the entire relevant frequency interval is covered

and fα = (α−1−M)∆ f , α = 1, . . . ,2M+1.

For later convenience, we now recast Eq. (7.4) into a real-valued equation. For

this, the signal is converted to a real column vector by concatenating the real and imag-

inary parts of the vector, {xα}, namely x = [x′ x′′]T , and the kernel K is similarly

converted to a (4M+2)× (4M+2) real matrix, K = [K′ −K′′; K′′ K′]. As a result of

these manipulations, the decision variable y(t) can be expressed as:

y(t) = xT Kx. (7.6)

The covariance matrix associated to statistical variable x, R=E{xxT}where E{·}

denotes the statistical expectation operator, can be factorized in Cholesky decomposi-

tion as R = ΣΣT , where Σ is a lower-triangular matrix. An orthogonal matrix, Λ, is then

constructed so as to diagonalize the real symmetric matrix ΣT KΣ, namely:

{
Λ

T
Σ

T KΣΛ
}

α,β
= ηαδα,β , (7.7)

where ηα ,α = 1, ...,4M + 2, are real-valued eigenvalues. If we introduce the new

multivariate random variable w = ΛT Σ−1x ≡ ΛT Σ−1s+ΛT Σ−1n, where s and n are
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the signal and noise part of x, respectively, the decision variable becomes:

y(t) =
4M+2

∑
α=1

ηαw2
α . (7.8)

The statistical properties of w can be easily derived from those of x, as follows:

E{w}= Λ
T

Σ
−1E{s+n}= Λ

T
Σ
−1E{s} ≡ σ , (7.9a)

E{wwT}= E{ΛT
Σ
−1xxT

Σ
−1T

Λ} ≡ I, (7.9b)

where we have used the fact that E{n}= 0 and the variable σ is defined as ΛT Σ−1E{s}.

These relations show that the correlation matrix of the multivariate random variable w

is diagonal, which means that its components are mutually uncorrelated. Using these

results, the moment-generation function Ψy of the decision variable y(t) can be written

as:

Ψy(s) = E{e−sy}=
4M+2

∏
α=1

exp
(

ηα σ2
α s√

1−2ηα s

)
√

1−2ηαs
. (7.10)

By using the saddlepoint approximation, we can calculate the probability P(y >

yth|s = 0) [P(y < yth|s =
√

P)] for an error to occur when a “0” [“1”] bit is detected.

Finally, the transmission BER for the nth port can be evaluated from the following

relation:

P =
1
2

[
P(y > yth|s = 0)+P(y < yth|s =

√
P)
]
. (7.11)

7.4.2 Application to 8PSK Modulation Format

We now illustrate how the formalism just presented can be applied to the 8PSK mod-

ulation formats. Four MZIs and bi-level electrical decision are used in 8PSK re-

ceiver, amounting to four decision currents [6]. The Hermitian kernels Kn( f1, f2), n =

1, ...,4 are calculated using Eq. (7.3), with n ∈ {1,2,3,4}, MZI phase shift φn ∈

{3π/8,π/8,−π/8,−3π/8}, Cr = 1/2, Ts = 3T0, with T0 being the bit window.

The decision thresholds in the signal space, which are required to decide whether

an error has occurred during the signal transmission, are illustrated in Fig. 7.2(h). There

are four decision boundaries, labeled by y1, y2, y3, and y4, the angles of their directions
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Figure 7.3: (a), (b), (c) Signal constellation of 8PSK signals with SNR = 25dB and P =
10mW, at the output of a Si-PhW, Si-PhCW-FL, and Si-PhCW-SL, respectively.
The dots indicate the noisy signals and the asterisks represent the ideal output sig-
nal without noise and phase shift.

being chosen to be consistent with the four MZI phase-shift values. Note that there

are alternative choices for decision boundaries for 8PSK modulated signals, their ad-

vantages and disadvantages being thoroughly discussed in [14]. We also provide the

threshold boundaries for 4PSK and 16PSK signals in Figs. 7.2(g) and 7.2(i), respec-

tively, since they are important when performing the signal decoding and BER esti-

mation. One common feature of threshold-boundary diagrams is that all decision axes

coincide with constant phase lines and, in order to ensure optimum performance, are

chosen in such a way that they are located at the maximum distance from adjacent

symbols. This type of decision threshold is referred to “arg-decision” [10]. Finally, the

overall BER is calculated by combining the BER obtained at each output port and is

given by [13]:

BER =
1−∏

4
n=1(1−BERn)

3
. (7.12)

It is instructive to explore the location in signal space and eye diagrams of 8PSK sig-

nals before being converted into electrical currents. We start with the distribution of

the 8PSK signals at the output of the Si waveguides and plot it in Fig. 7.3. In these

calculations we assumed that the power is P = 10mW and the length of the Si-PhW

(Si-PhCW) is L = 5cm (L = 500µm). Note that in what follows we used these same

values of the system parameters, unless otherwise specified. One important conclusion

revealed by these calculations is that the phase spread is similar for Si-PhCW-FL and

Si-PhW but is significantly smaller as compared to that of Si-PhCW-SL. On the other
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hand, the signal amplitude spread in the three cases has similar values. One possible

explanation of this finding is that for Si γ ′′ is about an order of magnitude smaller than

γ ′, meaning that TPA has a weaker effect on the power, as compared to the extent to

which SPM affects the phase. We see that even though the length of Si-PhCW is 100×

shorter than that of the Si-PhW, the Si-PhCW operating in the FL regime leads to much

less degraded signals.
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Figure 7.4: Top and bottom panels show the eye diagrams of real and imaginary part of received
8PSK signals after fifth-order Butterworth optical filter, respectively. From left to
right, the panels correspond to the Si-PhW, Si-PhCW-FL, and Si-PhCW-SL. The
input power P = 10mW, SNR = 25dB, and lengths of Si-PhW and Si-PhCW are
5 cm and 500 µm, respectively.

The eye diagrams of the real and imaginary parts of 8PSK signals, after pass-

ing through fifth-order Butterworth optical filter, are shown in Fig. 7.4. The top and

bottom panels represent the real and imaginary part of signals, respectively. These eye

diagrams show that the amplitude decay is comparable in the Si-PhW and Si-PhCW-FL

systems, but is much larger in the Si-PhCW-SL system, a fact explained by increased

linear and nonlinear losses in the SL regime. Moreover, the eye opening is the small-

est in the Si-PhCW-SL system when the eye diagrams are normalized so that a fair

comparison can be made. This conclusion agrees with the results presented in Fig. 7.3.

7.5 Results and Discussion
We begin this section by describing the set-up of the numerical simulations. Thus, we

use a PRBS of 29− 1 bits plus a zero bit, hence including all possible 9-bit sequence
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patterns. The bit window is T0 = 100ps and all MZIs in the direct-detection receivers

have a time delay of Ts = 3T0 and modulation-type related phase shifts. Note that the FC

relaxation time (0.5 ns) is much shorter than the total time of the bit sequence (51.2 ns),

which means that steady state is reached in our calculations. In addition, we choose

low-pass integrate-and-dump electrical filters with the 3-dB bandwidth, Be = 10Gbs−1,

and bandpass Lorentzian optical filters with the 3-dB bandwidth, Bo = 4Be [15]. In

order to illustrate the capabilities of our model, other types of filter configurations are

considered, too.

Before presenting the main results of our analysis of the system performance,

we discuss the physical conditions in which our theoretical model is valid as well as

the main physical effects that influence the BER. Thus, if we assume that the sig-

nal power is P = 5mW, the corresponding FC loss coefficient of the Si waveguides,

αfc, is 1.4×10−3 dBcm−1, 1.38×10−2 dBcm−1, and 1.24×10−1 dBcm−1 for the Si-

PhW, Si-PhCW-FL, and Si-PhCW-SL, respectively, all these values being very small

compared to the intrinsic loss coefficient of the Si-PhW (1 dBcm−1) and Si-PhCW

(50 dBcm−1). The same conclusion holds for δnfc, the corresponding values being

−7.91×10−7 ,−7.73×10−6 , and−6.93×10−5 , that is well within the bounds where

FC response is linear. We now turn our attention to the relative strength of dispersive

and nonlinear effects. Using the values in Table 7.1, we find that for P = 10mW and

T0 = 100ps the dispersion length is LD = 2×104 m, LD = 30m, and LD = 0.24m for

the Si-PhW, Si-PhCW-FL, and Si-PhCW-SL, respectively, whereas the corresponding

nonlinear lengths are LNL = 1.97m, LNL = 0.13m, and LNL = 0.014m. This shows

that nonlinearity plays a much more important role than the waveguide dispersion in

defining the optical signal dynamics.

The BER for all modulation formats was simulated for different values of the

signal-to-noise ratio (SNR), for the Si-PhW, Si-PhCW-FL, and Si-PhCW-SL systems

depicted in Fig. 7.1, the results being summarized in Fig. 7.5. A first conclusion of

these numerical investigations is that the system BER increases as the order of PSK

signal increases. In particular, ranked from the highest to lowest BER, the modulation

formats are 16PSK, 8PSK, A4PSK, A2PSK, 4PSK, and 2PSK. Note that in the case

of A4PSK and A2PSK signals, the power in the outer circle was chosen to be twice

as large as that in the inner one and since we set the average power to be the same in
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Figure 7.5: System BER of various modulation formats for direct-detection receivers with bi-
level decision. From left to right, the panels correspond to a Si-PhW, a Si-PhCW
operated in the FL regime, and a Si-PhCW operated in the SL regime. Here, P =
10mW, and lengths of Si-PhW and Si-PhCW are 5 cm and 500 µm, respectively.

all simulations, the power of OOK for bit “1” is twice as large as the average power.

Moreover, these power considerations make it easy to understand why OOK and PSK

signals have different signal quality after detection, namely because the average not

the peak optical power is the power parameter directly related to the transmission BER

[15].
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Figure 7.6: System BER of various modulation formats in the back-to-back system where no
waveguide link is contained. Here, the average power is P = 10mW.

Another significant idea revealed by the plots in Fig. 7.5 is that, for all types of

PSK signals, the Si-PhCW-SL system shows the worst performance. This result im-

plies that the advantages associated to SL operation, namely enhanced nonlinear op-

tical interactions and consequently reduced device footprint, could be outweighed by

poor BER. On the other hand, the best BER performance is achieved using the same

Si-PhCW but when operated in the FL regime, as per Fig. 7.5(b). This clearly under-
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lines the importance of the interplay between the favorable role played by enhanced

dispersive and nonlinear effects in the SL regime in reducing the device size and their

detrimental influence on transmission BER. As a reference, we also illustrate the BER

curves for the above PSK modulation formats employed in systems where the transmit-

ter is connected directly to the receiver, which are shown in Fig. 7.6.

A key parameter on which the performance of optical communication systems

depends is the signal power. In the case of Si optical interconnects with subwavelength

cross-section this influence is particularly critical due to tight light confinement and SL

effects. Therefore, we have investigated the dependence of transmission BER on the

input power and its relationship with the type of signal modulation format. To illustrate

the main findings of this analysis, we show in Fig. 7.7 the variation of BER with the

SNR for A2PSK, 4PSK, and 2PSK signals, determined for different values of the input

power.
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Figure 7.7: System BER vs SNR with different initial input power, calculated for three different
single-channel systems: From left to right, the panels indicate the case of a Si-PhW,
a Si-PhCW operating in the FL regime, and Si-PhCW operating in the SL regime.
The dashed lines, solid lines and dash-dot lines represent the cases of A2PSK,
4PSK and 2PSK modulated signals, respectively. For these curves, the lengths of
Si-PhW and Si-PhCW are 5 cm and 500 µm, respectively.

As expected, this figure shows that BER increases with the optical power, irrespec-

tive of the signal format. We can also see that the Si-PhCW-FL system is characterized

by the weakest dependence of BER on power, chiefly because only a small nonlinear

phase accumulates over the short length of this waveguide. In addition, as the signal

propagates over a short distance, the FC phase-shift is small, too. These results agree

with the data plotted in Fig. 7.3(b), which shows that indeed the smallest phase-shift

corresponds to the Si-PhCW-FL system. By contrast, the phase variations at the output
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Figure 7.8: System BER vs SNR, calculated for different waveguide lengths. From left to right,
the panels correspond to a Si-PhW, a Si-PhCW operating in the FL regime, and Si-
PhCW operating in the SL regime. The dashed lines, solid lines and dash-dot lines
represent the cases of A2PSK, 4PSK and 2PSK modulated signals, respectively.
The average power is P = 10mW.

of the Si waveguides are the largest when the PhC waveguide is operated in the SL

regime, which in this case is reflected in a strong power dependence of the BER. As

a conclusion to this discussion, the Si-PhCW operated in the FL regime represents the

optimum choice for on-chip Si optical interconnects, due to the best transmission BER

and its relatively small dimensions. Importantly, however, all three systems are suitable

for chip-level optical communication networks using PSK modulation formats, as for

properly chosen SNR the BER is below a quasi-error free level, e.g. BER < 10−9.

The results presented so far show that the transmission BER depends not only

on the optical power and type of signal modulation format but also on the waveguide

length. In order to further clarify this length dependence of BER, we varied the length

of the two types of waveguides but kept constant and equal to 100 the ratio between

the lengths of the Si-PhW and Si-PhCW. The corresponding BER curves, calculated

for A2PSK, 4PSK, and 2PSK signals and P = 10mW, are depicted in Fig. 7.8. As

expected, in all cases investigated, the signal impairments increase as the waveguide

length increases, this variation being the steepest in the case of Si-PhCW-SL systems. If

on the other hand we compare the system performance corresponding to the three mod-

ulation formats, one concludes that the strongest dependence of BER on the waveguide

length is observed in the case of 2PSK signal, the overall system performance being

the worst in this case, too. In addition, it can be seen in Fig. 7.8 that the Si-PhCW-FL

system shows weakest length dependence of BER, which again is consistent with the
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results presented in Fig. 7.7(b).
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Figure 7.9: BER calculated for several system receiver configurations. From left to right, the
panels correspond to a Si-PhW, a Si-PhCW operated in the FL regime, and Si-
PhCW operated in the SL regime. In all cases, an 8PSK modulation format is
considered. The electrical filter is chosen as fifth Bessel filter, whereas the optical
filter is a Lorentzian filter (red line), Gaussian filter (black line), super-Gaussian
filter (blue line), and sixth-order Butterworth filter (purple line). For these curves,
P = 10mW, and L = 5cm (L = 500µm) for the Si-PhW (Si-PhCW).

For completeness, we also studied the extent to which the transmission BER de-

pends on the system configuration, namely the type of optical and electrical filters used.

In this analysis, we considered an 8PSK signal modulation and calculated the depen-

dence of BER on SNR for the three waveguide systems, namely Si-PhW, Si-PhCW-FL,

and Si-PhCW-SL, for different types of filters. More specifically, the electrical filter

was a fifth-order Bessel filter with bandwidth of 10 Gbs−1, whereas the optical fil-

ters were a Lorentzian filter, Gaussian filter, second-order super-Gaussian filter, and

sixth-order Butterworth filters, all with bandwidth of 40 Gbs−1. The results of these

calculations are summarized in Fig. 7.9. The main conclusion of these investigations is

that, in all cases, the optimum choice is the second-order super-Gaussian filter, whereas

the worst performance corresponds to the Lorentzian one. The variation of the system

performance with the type of filter, however, is relatively small for all waveguides con-

sidered.

7.6 Conclusion
In conclusion, we have presented a comprehensive theoretical and computational anal-

ysis of the performance of photonic systems containing silicon based optical intercon-

nects and employing high-order phase-shift keying modulation formats. The systems

consisted of optical waveguides made of silicon and direct-detection receivers. The

silicon optical interconnects were designed so as to possess fast- and slow-light prop-
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agation regimes, which allowed us to investigate the relationships between the system

performance and the linear and nonlinear optical coefficients of the optical waveguides.

Importantly, by considering different types of phase-shift keying modulation formats,

we have identified those most suitable to be used in photonic systems containing sil-

icon based optical interconnects. In addition, using the theoretical models and com-

putational methods introduced in this study we have investigated the dependence of

the performance of systems employing high-order modulation formats on the optical

properties of silicon interconnects and signal characteristics. In particular, this analysis

has revealed that the higher the order of the signal modulation format is, the worse the

bit-error ratio is.

For completeness, the investigation regarding the multi-channel silicon photonic

systems using OOK modulated CW signals will be presented in the next chapter.
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Chapter 8

Performance Evaluation in

Multi-channel Systems With Strip and

Photonic Crystal Silicon Waveguides

8.1 Introduction
In this chapter, we perform a theoretical analysis of the performance of a WDM pho-

tonic system consisting of a noisy optical signal represented as a superposition of M

communication channels, a Si optical interconnect, which can be either a strip single-

mode silicon photonic waveguide (Si-PhW) or a Si PhC waveguide (Si-PhCW), and a

set of direct-detection receivers that analyze the content of the demultiplexed output

signal, cf. Fig. 8.1. To describe the optical field propagation in each channel, we use

a rigorous model [1–3] that incorporates linear and nonlinear optical effects, including

FC dispersion (FCD), FC absorption (FCA), SPM, XPM, TPA, and cross-absorption

modulation (XAM), as well as the FCs dynamics and coupling between FCs and the

optical field. Importantly, the dependence on GV of these linear and nonlinear effects

is naturally incorporated in our theoretical model, so that a comparative analysis of the

signal degradation in the SL and fast-light (FL) regimes can conveniently be performed.

A simplified, linearized theoretical model is also used to study the noise dynamics. In

order to assess the performance of our multichannel photonic system we calculate the

transmitted bit-error rate (BER) using two Karhunen-Loève (KL) eigenfunction expan-

sion methods.

The remaining of the chapter is organized as follows. The two types of opti-
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Figure 8.1: Schematic of the multi-channel photonic system, consisting of an array of lasers,
MUX, silicon waveguides, DEMUX and direct-detection receivers containing an
optical band-pass filter, photodetector, and an electrical low-pass filter. Two types
of waveguides are investigated: a strip waveguide with uniform cross-section and
a PhC waveguide that possesses slow-light spectral regions.

cal interconnects considered in this study, strip and PhC waveguides, are described in

Sec. 8.2. In Sec. 8.3 we present the system of equations that governs the propagation of

a multi-wavelength noisy signal in the two types of Si waveguides, whereas in Sec. 8.4

we briefly outline the general time- and frequency-domain formulations of the KL ex-

pansion method. We then use these theoretical tools to investigate the impact of white

Gaussian noise, in the presence of Kerr nonlinearity, frequency dispersion, and FCs, on

BER. The results of this analysis are presented in Sec. 8.5, the main conclusions of our

study being summarized in the last section [4], implemented in the time and spectral

domains [5, 6].

8.2 Description of the Photonic Waveguides
In this study we consider two types of Si waveguides, depicted schematically in the

central block of Fig. 8.1. The first waveguide is a single-mode Si-PhW with uniform

cross-section, buried in SiO2 cladding. We assume that the waveguide height is fixed

to h = 250nm and consider that its width, w, can be varied, so that its optical prop-

erties can be tuned. The second waveguide is a Si-PhCW, namely a line defect in a

two-dimensional PhC slab waveguide consisting of a hexagonal lattice of air holes in a

Si slab with thickness, h = 0.6a, the lattice constant and hole radius being a = 412nm

and r = 0.22a, respectively. The line defect is created by filling in a row of holes ori-

ented along the ΓK direction of the PhC. The modal dispersion of the optical guiding

modes supported by the Si-PhW and Si-PhCW is presented in Figs. 8.2(a) and 8.2(b),
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Figure 8.2: Left (right) panels show dispersion diagrams of linear and nonlinear waveguide
coefficients of the Si-PhW (Si-PhCW). The Si-PhW has h = 247nm, whereas the
Si-PhCW has r = 0.22a and h = 0.6a, the lattice constant being a = 412nm. The
grey, red, and blue shaded areas indicate slow-light domains defined by ng = c/vg >
20.

respectively, whereas in Figs. 8.2(c) and 8.2(d) we summarize the corresponding fre-

quency dispersion of the group-index, ng = c/vg, and second-order dispersion coeffi-

cient, β2 = d2β/dω2, where β (ω) is the mode propagation constant. Thus, in the case

of the Si-PhW, we show the wavelength dependence β (λ ), determined for w = 900nm

and w = 600nm. In the first case the waveguide has normal dispersion (β2 > 0) at

λ0 = 1550nm, whereas the second waveguide has anomalous dispersion (β2 < 0) at

this wavelength. Note that in this study we only consider the waveguide with width

w = 900nm.

The Si-PhCW, on the other hand, possesses two TE-like guiding modes, modes A

and B, which contain either two SL regions (mode A) or only one such domain (mode

B). In quantitative terms, we define the SL spectral regions as the domains where the

relation ng = c/vg > 20 is satisfied. Importantly, as per Fig. 8.2, in the SL regime
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of optical signal propagation the characteristic lengths of both linear and nonlinear

effects can be reduced by several orders of magnitude as compared to their values in

the FL regime. Moreover, we assume that the Si-PhCW is operated in the FL and SL

domains of mode A; for convenience, we refer to these two configurations as Si-PhCW-

FL and Si-PhCW-SL, respectively. This choice is guided by the fact that in practice it is

much more convenient to access a SL region located in the middle of a photonic band,

as at frequencies close to the band-edge the optical signal experiences strong back-

scattering. Particularly, all important parameters of the silicon waveguides used in this

chapter are presented in Table 8.1, Table 8.2 and Table 8.3. Moreover, the operating

wavelength can be changed to any required value by simply scaling a while keeping

the ratio a/λ constant.

Table 8.1: Main parameters for the 8-channel Si-PhW waveguide used in our simulations.

Index 1 2 3 4 5 6 7 8
λ [nm] 1549.4 1549.6 1549.8 1550 1550.2 1550.4 1550.6 1550.8

β1 [ns/m] 12.92 12.92 12.92 12.92 12.92 12.92 12.92 12.92
β2 [ps2/m] 0.505 0.505 0.505 0.504 0.504 0.503 0.503 0.503

κ 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985
γ ′ [W−1m−1] 166.95 166.91 166.88 166.84 166.81 166.77 166.73 166.70
γ ′′ [W−1m−1] 50.89 50.87 50.85 50.83 50.81 50.78 50.76 50.74
αin [dBcm−1] 1 1 1 1 1 1 1 1

Table 8.2: Main parameters for the 8-channel Si-PhCW-FL waveguide used in our simulations.

Index 1 2 3 4 5 6 7 8
λ [nm] 1524.5 1524.3 1524.1 1523.9 1523.7 1523.5 1523.2 1523.0

β1 [ns/m] 74.60 77.51 81.52 85.61 89.71 94.50 107.47 123.22
β2 [ps2/m] -358 -350 -342 -333 -325 -317 -309 -302

κ 0.9938 0.9938 0.9938 0.9937 0.9937 0.9937 0.9937 0.9937
γ ′ [W−1m−1] 752.40 751.64 750.87 750.11 749.35 748.58 748.03 747.88
γ ′′ [W−1m−1] 229.28 229.05 228.81 228.58 228.35 228.12 227.95 227.90
αin [dBcm−1] 50 50 50 50 50 50 50 50

Table 8.3: Main parameters for the 8-channel Si-PhCW-SL waveguide used in our simulations.

Index 1 2 3 4 5 6 7 8
λ [nm] 1549.4 1549.6 1549.8 1550 1550.2 1550.4 1550.6 1550.8

β1 [ns/m] 29.87 29.83 29.79 29.75 29.71 29.67 29.63 29.60
β2 [ps2/m] -2.63·104 -2.96·104 -3.62·104 -4.31·104 -5·104 -6.03·104 -9.6·104 -1.62·105

κ 0.9954 0.9953 0.9953 0.9953 0.9953 0.9952 0.9952 0.9951
γ ′ [W−1m−1] 4.95·103 5.38·103 6.15·103 6.94·103 7.74·103 8.86·103 1.26·104 1.88·104

γ ′′ [W−1m−1] 1.51·103 1.64·103 1.87·103 2.12·103 2.36·103 2.70·103 3.82·103 5.72·103

αin [dBcm−1] 50 50 50 50 50 50 50 50
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8.3 Theory of Multi-wavelength Optical Signal Propa-

gation in Silicon Wires

In this section, the full theoretical model in Sec. 2.6.2 is used to investigate the prop-

agation of a multi-wavelength optical signal in both Si-PhWs and Si-PhCWs. This

model rigorously describes the evolution of the optical field in the presence of FCs as

well as the dynamics of FC density. Specifically, the coupled dynamics of the opti-

cal signal and FCs are governed by Eqs. (2.21). Particularly, in Eqs. (2.21), τc is the

FC relaxation time (in our analysis we assumed τc = 0.5ns), δnfc and αfc are the FC-

induced refractive index change and FC loss coefficient, respectively, and are given by

δnfc = σnN and αfc = σαN, where N is the FC density, σα = 1.45×10−21(λ/λ0)
2 (in

units of m2), and σn = σ(λ/λ0)
2 (in units of m3), with σ and λ0 = 1550nm being a

power dependent coefficient [7] and a reference wavelength, respectively. Moreover,

the frequency dispersion of the real and imaginary part of the nonlinear coefficient γ is

presented in Figs. 8.2(e) through 8.2(h). As these figures illustrate, the nonlinear coef-

ficient in the case of Si-PhCWs can be more than two orders of magnitude larger than

that of Si-PhWs, being particularly large in the SL domain. In addition, in the spectral

region considered in this work γ ′ is more than 10× larger than γ ′′, which suggests that

SPM is the dominant nonlinear effect. For all multi-channel photonic systems consid-

ered in this study, we assume that the bit window is T0 = 100ps, the channel spacing

is ∆ω = 25GHz, and the reference wavelength (the wavelength of channel 1) for the

Si-PhW, Si-PhCW-FL, and Si-PhCW-SL systems is 1550nm, 1550nm, and 1523.9nm,

respectively.

The superposition of the optical signal and noise propagating in the ith channel of

a Si-PhW or Si-PhCW photonic system is selected to be:

ui(z,T ) =
[√

Pi(z)+ai(z,T )
]
e− jΦi(z), (8.1)

where Pi(z) is the power of the CW signal in the ith channel, ai(z,T ) is the complex ad-

ditive Gaussian noise, and Φi(z) is a global phase shift associated with the ith channel.

We also assume that the noise components at the input of the waveguide are statistically
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independent,

E
{

ai(0,T )ak(0,T ′)
}
= δikδ (T −T ′), i,k = 1, . . . ,M, (8.2)

where E{·} is the statistical expectation operator. The more general case of statistically

correlated noise functions can be considered by introducing in our analysis the corre-

sponding matrix correlation of these noise functions. Importantly, the linearized model

of Eqs. (2.30) and (2.31) are utilized in this chapter for the CW signal propagation in

the WDM system.
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Figure 8.3: Time-domain evolution of a noisy signal in channel 1 (blue) and channel 6 (red) of
a 10-channel photonic system. The plots correspond to: (a), a Si-PhW; (c), a Si-
PhCW operating in the FL regime; and (e), a Si-PhCW operating in the SL regime.
Left panels show the corresponding FC dynamics. In each channel of the three
systems P = 10mW.



162

In order to illustrate how the full model Eq. (2.21) can be used to study the prop-

agation of a multi-wavelength optical signal in a Si waveguide, we show in Fig. 8.3 the

time evolution of a noisy signal in channels 1 and 6 of a 10-channel photonic system.

The optical field and FC density were calculated by integrating the system Eqs. (2.21)

using a standard split-step Fourier transform numerical method. These calculations

were performed for both the Si-PhW and Si-PhCW, the latter case being investigated

both in the FL and SL regimes. In this and all the following examples, the length of

the Si-PhW (Si-PhCW) is L̄ = 5cm (L̃ = 500µm). The bit sequence in each channel

is the same in all three photonic systems but for each system it depends on the chan-

nel; specifically, in our example the bit sequences in channels 1 and 6 are “00110110”

and “01011100”, respectively. Moreover, we assume that the input power of the noise

and signal is the same for each channel, meaning that the signal-to-noise ratio (SNR)

is independent of the channel. Note that in our simulations we define the SNR of the

optical signal at the front-end of each channel as the ratio between the power of the

CW signal, Pi, and the average of the sum of the powers of the in-phase and quadrature

noise components,

SNR(i) =
Pi

E
{

a′i
2
+a′′i

2
}∣∣∣

z=0

, i = 1, . . . ,M. (8.3)
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Figure 8.4: (a), (b) Power and phase, respectively, calculated using the full (solid lines) and
linearized system (dashed lines) for a 10-channel system. The photonic wire is a
Si-PhW (green, channel 1), Si-PhCW-FL (red, channel 1), and Si-PhCW-SL. In
the last case the three lines correspond to: channel 1 (black), channel 6 (purple),
and channel 10 (blue). SNR = 30 dB. The system conditions are the same as in
Fig. 8.3.
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The main conclusion revealed by these calculations is that the optical field is dis-

torted much stronger in the Si-PhCW system, with a more pronounced signal degrada-

tion being observed in the SL regime of this waveguide as compared to the FL case.

These results are not surprising, as the largest values of the linear and nonlinear waveg-

uide coefficients are achieved in the SL regime of the Si-PhCW (see Fig. 8.2). For

completeness, we also show in Figs. 8.3(b), 8.3(d) and 8.3(f) the dynamics of FCs.

Similar to the case of the optical field, it can be seen that SL effects strongly influence

the FCs dynamics as well. More specifically, our calculations show that, for the same

optical power, in the SL regime of Si-PhCW the FC density is about 5× larger than in

the FL case and about 50× larger than in the case of the Si-PhW. This is a direct conse-

quence of the enhanced TPA and XAM in the former case, an effect that is proportional

to v−2
g .
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Figure 8.5: (a) In-phase and quadrature noise components at the input of the 10-channel Si-
PhW, Si-PhCW-FL and Si-PhCW-SL systems. (b), (c) Noise components at the
output of channel 1 of the Si-PhW and Si-PhCW-FL systems, respectively, deter-
mined from the linearized system Eq. (2.30). (d), (e), (f) Noise output in channel 1,
channel 6, and channel 10, respectively, in the Si-PhCW-SL system. SNR = 30 dB.
The system conditions are the same as in Fig. 8.3.

A clear picture about the reliability of the linearized system Eq. (2.30) is re-

vealed by a comparison between the optical field at the back-end of the Si waveguides

considered in this work, calculated using this linearized model and the full system

Eqs. (2.21). The solution of the linearized model was calculated by using a standard
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5th order Runge-Kutta method. The conclusions of such a comparison are summarized

in Fig. 8.4, where we plot the evolution of the optical power and phase of a multi-

wavelength optical signal corresponding to three different regimes of propagation in

Si waveguides. In particular, we considered the same 10-channels system as above,

the three waveguides being a Si-PhW, a Si-PhCW-FL, and a Si-PhCW-SL. The first

conclusion we can derive from the results presented in Fig. 8.4 is that for all systems

and all channels the linearized system describes fairly accurately the dynamics of the

optical field.

Our simulations show that in the case of the Si-PhW and Si-PhCW-FL systems the

power and phase of the optical signal are nearly the same across all 10 channels and as

such we plot in Fig. 8.4 only the quantities that correspond to channel 1. This is an ex-

pected result because in these two cases the linear and nonlinear waveguide coefficients

are only weakly dispersive, so that in the case of small inter-channel separation they do

not vary much from channel to channel. This picture changes markedly if one con-

siders the case of the Si-PhCW-SL system. Thus, in the SL regime, as a consequence

of SL effects, the waveguide coefficients are enhanced and become much more disper-

sive. This results in a large spread of the values of the parameters that characterize the

propagation of optical signals in the SL multi-channel system.

The linearized system Eq. (2.30) also allows one to determine the evolution of the

noise components of the optical field. This is illustrated in Fig. 8.5, where we present

the noise components at the back-end of the Si waveguides investigated above. Note

that in this figure we plot ai(z, t)e− jΦi(z), calculated at z = L̄ = 5cm and z = L̃ = 500µm

for the Si-PhW and Si-PhCW systems, respectively, where Φi(z) is the phase defined

by Eq. (8.1). The statistical properties of the input additive white Gaussian noise do not

depend on the channel nor the particular system considered. Comparing Figs. 8.5(b)

and 8.5(c), which correspond to channel 1 of the Si-PhW and Si-PhCW-FL systems,

respectively, it can be seen that our model predicts a larger parametric amplification of

the quadrature noise. Moreover, the output noise in channel 1, channel 6, and channel

10 of the Si-PhCW-SL system is shown in Figs. 8.5(d), 8.5(e), and 8.5(f), respectively.

Interestingly enough, it can be seen not only that, similar to the case of the optical

signal, there is a large noise variation with the transmission channel, but also that the

noise amplitude rapidly decreases with the channel number. This latter dependence is
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explained by the fact that the channels indexed by larger numbers are located deeper

in the SL spectral domain, namely in a spectral region with larger linear and nonlinear

optical losses.

8.4 Time and Frequency Domain Karhunen-Loève Se-

ries Expansion Methods

In this section, both the time- and frequency-domain KLSE methods are used to cal-

culate the transmission BER of multi-channel Si-PhW and Si-PhCW systems at the

back-end of the waveguide. We assume that the output signal is first demultiplexed

and then the signal content in each channel is analyzed. We performed these calcula-

tions both in the time and frequency domain, with the explicit algorithms introduced in

Sec. 3.2 and Sec. 3.3, respectively, followed by the comparison of the results obtained

by the two methods. As a final note on the BER calculation, we stress that KL-based

methods produce significantly more accurate results in the strong nonlinear regime, as

compared to the commonly used Gaussian approximation [8]. This becomes particu-

larly important when BER calculations are performed in the SL regime of the Si-PhCW,

as in this case intra- and inter-channel signal-noise interactions mediated by the optical

nonlinearity of the waveguide and FCs increase significantly.
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Figure 8.6: Comparison of the system BER calculated via the time- and frequency-domain
KL expansion method. The plots correspond to channel 6 in an 8-channel sys-
tem containing a Si-PhW (green), Si-PhCW operating in the FL regime (red),
and a Si-PhCW operating in the FL regime (blue). Initial signal power in each
channel is P = 5mW. The agreement between the two methods is quantified by
∆r log10(BER) = [log10(BER)FD− log10(BER)T D]/ log10(BER)FD.
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In order to evaluate the computational accuracy of the two approaches, we used

them to analyze the transmission BER of several system configurations and then com-

pared the results. More specifically, we considered 8-channel Si-PhW, Si-PhCW-FL,

and Si-PhCW-SL systems and in all cases calculated the BER for each channel. The

power in each channel was P = 5mW. In this example and all those that follow we

assume that the electrical filter is a low-pass integrate-and-dump filter with the 3-dB

bandwidth equal to Be = 10Gbs−1, whereas the optical filter is a bandpass Lorentzian

with 3-dB bandwidth, Bo = 4Be. Specifically, the two filters are described by the fol-

lowing transfer functions,

H i
o( f ) =

Γ2
o

f 2 +Γ2
o
, Hq

o ( f ) =− Γo f
f 2 +Γ2

o
, (8.4a)

H i
e( f ) =

 1, | f | ≤ Be/2

0, | f |> Be/2
Hq

e ( f ) = 0, (8.4b)

where Γo = Bo/2. These parameters are the same as those used in [9], where the single-

channel transmission BER in Si-PhWs was investigated. This choice makes it easy to

compare the performance of single- and multi-channel systems.

The conclusions of these calculations are summarized in Fig. 8.6, where we

plot the dependence on BER of the relative difference between the BERs calculated

by employing the time- and frequency-domain methods. This quantity is defined

as ∆r log10(BER) = [log10(BER)FD− log10(BER)T D]/ log10(BER)FD. We show here

only the results corresponding to channel 6, as the results are rather independent of the

channel number. The plots presented in Fig. 8.6 show that the predictions of the two

algorithms are are in good agreement, especially at large SNR.

8.5 Performance Evaluation for Multi-channel Systems
Armed with these theoretical and computational tools, we performed a comparative

study of transmission BER in Si waveguides with uniform cross-section and PhC Si

waveguides, the main results being presented in this section. In the latter case we con-

sidered both FL and SL regimes, so that we could assess the extent to which enhanced

linear and nonlinear optical effects degrade the transmitted optical signal.

To begin with, we assume that our system contains a variable number of channels,
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Figure 8.7: System BER for channel 2 vs. SNR, calculated for systems with different number
of channels. From top to bottom, the panels correspond to a Si-PhW, a Si-PhCW
operating in the FL regime, and a Si-PhCW operating in the SL regime.

each channel consisting of a NRZ bit stream. We start our analysis by investigating in

each of the three cases the correlation between the transmission BER and the number of

channels as well as the dependence of the calculated BER on the SNR. The dependence

of the transmission BER on the number of channels is illustrated in Fig. 8.7, where we

plot the BER corresponding to channel 2 of a system containing a number of channels

that varies from 2 to 8. In all cases we assume that the input power is P = 5mW in

each channel. These calculations, which can provide valuable insights into the limits

of WDM silicon photonic systems, suggest that the BER increases with the number of

channels, most strongly in the case of a Si-PhCW operating in the SL regime. This is an
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expected conclusion because as the number of channels increases the strength of inter-

channel interactions mediated by optical nonlinearity and FCs increases, which results

in a degradation of the system performance. Moreover, as linear and nonlinear optical

effects are enhanced in the SL regime, a more pronounced deterioration of the system

performance is observed in this case. Last but not least, the influence of number of

channels would be extremely small in systems where a Si waveguide is not contained,

under the assumption that neither the receivers or the DEMUX would induce noise.

Thus, when considering the BER performance in this case, one can refer to the BER

plots for single-channel back-to-back system configuration, as shown in Fig. 4.2(a).
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Figure 8.8: Maps of log10(BER) vs. power and SNR, calculated for three different 8-channel
systems: from top to bottom, the panels correspond to a Si-PhW, a Si-PhCW op-
erating in the FL regime, and a Si-PhCW operating in the SL regime. Left and
right panels correspond to channel 1 and channel 8, respectively. Black curves
correspond to log10(BER) =−9.

The physical parameter that most critically affects the system performance is the

optical power of the signal. Indeed, the optical field induces nonlinear effects that affect

the signal propagation in the Si waveguide and generates FCs that modify the optical

properties of the waveguide. Therefore, in the next part of our study, we investigate the

dependence of the performance of the 8-channel system described above on the opti-

cal power contained in each channel, at the front-end of the three type of waveguides
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considered in this work. The results of this analysis are presented in Fig. 8.8, where

the BERs corresponding to channel 1 and channel 8 are presented. Similar to our pre-

vious findings, it can be seen that the system performance decreases as the power is in-

creased, irrespective of the value of the SNR. Moreover, this figure shows that although

it is 100× shorter than the Si-PhW, the Si-PhCW operating in the FL regime provides

a larger parameter space where the system BER is smaller than an upper-bound limit

commonly used in optical communications systems, namely BER < 10−9. This situa-

tion changes markedly if the same PhC waveguide is operated in the SL regime, namely

the power must be decreased considerably if the BER is to remain smaller than 10−9.

In addition, one can observe that in this regime the transmission BER experiences the

strongest variation with the channel number.

Le
n

g
th

 [
cm

]

 

 

15 20 25
2

4

6

8

10

-20

-16

-12

-8

-4

 

 

15 20 25
2

4

6

8

10

-20

-16

-12

-8

-4

L
e

n
g

th
 [
µ

m
] 

 

 

15 20 25
200

400

600

800

1000

-20

-16

-12

-8

-4

 

 

15 20 25
200

400

600

800

1000

-20

-16

-12

-8

-4

SNR [dB]

 

 

15 20 25
200

400

600

800

1000

-20

-16

-12

−8

-4

SNR [dB]

 

 

15 20 25
200

400

600

800

1000

-20

-16

-12

-8

-4

(a) (b)

(c)

(e)

(d)

(f)

L
e

n
g

th
 [
µ

m
] 

Figure 8.9: Maps of log10(BER) vs. waveguide length and SNR, calculated for three different
8-channel systems: from top to bottom, the panels correspond to a Si-PhW, a Si-
PhCW operating in the FL regime, and a Si-PhCW operating in the SL regime.
Left and right panels correspond to channel 1 and channel 8, respectively. The input
power in each channel is P= 5mW. Black curves correspond to log10(BER) =−9.

Let us now consider the dependence of the transmission BER on the length of

the waveguide. This is a particularly important issue if one assesses the feasibility

of using Si waveguides for on-chip optical interconnects. We therefore considered
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Si-PhWs and Si-PhCWs with different length but in order to be able to compare the

findings of this investigation to the conclusions drawn so far we assumed that the ratio

of the lengths of the two waveguides is fixed to 100. The system BER determined

under these circumstances, for the same 8-channel system and power P = 5mW, is

plotted in Fig. 8.9. One important result illustrated by this figure is that, among the

three cases investigated, the Si-PhCW operated in the FL regime provides the optimum

performance. When the same waveguide is operated in the SL regime, on the other

hand, the BER is larger than the threshold of 10−9 in almost the entire parameter space

considered in Fig. 8.9.

8.6 Conclusion
In conclusion, we have presented a comprehensive analysis of bit-error rates in multi-

channel photonic systems containing silicon waveguides. We have considered two

types of such photonic devices, namely a strip waveguide with uniform cross-section

and a photonic crystal waveguide. The latter photonic waveguide allowed us to ex-

tend our analysis to the important case of slow-light propagation where both linear

and nonlinear optical effects are enhanced. Our calculations of the bit-error rate have

demonstrated that using photonic crystal waveguides in the fast light regime allows one

to reduce the device footprint by as much as two orders of magnitude while maintaining

the system performance to an almost unchanged level. However, if the photonic crystal

is operated in the slow-light regime at similar power levels, a significant degradation of

the system performance is observed.

The theoretical formalism introduced in this study can also be applied to other,

more complex devices of practical interest. For example, our theoretical approach

can be applied to taper, slot and other types of waveguides by simply using the cor-

responding linear and nonlinear waveguide optical coefficients. Moreover, after prop-

erly modifying the system of equations governing the optical field dynamics in silicon

waveguides, a similar theoretical formalism can be employed to study the transmission

bit-error rate of photonic systems containing, e.g, splitters, ring modulators coupled

to a waveguide, and multi-mode waveguides. Equally important, the generality of the

theoretical methods used in this study makes it easy to adapt them to tackle much more

advanced signal modulation formats and detection schemes than those considered in
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this chapter.

In the next chapter, the research emphasis will shift to the single-channel silicon

photonic interconnect that operating in the pulsed regime.
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Chapter 9

Single-channel Silicon Photonic

Interconnects Utilizing RZ Pulsed

Signals

9.1 Introduction
In this chapter, we analyze the transmission BER in single-channel Si photonic systems

operated in the RZ regime. The photonic systems investigated in this study consist of

an optical transmitter, a Si optical waveguide, and a direct-detection receiver, as shown

in Fig. 9.1. The optical link can be either a single-mode Si-PhW with uniform cross-

section or a Si-PhCW, and is connected to a direct-detection receiver consisting of a

Lorentzian bandpass optical filter, an ideal square-law photodetector, and an integrate-

and-dump low-pass electrical filter. An ON-OFF keying (OOK) modulated Gaussian

pulses with a 512-bit pseudorandom binary sequence (PRBS) pattern, together with

complex additive white noise, form the input signal. To characterize the pulse dynam-

ics upon transmission, we use a theoretical model, which incorporates all the signifi-

cant optical effects, including the linear loss, GV dispersion (GVD), free-carrier (FC)

dispersion (FCD), FC absorption (FCA), self-phase modulation (SPM), two-photon ab-

sorption (TPA), and the mutual interaction between the FCs and the optical field [1–4].

Moreover, the Fourier-series Karhunen-Loève (KL) expansion approach is employed

in conjunction with a perturbation theory for the calculation of the noise covariance

matrix [5], to evaluate the system BER at the back-end of the receiver.

The rest of the chapter is organized as follows. The rigorous theoretical model that
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Figure 9.1: Schematic of the investigated Si photonic system. It consists of a transmitter (a
laser and a PRBS generator), a Si waveguide, and a direct-detection receiver (an
optical filter, a photodetector, and an electrical filter). The optical link is either a
strip or a PhC Si waveguide. In the PRBS generator the bit window is T0 and each
bit consists of a Gaussian pulse with half-width (at 1/e-intensity point), Tp.

describes the pulse propagation in Si waveguides is introduced in Sec. 9.2. Then, in

Sec. 9.3, we present the general formulation of the perturbation theory and the Fourier-

series KL expansion method that we used to evaluate the system BER. The simulation

results and their discussion are presented in Sec. 9.4, followed by the main conclusions

of this work summarized in the final section.

9.2 Theory of PRBS Optical Pulse Propagation in Sili-

con Waveguides

In this section, a rigorous theoretical and computational model is exploited to describe

the propagation of optical pulses in Si waveguides. This model consists of a modified

NLSE (Eq. (2.15)), which governs the dynamics of the optical field, coupled to a rate

equation for the FCs (Eq. (2.20)).

Two types of Si waveguides are considered in this work, as illustrated in the mid-

dle block of Fig. 9.1. One is a single-mode Si-PhW with uniform cross-section, buried

in SiO2 cladding. The optical properties of such Si-PhWs are fully determined by the

waveguide height, h, and width, w. The second waveguide is a Si-PhCW, consisting

of a line defect in a two-dimensional honeycomb lattice of air holes in a Si slab. The

geometrical parameters of Si-PhCWs are the lattice constant a, thickness, h = 0.6a,
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Figure 9.2: (a) Waveguide dispersion of strip waveguides with a fixed height, h = 250nm, and
widths of w = 1310nm (red line), w = 537nm (blue line), and w = 350nm (black
line). (b) Projected photonic band structure of a Si-PhCW with h = 0.6a and r =
0.22a. (c), (d) Second-order dispersion coefficient vs. wavelength, determined for
the modes in (a) and (b), respectively. In (d), normalized quantities, ω̄ = ωa/2πc,
β̄ = βa/2π , and β̄2 = d2β̄/dω̄2, are used. The grey bands in (b) and the green and
orange bands in (d) indicate SL spectral domains defined as ng > 20.

and hole radius, r = 0.22a. In this work, we consider both the telecommunication

wavelength, λ = 1550nm, and the wavelength, λ = 1300nm, commonly used in data

centers. For both wavelengths we design waveguides that have both normal and anoma-

lous dispersion, so that the influence of dispersion on the system performance can be

analyzed. Moreover, in the case of Si-PhCWs, the dispersion is engineered so that the

waveguide possesses both fast-light (FL) and SL regimes, denoted as Si-PhCW-FL and

Si-PhCW-SL, respectively.

The waveguide dispersion is tuned by simply changing the waveguide geome-

try. Thus, let us consider first the Si-PhWs. For this type of waveguide, we choose

the height h = 250nm and three widths, w = 1310nm (called Si-PhW-A), w = 537nm

(called Si-PhW-B), and w = 350nm (called Si-PhW-C), their propagation constant and

second-order dispersion coefficient being plotted in Figs. 9.2(a) and 9.2(c), respec-

tively. With this choice, at λ = 1550nm, Si-PhW-A (Si-PhW-B) has normal (anoma-

lous) dispersion, whereas at λ = 1300nm we used Si-PhW-A and Si-PhW-C, which

have normal and anomalous dispersion, respectively. Moreover, dispersion properties

of Si-PhCWs are summarized in Figs. 9.2(b) and 9.2(d). It can be seen from this fig-



176

Table 9.1: Silicon waveguide parameters used to in all our simulations

Waveguide type λ w(a) [nm] c/vg β2 [ps2 m−1] κ γ ′ [W−1 m−1] γ ′′ [W−1 m−1]

Si-PhW-1 1550 537 4.14 -1.0002 0.9469 241.4872 73.5711
Si-PhW-2 1550 1310 3.79 1.0042 0.9718 121.0340 36.8340
Si-PhW-3 1300 350 4.48 −1.0736 0.9281 379.50 152.68
Si-PhW-4 1300 1310 3.88 1.6796 0.9820 158.3060 54.1422

Si-PhCW-FL-1 1550 412 8.91 -330.75 0.9937 724.2573 220.7031
Si-PhCW-FL-2 1550 405.94 9.28 368.30 0.9919 1102.9 336.1006
Si-PhCW-FL-3 1300 345.55 8.91 -277.41 0.9937 1227.6 374.0825
Si-PhCW-FL-4 1300 340.45 9.28 308.88 0.9919 1869.7 569.7637
Si-PhCW-SL-1 1550 418.9 22.40 −1.76×104 0.9954 4388.1 1337.2
Si-PhCW-SL-2 1550 400.06 20.19 6.36×103 0.9902 6608.6 2013.8
Si-PhCW-SL-3 1300 351.34 22.40 −1.48×104 0.9954 7437.4 2266.4
Si-PhCW-SL-4 1300 335.54 20.19 5.33×103 0.9902 1.12×104 3413.3

ure that if one considers mode A, which depending on wavelength has either normal or

anomalous dispersion, it is possible to tune the dispersion from normal to anomalous at

chosen wavelengths simply by varying the lattice constant while keeping constant the

ratio ωa/2πc = a/λ . Following this procedure, for both the FL and SL regimes, we

designed Si-PhCWs that have both normal and anomalous dispersion at 1550 nm and

1300 nm. As a result we can group our waveguides in four classes, denoted as class 1

(λ = 1550nm, β2 < 0), class 2 (λ = 1550nm, β2 > 0), class 3 (λ = 1300nm, β2 < 0),

and class 4 (λ = 1300nm, β2 > 0). The resulting waveguide parameters, for both types

of waveguides, are summarized in Table 9.1.

9.3 Theoretical Approach for BER Calculation
The BER calculation approach presented in Sec. 3.4 is applied to evaluate the perfor-

mance of systems operating in the pulsed regime and which contain Si-PhW and Si-

PhCW. The key underlying method, which is used in conjunction with a perturbation

theory, is the Fourier-series KLSE of the optical field. The main advantage of this ap-

proach is its computational efficiency and accuracy. Specifically, we use a perturbative

theory to construct the noise covariance matrix after propagation in the Si waveguides,

whereas the Fourier-series KL expansion is used to determine a semi-analytical solu-

tion for the BER at the back-end of the direct-detection receiver. In our calculations,

we assume that the receiver contains a Lorentzian optical filter described by the trans-

fer function, ho(t), an ideal photodetector, and an integrate-and-dump electrical filter

defined by the transfer function, he(t). The electrical noise has not been included in
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the receiver model, a reasonable approximation considering that the electrical noise is

much smaller than the accumulated noise in the waveguide. Here, the bit-rate and bit

window are denoted as Br and T0, respectively.

9.4 Results and Discussion
In this section, we present the results of a comprehensive performance analysis of sys-

tems containing the two types of Si waveguides. To begin with, we describe the com-

putational setup of our numerical simulations. Thus, we utilize a PRBS of Gaussian-

shaped pulses containing 29−1 bits together with a zero bit, which includes all possible

9-bit sequence patterns. The average power of the optical pulse is P = 10mW, with the

relation between the peak power, P0, and the average power per gaussian pulse being

PT0 =
√

πP0Tp. The waveguide length for Si-PhWs, Si-PhCW-FLs, and Si-PhCW-SLs

is L = 5cm, L = 500µm, and L = 250µm, respectively, unless otherwise is specified.

Moreover, the number of frequency points used within one bit is 2Q+1 = 201, which

is relatively small as compared to the number of temporal sampling points, N = 1024,

within the same bit, whereas the bit-rate and signal pulse width are chosen according

to the following rules: i) When different values of the bit-rate, Br, are used, the pulse

width is fixed at Tp = 9ps. ii) When the duty-cycle dcycle = Tp× (2Br) is varied, the

signal bit-rate is kept unchanged at Br = 10Gb/s. Note that when keeping constant the

average power, P, the smaller the Br (dcycle) is, the larger the peak power P0 of a pulse

is. Moreover, in the BER calculations, we select fixed detection thresholds for each

type of Si waveguides.

A clear picture of the signal dynamics in the optical and electrical domains is

provided by Fig. 9.3, where we show the amplitude of Gaussian pulses at the output of

different types of Si waveguides, normalized to the input amplitude (left panels), and

the eye diagrams of the electrical signal after the direct-detection receiver determined

for class 1 (λ = 1550nm and β2 < 0) waveguides (right panels). As different types of

Si-PhWs and Si-PhCWs have been considered in these simulations, Fig. 9.3 illustrates

how the waveguide parameters influence the output signal. One main finding is that the

signal degradation is larger in the anomalous dispersion regime for Si-PhWs and Si-

PhCW-SLs as compared to normal dispersion regime, whereas the opposite is true in Si-

PhCW-FLs, as per Figs. 9.3(a), 9.3(c), and 9.3(e). This is explained by the magnitude
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Figure 9.3: Output amplitude of Gaussian pulses corresponding to different types of Si waveg-
uides, normalized to the input pulse (left panels) and the eye diagrams correspond-
ing to the class 1 (λ = 1550nm and β2 < 0) waveguides (right panels). From top
to bottom, the panels correspond to Si-PhWs, Si-PhCW-FLs, and Si-PhCW-SLs,
respectively. In these simulations, P = 10mW, dcycle = 0.25, and SNR = 10 dB.

of the GV, namely the smaller the GV is the larger the linear and nonlinear losses

are and consequently the larger the pulse decay is. The GV also influences the eye

diagrams. In particular, Figs. 9.3(d) and 9.3(f) show that the eye diagram closes as the

pulse propagation is tuned from the FL to the SL regime.

Duty-cycle is a key parameter of a train of Gaussian pulses that would directly

influence the signal quality in Si photonic systems. In particular, for a given average

power of the input signal, the smaller the duty-cycle, the higher the pulse peak power,

and consequently the larger optical nonlinearity and amount of generated FCs would

the optical pulses probe. To gain a deeper insight into these dependencies, we present

in Fig. 9.4 the dependence of the BER on the pulse duty-cycle and SNR, determined

for different types of Si photonic waveguides. In this analysis, the average power and
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bit-rate are P = 10mW and Br = 10Gb/s, respectively. Note that some values of BER

are unrealistically small; however, to make it easier to compare the results obtained

for different waveguides, we used the same range of SNR. It can be seen that in all

cases the system BER increases with the duty-cycle. In addition, when considering the

Si waveguides with anomalous dispersion, the performance of class 3 waveguides is

worse than that of class 1 waveguides, as shown in the left panels of Fig. 9.4. Moreover,

this figure shows that the difference between BER in class 2 and class 4 Si-PhCWs is

relatively small, with this difference being larger in the SL regime.
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Figure 9.4: System BER vs. SNR, calculated for several values of dcycle and for three types
of Si photonic systems. The investigated waveguides and their length are Si-PhW
(top, L = 5cm), Si-PhCW-FL (middle, L = 500µm), and Si-PhCW-SL (bottom,
L = 250µm). In the left panels, the solid (dash-dot) lines correspond to class 1
(class 3) waveguides, whereas the dotted (dashed) lines in the right panels represent
class 2 (class 4) waveguides. In these simulations, P = 10mW and Br = 10Gb/s.
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Figures 9.4(c), 9.4(d), 9.4(e), and 9.4(f) also show that in the case of Si-PhCWs,

BER increases as the wavelength decreases, when comparing two groups of Si-PhCWs,

namely class 1 vs. class 3 and class 2 vs. class 4. To understand this phenomenon, let

us consider the dependence of the waveguide parameters on wavelength. Thus, it can

be easily proven that β2 and γ are proportional to a and a−3, respectively. Therefore,

if one operates at a certain point on the normalized dispersion band of a mode (fixed

a/λ ), β2 increases as the wavelength increases, whereas the opposite is true in the case

of γ . Note, however, that γ decreases with a much faster than β2 increases with a,

and therefore its variation with λ has the dominant influence on the variation of BER

with λ , resulting in an increase of BER when the wavelength decreases. On the other

hand, the BER for Si-PhWs are not in such relation, since their linear and nonlinear

parameters do not scale with wavelength in a self-similar way. Last but not least, the

BER curves with different values of duty-cycle, calculated for the system where the

transmitter is directly connected to the receiver, are plot in Fig. 9.5. After comparing

Fig. 9.5(a) with Fig. 9.4, one can get the penalty information caused by inserting Si

waveguides at each pulsewidth.

We now consider the transmission BER at different bit-rates, for Si-PhWs, Si-

PhCW-FLs, and Si-PhCW-SLs. We investigate both anomalous and normal dispersion

regimes, the wavelengths being 1550nm and 1300nm, the average power P = 10mW,

and Tp = 9ps. The transmission BER calculated under these conditions is shown in

Fig. 9.6. This figure suggests that, as expected, smaller bit-rates lead to improved sys-
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considering different values of duty-cycle (a) and bit-rate (b). In these simulations,
the average power is P = 10mW. Additionally, in (a) the bit-rate is Br = 10Gb/s,
whereas in (b) the pulsewidth is fixed with Tp = 9ps.
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tem performance for all Si waveguides. Another important result illustrated in Fig. 9.6

is that the difference between BER in the normal and anomalous regime is much smaller

in the Si-PhW-FL regime as compared to that in the Si-PhW-SL regime and in Si-PhWs.

This can be explained as follows: the signal propagates in the Si-PhW over a much

larger distance so that larger variation of BER occurs, whereas in the case of the Si-

PhW-SL the increase in the strength of the linear and nonlinear effects leads to smaller

BER. Also related to this finding, it can be seen that the overall BER performance is

better in the normal dispersion regime of Si-PhWs and Si-PhW-SLs as compared to

BER performance in the case of anomalous dispersion, whereas the opposite situation
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holds in the cease of Si-PhCW-FLs. Specifically, the best system performance can be

found in the class 2 of Si-PhWs and Si-PhW-SLs, as well as class 1 of Si-PhW-FLs,

when comparing the same types of Si waveguides. Similarly, the BERs in the system

where the Si waveguide is not contained, accounting for different values of bit-rate, are

shown in Fig. 9.5(b). This figure is provided as a reference to determine the penalty

after inserting the Si waveguide.
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Figure 9.7: Dependence of BER on the input power and bit-rate for four strip waveguide sys-
tems: (a) Si-PhW-1, (b) Si-PhW-2, (c) Si-PhW-3, and (d) Si-PhW-4. In all cases,
SNR = 12dB, L = 5cm, and Tp = 9ps.

Another key parameter that influences the system performance is the optical

power, as it determines the strength of nonlinear optical effects, such as SPM and TPA.

Therefore, we investigated the dependence of the transmission BER of Si photonic sys-

tems on the average optical power. The first systems we considered contain Si-PhWs.

More specifically, we calculated the BER for four 5cm-long Si-PhWs, for different

values of the input power and bit-rate. These calculations were performed for the two

wavelengths of interest, λ = 1550nm and λ = 1300nm, and both normal and anoma-

lous waveguide dispersion cases were studied.

The results of this investigation are summarized in Fig. 9.7. It can be seen from

this figure that, as expected, BER decreases when either the average power or bit-rate

decreases. In addition, if one compares the two waveguides whose dispersion has oppo-
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site signs at λ = 1550nm, namely Si-PhW-1 and Si-PhW-2, one can see that although

the absolute value of β2 is the same for both waveguides, the BER is much smaller for

the latter one. This is explained by the fact that the nonlinear coefficient of Si-PhW-1

is almost twice as large as that of Si-PhW-2, meaning that for the pulse parameters

considered in this analysis the optical nonlinearity plays the dominant role in deter-

mining the BER. This conclusion is further supported by the comparison of the BER

corresponding to the Si-PhW-2 and Si-PhW-4 waveguides, which both have normal

dispersion. A similar conclusion can be derived by comparing the BERs calculated for

Si-PhW-3 and Si-PhW-4, which are the waveguides that have anomalous and normal

dispersion at λ = 1300nm, respectively. Thus, it can be seen that again the smaller

BER corresponds to the waveguide with smaller γ . Moreover, among these four differ-

ent photonics systems, the best performance is achieved in the case of Si-PhW-2 and

the worse one corresponds to Si-PhW-3.
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Figure 9.8: Constant-level curves corresponding to BER = 10−9. The average power is 5mW
(solid lines), 7mW (dashed lines), and 9mW (dash-dot lines). The red, blue, green,
and black curves correspond to Si-PhW-1, Si-PhW-2, Si-PhW-3, and Si-PhW-4
cases, respectively. In all calculation, L = 5cm and Br = 10Gb/s.

In order to gain a deeper insight into the system performance, we determined the

values of the SNR and duty-cycle for which the BER is lower than a certain threshold,

that is BER < 10−9. The results of this investigation are summarized in Fig. 9.8. In

this analysis, we consider the same four Si-PhW systems investigated in Fig. 9.7, the

corresponding average power being 5mW, 7mW, and 9mW and the bit-rate, Br =

10Gb/s. One conclusion of these simulations is that the larger parameter space where

the condition BER < 10−9 holds corresponds to the Si-PhW-2 case (blue curves in
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Fig. 9.8), namely the waveguide with the smallest γ . In addition, it can also be seen

that as γ increases, the shift of the constant-BER curves with the variation of the average

power increases as well. Moreover, one can observe in Fig. 9.8 that as the duty-cycle

increases one has to increase the SNR in order to maintain BER constant. This is

explained by the fact that larger values of the duty-cycle lead to the worse signal quality

when the same detection threshold is used, and therefore to keep constant the BER one

has to reduce the noise content of the optical signal.
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Figure 9.9: Contour maps of log10(BER) vs. power and pulse duty-cycle, calculated for four
Si-PhCW systems at λ = 1550nm. The top (bottom) panels correspond to Si-
PhCW-FLs with L = 500µm (Si-PhCW-SLs with L = 250µm), whereas the left
(right) panels correspond to class 1 (class 2) Si-PhCWs. In all case, SNR = 12dB,
P = 10mW, and Br = 10Gb/s.

Since both the linear and nonlinear optical effects depend on the GV, a pertinent

question is how the system performance is affected by changes of this parameter. To

answer this question, we considered Si-PhCWs operated in the FL and SL regimes.

In particular, we calculated the BER maps vs. power and duty-cycle for Si-PhCWs

with normal and anomalous dispersion at λ = 1550nm, the results being presented in

Fig. 9.9. Similar to the previous analysis, the transmission BER in the anomalous dis-

persion region of Si-PhCW-FL is smaller than in the normal dispersion region, whereas

the influence of the waveguide dispersion on the system performance is much stronger
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in Si-PhCW-SLs. Moreover, it can be seen in Fig. 9.9 that smaller duty-cycle leads

to better BERs when the same detection threshold is uded, even though more FCs are

generated when the duty-cycle decreases. Importantly, the results presented in Fig. 9.9

suggest that similar transmission BER is achieved in FL and SL regimes, although in

the latter case the waveguide is twice as short. This proves that by operating the system

in the SL regime, one can reduce the device footprint.
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Figure 9.10: Variation of the system BER with the bit-rate. Top (bottom) panel corresponds to
FL (SL) regime, in both cases the wavelength being λ = 1550nm. The red and
blue curves correspond to class 1 Si-PhCWs, whereas black and magenta curves
to class 2 Si-PhCWs. The values of SNR and average power are indicated in the
legends, whereas Tp = 9ps.

Additional insights into the influence of the average power on the signal degrada-

tion in Si-PhCWs are provided by data plotted in Fig. 9.10, where the dependence of

the system BER on the bit-rate is presented. In particular, we considered the largest

and smallest average power used in Fig. 9.9, for both class 1 and class 2 Si-PhCWs

(λ = 1550nm). This figure shows that BER increases monotonously with Br in the SL

regime, whereas in the FL regime it appears to peak at Br ∼ 19Gb/s. Moreover, it can

be seen that of the four Si-PhCW systems, only in the case of class 2 Si-PhCW oper-
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ated in the SL regime is the system BER below the threshold of 10−9, for all values of

Br in the range of 10 Gb/s to 20 Gb/s. Further validating our previous conclusions, the

results presented in Fig. 9.10 also demonstrate a stronger dependence of BER on the

average power in the SL regime as compared to the FL one. Finally, in agreement with

previous results, it can be seen that the 2× shorter Si-PhCW-SL provides better system

performance than the Si-PhCW-FL, meaning that there is large potential for designing

extremely compact Si optical interconnects that operate at high bit-rate.

9.5 Conclusion
In conclusion, we have performed an extensive and in-depth study of transmission bit-

error ratio in silicon photonic systems utilizing return-to-zero optical signals consisting

of trains of Gaussian pulses. The photonic systems are composed of silicon photonic

waveguides and direct-detection receivers. A rigorous theoretical model is developed

and applied to characterize all the key optical effects during pulse propagation in silicon

waveguides, and the Fourier-series Karhunen-Loève expansion method in conjunction

with a perturbation theory are employed to evaluate the system bit-error ratio after

direct-detection. In order to fully assess the influence of the waveguide parameters on

the system performance, we considered in this work both strip silicon photonic wires

and silicon photonic crystal waveguides, with each waveguide possessing normal and

anomalous dispersion. In addition, the silicon photonic crystal waveguides studied in

this work possessed slow- and fast-light dispersion regimes, so that we could inves-

tigate the influence of the group-velocity on the bit-error ratio. We also explored the

relationships between the bit-error ratio and other key system parameters, including the

pulse wavelength and temporal width, power, and bit-rate.

Our computational results suggest that suitable and commensurate system bit-error

ratios can be achieved in silicon photonic wires and photonic crystal waveguides, but

in the latter case the waveguide length is about 100× shorter when operating in the

fast-light regime and about 200× shorter when the optical signal propagates in the

slow-light regime. Importantly for future studies of the performance of silicon-based

photonic systems, the mathematical formalism introduced in this paper can also be

applied to other optical waveguides and more sophisticated photonic integrated circuits,

thus providing a basis for future technological advancements in silicon-based on-chip
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and chip-to-chip optical networks.
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Chapter 10

Conclusions and Future work

Silicon photonic waveguides have attracted extensive research efforts during the last

two decades, due to their abilities of facilitating ultrafast optical interconnects and

ultra-dense passive and active photonic devices. The outstanding properties of silicon

photonic waveguides, including the large transparency window, subwavelength cross-

sections, strong dispersion and nonlinearity, as well as the good compatibility with

CMOS circuitries, provide great opportunities to the next-generation information net-

works. Even though all the essential parts of silicon photonics have been investigated

nowadays, including the scientific exploration, design, fabless, foundries, devices and

systems, the whole silicon photonics ecosystem is under research and development

stage. Therefore, it is extremely important to study the underlying physics of silicon

photonic waveguides, by means of the theoretical and computational approaches. This

would not only allow the engineering of more complicated silicon photonic systems,

but also enable the implementation of the most up-to-date photonic materials and de-

vices in practice.

This dissertation serves as a promising solution to settle the realistic issues raised

above. The emphasis of this work is put on the investigation and demonstration of

the nonlinear signal processing in the photonic systems containing nanoscale silicon

waveguides. More precisely, two sets of mathematical models have been proposed in

this dissertation, namely, the optical signal propagation models for silicon waveguides

and the accurate BER calculation models. In particular, regarding the first set of theo-

retical models, a linearized version of the full propagation models is derived, which is

specified for the photonic systems utilizing continuous-wave (CW) signals. These two

propagation models accurately characterize all the linear and nonlinear optical effects



190

within silicon photonic waveguides. Furthermore, the second set of mathematical mod-

els are based on the Karhunen-Loève series expansion methods, which can be applied

to calculate the system BER in an accurate and efficient way. Therefore, the theoretical

models and numerical algorithms introduced in this dissertation can be very useful to

design high-performance photonic devices and integrated photonic circuitries, as well

as provide a complete induction of the significant optical phenomena within the silicon

photonic waveguides.

The following sections will present my original contributions to the field of silicon

photonics and the future prospectives to the area of photonics.

10.1 Contributions
The main contributions of this dissertation in the development of silicon photonics can

be divided into two aspects: firstly, this work helps provide the rigorous theoretical and

numerical models for the investigation of nonlinear signal propagation in silicon pho-

tonic waveguides; secondly, the accurate BER evaluation approaches are recommended

to deal with the nonlinear interaction between the signal and the noise in particular.

Importantly, the complete system analysis model has been numerically implemented

as a Matlab tool. Furthermore, the accurate analysis towards silicon photonic systems,

which is obtained by using this Matlab tool, has shown that it is of great importance to

employ the theoretical and computational approaches in the design of silicon intercon-

nects and optical devices, and the corroboration and optimization of the experimental

work.

To be more specific, an accurate computational model is developed to simulate the

the optical signal propagation in two specially designed silicon waveguides, namely the

single-mode strip silicon photonic waveguides and the photonic crystal silicon waveg-

uides. Both cases of single- and multi-wavelength input signals have been taken into

account, thus two sets of the full propagation models are yielded. Furthermore, the

linearized models are extracted from the full propagation approaches for the CW input

signals, by means of discarding all quadratic and higher-order noise terms in the orig-

inal formulations. Notably, these two types of propagation models are mathematically

and numerically proved that they can accurately incorporate all important optical ef-

fects, including the waveguide loss, GVD, SPM, XPM, FCA and FCD, as well as the
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mutual interaction between free carriers and the optical field. Moreover, two groups of

comprehensive investigations are carried out: one is the detailed comparison between

the normal and anomalous dispersion regions of silicon photonic waveguides, with the

other being the comparison between the fast-light and slow-light spectral regimes. In

this process, the noise dynamics is studied in combination with different types of signal

modulation formats. Last but not least, the numerical implementation of the full and

linearized algorithms for optical signal propagation is also provided in this disserta-

tion, which allows for extensively investigation regarding nonlinear optical response in

silicon photonic waveguides.

Furthermore, accurate and efficient theoretical models are constructed for BER

calculation in this dissertation. Specifically, three BER calculation approaches based on

the time-domain, frequency-domain and Fourier-series Karhunen-Loève series expan-

sion, are presented, in order to fully capture the waveguide nonlinearity in silicon pho-

tonic systems. Moreover, the discussion with regard to the applications and advantages

of these expansion methods is also presented. Particularly, the time- and frequency-

domain Karhunen-Loève series expansion methods are selected for the evaluation of

BER with regard to CW optical signals, whereas the Fourier-series Karhunen-Loève

series expansion method is employed for the case of optical pulsed signals. In addi-

tion, rigorous computational procedures are included for the implementation of these

Karhunen-Loève expansion methods in the system performance evaluation, consider-

ing both single- and multi-channel silicon photonic systems.

Apart from the major contributions of establishing the performance evaluation en-

gine for silicon photonic systems, literature reviews in the aspect of silicon photonics,

optical interconnects, silicon waveguides and BER calculation methods, are also pro-

vided in this dissertation. These concise summaries can help one better understand the

background, connections between each of those fields, and the importance of this work.

Equipped with this theoretical and computational tools, the comprehensive analy-

sis are performed for the single-channel and multi-channel photonic systems. Several

valuable and remarkable findings can be drawn from this PhD project, which definitely

contributes to the development of silicon photonics:

• In terms of the single-channel strip silicon photonic systems with the OOK CW

signals, the geometry of silicon waveguides and the power of optical signal play
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an important role when determining the system BER. In addition, the BER de-

pendence on these two factors becomes more transparent in the anomalous dis-

persion region of silicon waveguide, where the nonlinearity is much larger than

that of normal dispersion.

• The analysis of the single-channel silicon photonic crystal systems reveals that

although slow-light effects can enhance the waveguide nonlinearity, they also

cause a significant degradation of the transmission BER.

• With regard to the higher-order PSK modulation formats, the studies of the

single-channel strip and photonic crystal systems indicate that the optical power,

type of PSK modulation, waveguide length, and group-velocity are key factors

characterizing the system BER, their influence on BER being more significant

in a photonic system with larger nonlinearity. In particular, due to the reduced

Euclidean spacing between points in the constellation of PSK signals, the higher-

order PSK modulated signals would induce larger system BERs, and thus the

balance between the high information capacity (orders of PSK modulation) and

good signal quality (BER) must be reached.

• The rigorous mathematical algorithms are developed for the N-channel signal

co-propagation and the receiver detection. The relevant simulations show that

the BER affecting factors in the multi-channel system performance include the

dispersion regimes, group-velocity, the waveguide length, the channel number

and the signal power.

• The case of single-channel silicon photonic systems utilizing arbitrary Gaussian

pulsed signals is also investigated in this dissertation. The simulation results sug-

gest that a good system performance is achieved in centimeter-long Si-PhWs,

and a similar case of BER is also realized in Si-PhCWs but with their length

100× and 200× shorter when operating in the fast- and slow-light regimes, re-

spectively. However, the pulse width of Gaussian-pulse signals is the dominant

parameter to influence the BER in Si-PhWs, while for Si-PhCWs the main factor

turns out to be the waveguide properties via the pulse group-velocity.

• The complete system evaluation model is implemented in Matlab. This Matlab
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engine has the scan function, which can be run in serial or in parallel. It is

beneficial to use the parallel run, considering the computational time.

10.2 Future Prospects
Silicon photonics are promising to settle the bottlenecks of ultra-broad bandwidth and

highly integrated supercomputers and data centers, thus substantial research efforts

have been and will be contributed to this field. As mentioned before, a full supply

of silicon photonics is under the stage of research and development, requiring loads

of improvements to enable the commercialization of silicon photonic products in the

near future. The theoretical and computational models demonstrated in this disserta-

tion definitely provide a valuable and efficient tool for the design of chip-scale optical

interconnects. Apart from the goals presented earlier, the signal propagation models

and BER calculation approaches can be widely applied in abundant aspects, which I

will give a detailed explanation in the next few paragraphs.

Firstly, it would be very beneficial to include more complicated nonlinear effects

like FWM and Raman scattering in the signal propagation models. An interesting ex-

ample is to consider the Raman effect in a two-channel silicon photonic system, where

one channel contains a CW signal and the white noise, while the other channel only

consisting of the white noise. The first channel will behaves as the pump to yield the

signal generation in the other channel. Moreover, their nonlinear interaction during

transmission may bring out some new phenomena. Therefore, a signal propagation

model that owns the flexibility to engineer the optical properties of silicon waveguides,

will absolutely offer more possibilities to the functionalities of photonic devices.

Secondly, from practical point of view, all types of system noise can be taken

into account in the BER calculation that based on the Karhunen-Loève series expan-

sion, including the laser phase noise, the spontaneous emission noise, receiver thermal

noise and signal shot noise. In general, this all-inclusive evaluation is usually carried

out by using the Monte-Carlo method, with the accuracy guaranteed by the computa-

tional time. But when compared with the newly-proposed BER calculation method, the

Monte-Carlo method is lack of the advantage in the computational cost.

Furthermore, the theoretical formalism introduced in this dissertation can also

be applied to other types of waveguides or more complex devices practical interest.
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For example, our theoretical approach can applied to tapered, slot, and other types of

waveguides by simply using the corresponding linear and nonlinear waveguide optical

coefficients. Moreover, after properly modifying the system of equations governing

the optical field dynamics in silicon waveguides, a similar theoretical formalism can be

employed study the transmission BER of photonic systems containing, e.g., splitters,

ring modulators coupled to a waveguide, and multi-mode waveguides. Equally impor-

tant, the generality the theoretical methods used in this study makes it easy to adapt

them to tackle much more advanced signal modulation formats and detection schemes

than those considered in this work.

Last but not least, a more sophisticated modeling platform can be built based on

the evaluation engine provided in this dissertation. To be more specific, the current

engine will serves as the physical layer, with the other two layers to be the network and

the application. Even though large amount of theoretical and numerical investigations

are required to carry out, such a integrated simulation platform can definitely contribute

to the revolution of the next-generation information network.



Appendix A

Gauss-Hermite Algorithm

The Gauss-Hermite algorithm is applied in this dissertation to handle the convolution

of Eqs. (3.9) and (3.10). A general form of Gauss-Hermite quadrature is illustrated

below to approximate such integral:

∫
∞

−∞

e(−τ2)f(τ)dτ ≈
M

∑
j=1

ω jf(τ j), (A.1)

where τ j and ω j are the abscissas and associated weights, respectively. By operating

the Gauss-Hermite technique to Eqs. (3.9) and (3.10) and choosing the same time step

of τ j, the discretized formulas are yield:

M

∑
j=1

ω jhe(τ j)ρ
k
i (tm− τ j)φ

k
α(τ j) = µ

k
αφ

k
α(tm), (A.2a)

M

∑
j=1

ω jhe(τ j)ρ
k
q(tm− τ j)ψ

k
α(τ j) = ν

k
αψ

k
α(tm), (A.2b)

M

∑
j=1

ω jhe(tm)he(τ j)ρ
k
iq(τ j− tm)ψk

β
(τ j) = σ

k
αβ

φ
k
α(tm), (A.2c)

where m, j = 1, ...,M. Then, solving Eqs. (3.9) and (3.10) is transferred to find the

eigenvalues and eigenfunctions, based on the relations below:

Ci ·F1 = Λ
k
µ ·F1, (A.3a)

Cq ·F2 = Λ
k
ν ·F2, (A.3b)

Ciq ·F1 = Σ
k ·F1, (A.3c)
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with the explicit expressions of the related matrixes listed below:

(F1) jα = φ
k
α(tm), F2

jα = ψ
k
α(tm), (A.4a)

(Ci/q)m j = ω jhe(τ j)ρ
k
i/q(tm− τ j),

(Ciq)m j = ω jhe(tm)he(τ j)ρ
k
iq(τ j− tm), (A.4b)

(Λk
µ)m j = µ

k
αδm j, (Λk

ν)m j = ν
k
αδm j, (Σk)m j = σ

k
αβ
|α=m,β= j. (A.4c)

To this end, the mathematical solutions for Eqs. (3.9) and (3.10) are ready to be de-

rived.
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Fifth-order Runge-Kutta Algorithm

The Runge-Kutta method is usually applied in the ODEs, in order to extract the semi-

analytical solutions. Its mathematical process is to first collect data from a few Euler-

steps, with each step accounting for one calculation of the right-hand side of the ODE,

and then utilize the data to approach a desired Taylor series expansion. Here, the nu-

merical implementation of the fifth-order Runge-Kutta algorithm in Matlab will be

presented. In particular, a self-constructed Matlab code based on the fifth-order Runge-

Kutta algorithm is applied, in order to calculate the FCs density for the full propagation

model, whereas the Matlab built-in function ode45 is utilized for the evaluation of the

ODEs in the linearized model. Moreover, these two approaches share exactly the same

mathematical formulae.

Table B.1: Cash-Karp paramters for embedded Runge-Kutta method.

j a j b jm c j

1 0 0 0 0 0 0 37
378

2 1
5

1
5 0 0 0 0 0

3 3
10

3
40

9
40 0 0 0 250

621

4 3
5

3
10 − 9

10
6
5 0 0 125

594

5 1 −11
54 −5

2 −70
27

35
27 0 0

6 7
8

1631
55296

175
512

575
13824

44275
110592 − 253

4096
512

1771

m = 1 2 3 4 5

The start point is to select the suitable points tn for Eq. (2.39), where both condi-

tions of continuity and differentiability are satisfied, in order to approximate y(tn) with
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Table B.2: Dormand-Prince paramters for embedded Runge-Kutta method.

j a j b jm c j

1 0 0 0 0 0 0 71
57600

2 1
5

1
5 0 0 0 0 0

3 3
10

3
40

9
40 0 0 0 −71

16695

4 4
5

44
45 −56

15
32
9 0 0 71

1920

5 8
9

19372
6561 −25360

2187
64448
6561

−212
729 0 −17253

339200

6 1 35
384 0 500

1113
125
192 − 5103

18656
22
525

m = 1 2 3 4 5

yn:

tn+1 = tn +hn, hn = δ (tn)h (B.1)

where 0 < δ (tn) ≤ 1 and n = 0,1,2, · · ·. Then an analytical Runge-Kutta formula is

given by

yn+1 = yn +hnΘ(yn,hn) = yn +
ϖ

∑
j=1

c jk j (B.2)

where

k1 = hnf(tn,yn) (B.3a)

k j = hnf(tn +a jh,yn +
j−1

∑
m=1

b jmkm), j = 2,3, ...,ϖ

Here ϖ is the number of Euler-style step. Importantly, two groups of parameters (a j,

b jm, and c j) are used in the fifth-order Runge-Kutta method: (1) the Cash-Karp param-

eters for the calculation of the FCs density, see Table B.1; (2) the Dormand-Prince (4,5)

parameters for the Matlab function ode45, see Table B.2.



Appendix C

Golden Section Algorithm

Golden Section Algorithm is a numerical scheme that often used in search of the max-

imum or minimum value of a function over an interval. Its mathematical process is

to continuously reduce the interval until the extremum point of the function is located.

To simply mathematical discussion, I will take the minimization problem for example,

which also coincide with the issue of saddle points raised in Sec. 3.5.

To start with, a function f(x) with the variable x is defined. Specifically, f(x) is

assumed to be continuous over the integral of [a,b] and have only one minimum in this

range. Aiming at using a constant fraction to narrow the search range and reduce the

number of function evaluation as much as possible, the main steps of Golden Section

Algorithm are demonstrated as follows. Notably the constant fraction is referred as

golden ratio, with the value of wgold = (3−
√

5)/2.

1. Select two specific points x1 and x2 inside the interval [a,b]. These two points

are defined as x1 = a+d and x2 = b−d, where d = wgold(b−a).

2. Calculate the functions of f(x1) and f(x2).

3. Make a decision based on the relative value between f(x1) and f(x2).

(a) If f(x1)> f(x2), the minimum of f(x) must be located at the right of x1. The

new value is given to a according to such relation of a = x1, while the value

of b is kept unchanged.

(b) If f(x1)< f(x2), the minimum of f(x) must be located at the left of x2. The

new value is given to b according to such relation of b = x2, while the value

of a remains the same.
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4. Determine if the minimum of f(x) is found under the condition of b− a < σ ,

where σ is the tolerance of this algorithm. If so, the minimum occurs at (a+b)/2

and stop the iteration. Otherwise repeat the procedure from Step 1.

In this dissertation, the tolerance of the Golden Section Algorithm is set to

σ = 10−8. With regard to the process of deriving the saddle points, as mentioned

in Sec. 3.5, it can be classified into two categories. In particular, the first procedure

relates to the time-domain KLSE method, while the second one corresponds to the

frequency-domain and Fourier-series KLSE approaches, with the difference being the

function f(x). To be more specific, referring to Eq. (3.39) (time-domain KLSE), the

saddle point s−o for signal “0” is extracted, by using the Golden Section Algorithm to

find the minimum of exp[Φyk(s)] over the interval of [−1/(max |2δ
k,−
α |),0]. And the

same numerical routine is applied on exp[Φyk(s)] in the interval [0,+∞], in order to

find the second saddle point s+o for signal “1”. However, the search for saddle points

in the frequency-domain and Fourier-series KLSE is based on Eq. (3.42). Thus, the

calculation of the saddle point s+o for signal “0” is carried out by using the algorithm

proposed in this section over the interval of [0,1/(max |2λ+
n |)] and [0,1/(max |2ε+p |)],

which correspond to the frequency-domain and Fourier-series KLSE approaches, re-

spectively. In the meanwhile, the value of s−o for signal “1” is extracted by using the

same technique but in the range of [−∞,0], validated in both frequency-domain and

Fourier-series KLSE methods. To this end, the saddle points used in all the KLSE

methods have been settled.
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