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Abstract Cloud computing is a promising paradigm for the service management cycles. Using these primitives and se-
provisioning of IT services. Cloud computing infrastruets, mantic definition as a basis, we define a service management
such as those offered by the RESERVOIR project, aim to faframework implementation that supports on demand cloud
cilitate the deployment, management and execution of seprovisioning and present a novel monitoring framework that
vices across multiple physical locations in a seamless mameets the demands of Cloud based applications.

ner. In order for service providers to meet their quality of ) _ o
service objectives, it is important to examine how softward<€ywords Cloud Computing, Service Definition, Software

architectures can be described to take full advantage of tHarchitecture, Service Management, Monitoring System

capabilities introduced by such platforms. When dealirtg wi

software systems involving numerous loosely coupled com-

ponents, architectural constraints need to be made explici Introduction

to ensure continuous operation when allocating and migrat-

ing services from one host in the Cloud to another. In addiCloud computing [35] is a promising paradigm for the pro-
tion, the need for optimising resources and minimising overvisioning of IT services. Cloud computing infrastructures
provisioning requires service providers to control the dy-such as those offered by the RESERVOIR project [25], aim
namic adjustment of capacity throughout the entire servicéo facilitate the deployment, management and execution of
lifecycle. We discuss the implications for software arebit  services across multiple physical locations in a seamless
ture definitions of distributed applications that are to be d manner.

ployed on Clouds. In particular, we identify novel primé# Until recently, operating systems managed the alloca-
to support service elasticity, co-location and other regui tion of physical resources, such as CPU time, main memory,
ments, propose language abstractions for these primitivefisk space and network bandwidth to applications. Virtuali
and define their behavioural semantics precisely by estalyation infrastructures, such as Xen [4] and VMWare [31] are
lishing constraints on the relationship between architéct changing this by introducing a layer of abstraction known
definitions and Cloud management infrastructures using as ahypervisor A hypervisor runs on top of physical hard-
model denotational approach in order to derive appropriat@are, allocating resources to isolated execution environ-
, ments known asirtual machineswhich run their own in-
Th|§ research has been partly funded by the RESERVOIR EU Fpéividual virtualised operating system. Hypervisors manag
Project through Grant Number 215605. ] ; )

the execution of these operating systems, booting, suspend
ing or shutting down systems as required. Some hypervisors
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cused. For a description of the different types of Cloud components and provide additional resources as demand grows
puting see [35]. or components become unavailable. Finally, there must be
Compute Clouds provide the ability to lease computa@n understanding of how a management cycle for a ser-
tional resources at short notice, on either a subscription ovice deployed on a Cloud can be derived from a descrip-
pay-per-use model and without the need for any capital extion of these constraints and we demonstrate how this can
penditure into hardware. A further advantage is that the unbe achieved usingmodel driven approach
cost of operating a server in a large server farm is lower As such the overall contributions of the paper are as fol-
than in small data centres. Examples of compute Clouds afews: we identify a list of requirements and constraints tha
Amazon’s Elastic Compute Cloud (EC2) [1] or IBM’s Blue provider must describe when deploying and hosting a multi-
Cloud [15]. Organisations wishing to use computational recomponent application on a Cloud. We present a language
sources provided by these Clouds supply virtual machinéor the description of such requirements that builds on ex-
images that are then executed by the hypervisors running isting standards and introduces new abstractions sucteas th
the Cloud, which allocate physical resources to virtudlise ability to specify on demand scaling. We define an archi-
operating systems and control their execution. tecture for a Cloud infrastructure to support these abstrac
With an increasing number of providers seeking to mi-tions and specify clear behavioural semantics for our lan-
grate services to the Cloud in order to save on deploymertuage with respect to this architecture using a model deno-
costs, cater for rapid growth or generally relieve themeselv tational approach. We then describe the overallimplementa
from the responsibility of provisioning the infrastrucalire-  tion of the service lifecycle management process, with par-
sources needed to support the service, whether related f§ular focus on service management components and the
power, bandwidth, software or hardware [3], there is a crumonitoring infrastructure which will address the scalieg r
cial need to ensure that a same service quality can be rguirements and physical distribution of application segsi
tained when relying upon Clouds while generally deliveringFinally we evaluate our language primitives experimentall
on the promise of lowering costs by minimising overprovi-With & distributed computational chemistry application.
sioning through efficient upscaling and downscaling of ser- ~ This paper is an enhancement and extension to work pre-
vices. viously presented [5] and is structured as follows: In Sec-
In this paper we review the implications of the emer-tion_z' we prese_nt_ t_he background to this. research and in
gence of virtualisation and compute Clouds for software enParticular the primitives that are now provided by modern
gineers in general and software architects in particular. wVirtualisation and Cloud computing technologies in gehera
find that software architectures need to be described diffe@Nd the infrastructure developed by the RESERVOIR project

ently if they are to be deployed into a Cloud. The reason id" particular. We the_n usea mo_ti\_/z?\ting example in Sectiqn 3
that scalability, availability, reliability, ease of deginent t‘? argue why archltecture_ definition for Cloud comp_utlng
and total cost of ownership are quality attributes that needifers frqm more conventmnall deployments. In Sec.tlon 4
to be achieved by a software architecture and these are criti/€ describe our novel abstractions, such as co-location con
cally dependent upon how hardware resources are providetf @ints and elasticity rules for describing architecsureat
Virtualisation in general and compute Clouds in particular2€ t© be deployed in a Cloud. Section 5 presents the main
provide a wealth of new primitives that software architects°mpPonents of the architecture which manage the lifecycle

can exploit to improve the way their architectures deliver®f Services within a cloud, namely the Service Manager and
these quality attributes. the Monitoring Framework. In Section 6 we describe the ex-

The principal contribution of this paper is a discussionpig,:;s:jci\;?:ixor;Of I(i)cuarti?)lrawptrhozichebzaTs?izs l(())f 2 dcionma-
of architecture definition for distributed applicationatlre P y app ploy

to be deployed on compute Clouds. The key insight is tha?omputational Cloud. We discuss related work and present

the architecture description needs to be reified at run-timgonclusions in Sections 7.and 8.

so that it can be used by the Cloud computing infrastructure

in order to implement, monitor and preserve architecturap Background

quality goals. This requires several advances over the stat

of the art in software architecture. Architectural consis = TheResources and Services Virtualization without Barriers
need to be made explicit so that the Cloud infrastructure ca(RESERVOIR) project is a European Seventh Framework
obey these when it allocates, replicates, migrates and d&rogramme (FP7) project which aims to promote through
activates virtual machines that host components of the astandardisation an open architecture for federated Cloud
chitecture. The architecture also needs to describe how ambmputing. It defines an open framework of modular com-
when it responds to load variations and faults; we proposponents and APIs that enable a wide range of configurations
the concept of elasticity rules for architecture definii@o  within the Cloud space, focusing on Infrastructure as a Ser-
that the Cloud computing infrastructure can replicate comvice (laaS) Clouds [35].
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Fig. 1 RESERVOIR Architecture How is a software development project now going to use

Cloud computing infrastructures, such as the one provided
by RESERVOIR. We aim to answer this question and then
derive the main research questions for this paper using a
running example, an enterprise resource planning system,
such as those provided by SAP [27]. A high-level architec-
- . . . ture of an SAP system is illustrated in Figure 2. SAP ERP
the opera}tlor_1 of particular businesses aqd offer suitable systems have a rﬁulti-tiered software arcr?itecture with-a re
vice applications, andnfrastructure Providerswho lease lational database layer. On top of the database is an appli-

computational resources in the form of a Cloud Compu.tin%ation layer that has @entral Instancewhich provides a

![nf(rjastlr UCturg' This mfrasliructl:rg.\ p:jowde_s the mec_be;m fnumberof centralised services, such as synchronisaégn, r
0 deploy and manage Seff contained SeIVICes, ConsIStag Oligy a1ion and spooling capabilities, and generally seages

set of software components, on behalf of a service prOVideElatabase gateway. Moreover SAP applications have a num-
The Cloud computing abstractions supported by this ingq o Dialog Instanceswhich are application servers re-

frastructure and the architecture we have used to implemegy, ,\qjpe for handling business logic and generating HTTP-
these abstractions are described in detail in [26]. Thearchbased dialogues that are shown in a browseWeb Dis-

tecture is shown in Figure 1. patchermay be used to balance workloads between mul-
RESERVOIR builds upon generally available virtuali- ipje dialog instances. To date SAP systems are hosted in
sation products and hypervisors. The lowest layer of thgpstantial data centres, but organisations (playingdtee r
RESERVOIR architecture is thértual Execution Environ- ot service Provider) in the future might wish to deploy it
ment Host(VEEH). It provides plugins for different hy- i, 4 compute Cloud in order to avoid the significant capital

pervisors and enables the upper layers of the architectufgyestment associated with the construction of a dataeentr
to interact with heterogeneous virtualisation productse T

layer above is th&/irtual Execution Environment Manager
(VEEM), which implements the key abstractions needed for Browser Presentation
Cloud computing. A VEEM controls the activation of vir- Layer
tualised operating systems, migration, replication and de |

activation. A VEEM typically controls multiple VEEHs
within one site. The key differentiator from other Cloud , |

The RESERVOIR architecture [25] aims to satisfy the
vision of service oriented computing by distinguishing and
addressing the needs 8&rvice Providerswho understand

Web Dispatcher

computing infrastructure is RESERVOIR’s ability to feder- Dialog Dialog Application
ate across different sites, which might be implementing dif Instance Instance Layer
ferent virtualisation products. This is achieved by creis- SJZ:'; Central Work

interactions between multiple different VEEMs operating o Procedure Instance process

behalf of different Cloud computing providers. This sup- I | |

ports replication of virtual machines to other locations fo DBMS | Database

Layer

example for business continuity purposes. The highest leve _ _
of abstraction in the RESERVOIR architecture is Ber- F'9- 2 SAP Three-Tiered Architecture

vice Manager While the VEEM allocates services accord-

ing to a given placement policy, it is the Service Manager

that interfaces with the Service Provider and ensureséhatr  If the SAP system is handed over to a Cloud computing
quirements (e.g. resource allocation requested) areatlyrre provider that uses an infrastructure based on the RESER-



VOIR architecture, a number of architectural constrairfits 0 MDL2 Network topology: The system may require a spe-
the SAP system will need to be obeyed by the Cloud. For cific network topologyboth to interconnect components
example, the Central Instance will frequently make queries of the system and communicate with external systems.
to the database and in a typical SAP configuration the Cen- \wjth respect to the SAP system, the Web Dispatcher
tral Instance and the database need to be co-located on the should provide an external interface and internal compo-
same LAN subnet. When the VEEM allocates the virtual  nents should be at the very least interconnected, though
machines for the Central Instance and the DBMS to particu-  external access may not necessarily be required.

lar VEEHS, it will have to respect this co-location consttai
Another architectural constraint is that the Central Insta
can not be replicated in any SAP system. Dialog Instances,
on the other hand are replicated to accommodate growing
demand. Therefore these architectural constraints haweto N order to deal with potential increases in requests, it
expressed by the SAP provider and made available to the May be necessary to deploy additional Dialog Instances
Service Manager so that it can obey these constraints at run- N order to facilitate load balancing and ensure a certain

MDL3 Capacity adjustment: Hardware requirements
may evolve during the lifetime of the system according
to workload, time or other application-level variables.

time. level of performance.
This requires the software architecture to be expresset/IDL4 Dependencies: Deployment and un-deployment
in terms of services, their relationship and their resoueee dependencies may exist between components.

quirements. While a traditional SAP deployment would re-  The order in which components of an SAP system are
quire that spare capacity is retained to deal with peaksin de  started or stopped may affect the overall operation of the
mand, Cloud Computing introduces the abl'lty to minimise system. The DBMS and Central Instance components,
overprovisioning by tying resource provision directly het serving as the backbone of the system, should be active
needs of the application. Resource requirements, intsis ca  pefore individual Dialog Instances.

dictated by the number of Dialog Instances required to hans DL5 Location constraints: Constraints on the distri-

dle the currentload, can be scaled dynamically and adjuste bution of service components across physical locations
to maximise cost savings. This requires means of describing may exist

the state of the system and rules for adjustments. ] ) ) )
Federation of Clouds is key to enabling scalable provi-

sioning of services. However along with the ability to
seamlessly deploy services across multiple physical and
administrative domains comes a need to allow service
providers to control the “spread” of the application by
defining clear constraints on the distribution of services

Based on an understanding of the underlying hosting infras- aCcross sites. These constraints can be of a technical na-
tructure described in Section 2, and the example providedin ture (€.g. deploy certain components on a same host) or
Section 3, we can break down the core issues that must be administrative (e.g. avoid un-trusted locations). Though
defined when deploying and running software systems on W€ have, for example, established that the Centr_al In-
a Cloud computing infrastructure into the following high-  Stance and DBMS should be located on a same (virtual)
level requirements, in order to provide a suitable definitio ~ Network, a service provider may wish to minimise la-
for the terminology employed in later sections: tency by ensuring proximity.
MDL6 Customisation: Components may be dependent
on configuration parameters not known until deploy-

4 Architecture definition

4.1 Requirements

MDL1 Software composition: A software system may be
composed of one or moteosely coupled components

which may have differingesourcge.g. CPU, memory) ment.
and software(e.g. operating system, libraries, disk im-  When deploying multiple instances of a same compo-
age) requirements nent, certain application-level parameters may be in-

The components of the multi-layered SAP system, the stance specific. As such it may be necessary to customise

Web Dispatcher, Central Instance, Dialog Instance and ininiduaI instances upon their creation an.d deployment.
DBMS, will have varying hardware and software re- Dialog Instances may for example require the IP ad-
quirements, but will nevertheless be required to be man-  drésses of the Central Instance and DBMS to be pro-
aged jointly. We can expect for example the DBMS ser- ylded, if this mfor_matlon is nqt anW at pre-deployment
vice to be very I/0 and memory intensive and with large ~ {ime (€.9. dynamic [P allocation via DHCP).

storage requirements. In contrast, the Dialog Instancel® order to automate the management of a software sys-
may be more processor intensive, and hardware requiréeem on a Cloud infrastructure it is necessary for a service
ments may be adjusted accordingly. provider to communicate both the software system stack



(OS, middleware, application, configuration, and data} proplication level parameters amdacement and co-location
viding self contained services in the form of a virtualisedconstraints, which identify sites that should be favoured or
image (addressing requirement MDL1) and a description o&voided when selecting a location for a service.
these requirements in the form oSarvice Definition Mani-  In previous work [13], we have discussed a number of ad-
fest(addressing requirements MDL2-MDL6). The manifestditional extensions to the OVF syntax to support Clouds,
therefore serves as a contract between service and infrascluding attribute and section changes to incorporate sup
tructure providers regarding the correct provisioning of aport for service components IDs in elastics arrays, crass vi
service. It hence reifies key architectural constraintsiand tual machines reference, IP dynamic addresses and elastici
variants at run-time so that they can be used by the Cloud.rules and bounds. However, a syntactic definition of a de-
To define manifests, we require a declarative languageloyment descriptor only forms part of what is necessary to
whose syntax should be sufficiently flexible to cater for agnsure these requirements are met with respect to the under-
general purpose service provisioning environment, and prdying Cloud computing infrastructure.
vide the necessary abstractions to describe capacity and op Indeed, there must exist a clear understanding of how
erational requirements of the software architecture both ave derive from the language used to express the require-
deployment time and throughout the entire lifecycle. ments of the Service Providerrmanagement cyclavhich
We rely in our implementation on th®pen Virtuali- ~ Will consist of several actions being taken throughout the
sation Format(OVF) [10], a DMTF standard backed by lifetime of a service to ensure a certain service quality be-
VMWare and XenSource which aims to offer a packaging"d obtained. Using the RESERVOIR framework as a refer-
mechanism in a portable and platform neutral way. Build-€nce, and examining specifically issues related to dynamic
ing on open standards facilitates interoperability pattidy ~ capacity adjustment and service deployment, we now de-
in the context of federation and eases compatibility withSCribe how theévehavioural semanticor our manifest lan-
existing services and tools. In addition it ensures that aguage are described and how they guide the operation of
Cloud technology matures, continued compliance with théinderlying Cloud components.
standard avoids vendor lock-in and potential deployment on  Focusing specifically on elasticity and application do-
newer platforms. OVF hence serves as a building block fofain description, as well as service deployment, we refine
our manifest, and provides the syntax for the descriptiond extend in this paper our OVF based service definition
of virtual disks, networks, resource requirements androthé@nguage syntax to incorporate these abstractions.
issues related to dependencies or customisation. However,
OVF (as other service description languages for existing vi
tualisation technologies) primarily caters for the iritis-

tribution and deployment of fixed size services [10], whichp, thjs section, we describe the overall approach undentake
QOes not by itself fully realise the vision of Cloud comput- g define and provide support for tdanifest Language
Ing. This is achieved through the specification of three com-
Indeed, Clouds differ from traditional software deploy- plementary facets of the language: the abstract syntax, the
ment in many ways. Beyond the impact of virtualisation onwell-formedness rules, and the behavioural semantics. The
multi-component architectures, existing deployment mechabstract syntax of the manifest language is modelled using
anisms are typically one-way “channels” where a service ishe Essential Meta-Object FacilittMOF), an OMG stan-
configured and deployed according to an initial deploymengard part of the Model Driven Architecture initiative [22)rf
descriptor. There is no feedback mechanism to communicatescribing the structure of meta-data, and embedded within
specific state, parameters and other information from a dexn object-oriented model of the RESERVOIR architecture.
ployed service back to the infrastructure to adapt the execBecause the manifest describes the way in which a RESER-
tion environment dynamically. The manifest should enable/OIR based infrastructure should provision a service appli
the automation of provisioning and management througlation, the semantics of the language can be expressed in the
template based provisioning, where the service manifest i;iodel denotational style to define semantics that we intro-
used as a template for easily provisioning instances of th@uced in [29] as constraints between the abstract syntax and
application, and support for resource consumption control domain elements that model the operation of Cloud infras-
We hence need to add a number of abstractions to OVEucture components. These constraints are formally d&fine
the primary beingelasticity specificationin the form of using theObject Constraint LanguagéOCL) [23], a lan-
rules allowing conditions related to the state and opematioguage for describing consistency properties, providirgy th
of the service, such as application level workload, and-assatatic and behavioural semantics of the language. In this
ciated actions to follow should these conditions be rapt, manner the language serves to constrain the behaviour of the
plication domain description, which allow the state of the underlying infrastructure, ensuring the correct provigig
application to be described in the form of monitorable ap-of the software system services.

4.2 Manifest Language Definition



The motivations for this approach are two-fold: firstly by viding the manifest language with a syntactic model for
modelling the syntax of the manifest language as an EMOFhe expression of physical resource requirements and hard-
model, we seek to express the language in a way that is invare configuration issues. We introduce new abstractions
dependent of any specific implementation platform. Comin the form of extensions to the standard rather than create
ponents of a Cloud infrastructure such as RESERVOIR mapew independent specifications. OVF is extensible by design
rely on a number of different concrete languages, whethesind doing so ensures continued compatibility with existing
implementation languages (Java, C++, etc.), higher-levéDVF-based systems.

“meta” languages (HUTN, XML, etc.), or even differing We model these extensions using EMOF. EMOF models
standards (WS-Agreement, OVF, etc.). A higher level of abare very similar to UML class diagrams, in that they describe
straction ensures that we free ourselves from implementalasses, the data they contain and their relationshipsreut
tion specific concerns, and allows seamless and automatedla higher level of abstraction: they describe the contsruc
transitions between platform specific models as required byules and constraints of a model. As such, EMOF is typically
components. used to define the syntax of languages.

Secondly, providing a clear semantic definition of the
manifes_,t using OCL _aIIows us to identify functional char-A plication description languag®&eliance on Cloud com-
acterlsths that service managem_e_nt components _Sh9“ ting introduces the opportunity to minimise overprovi-
present in (_)rder to _Sl_Jpport <_:a|_oabll|t|es_such as ‘T"pplnat'osioning through run-time reconfiguration of a service, effe
based service elasticity, again irrespective of the ImeM ;o1 limiting resource consumption to only what is cur-
tation platform. As such the definitions presented in this parently required by the application. However, when dealing
per extend beyond the scope of RESERVOIR or any sp&gi, rapid changes in service context and load, timely ad-
cific (?Ioud infrastructure, !ngtegd prowdl.ng a clgar underjustments may be necessary to meet service level obliga-
standing of expected provisioning behaviours, with respeg;, s \hich cannot be met by human administrators. In such
to |d§nt|f|ed and required ComPO”e”t interfaces. ) a case, it may be necessary to automate the process of re-

Finally, we may also consider that clear semantics engesting additional resources or releasing existing messu
sure that we |ImI'F amblggm_es when _|t comes to interpre-4 minimise costs.
tgtlon pf t_he_m_anlfest. Th_ls is of crucial |mportanpe where This automated scaling of service capacity to support
financial liabilities may exist; a formal understandingloét 1o ntia| variations in load and demand can be implemented
nature of the service be|.ng proypled is required in order o numerous ways. Application providers may implement
ensure that the service is provisioned as expected by bofhcp, scajing at the application level, relying on an exposed
pgrtles, and in a W‘_"‘y that b_Oth_ can e"a'P_a,te to b?, CorreGhterface of the Cloud computing infrastructure to issue
either through run—tl.me mqnltorlng capg.b|llt|.es or histaf .specific reconfiguration requests when appropriate. Adtern
logs. We achieve t.hIS by tying the specn‘lc_atlon of the man"tively, they may have a desire to keep the application design
fest to the underlying model of the Cloud infrastructure. free of infrastructure specific constraints and opt instead

delegate such concerns to the infrastructure itself. With a
4.2.1 Abstract syntax sufficient level of transparency at the application level fo

workload conditions to be identified, and through the speci-
The abstract syntax of the manifest describes the core dlication of clear rules associating these conditions with sp
ements of the language and their accompanying attributesific actions to undertake, the Cloud computing infrastruc-
The core syntax relies upon, as previously stated, OVF [10jure can handle dynamic capacity adjustment on behalf of
The OVF descriptor is an XML-based document composethe service provider.
of three main parts: description of the files included in It is the latter approach that we have chosen to adopt
the overall service (disks, ISO images, etc.), meta-datm the context of RESERVOIR. By providing a syntax and
for all virtual machines included, and a description offramework for the definition and support of elasticity ryles
the different virtual machine systems. The description isve can ensure the dynamic management of a wide range
structured into various “Sections”. Focusing primarily onof services with little to no modification for execution on a
the most relevant, theDi skSection> describes virtual Cloud. With respect to the syntax, we can identify the two
disks, <Net wor kSect i on> provides information regarding following subsets of the language that would be required to
logical networks,<Vi rt ual Har dwar eSect i on> describes describe such elasticity: service providers must first be ab
hardware resource requirements of service components aml describe the application state as a collectiokef Per-
<St art upSect i on> defines the virtual machine booting se- formance IndicatorgKPIs), and the means via which they
guence. are obtained in the manifest. These will serve as a basis for

Incorporating the OVF standard ensures that we tackléhe formulation of the rules themselves, described in the fo
several of the requirements identified in Section 4.1, protowing subsection.



Because we do not want the manifest language to be tieof Dialog Instances.However, directly monitoring the fiaf
to any specific service architecture or design, it is neegssato and from the web dispatcher would be impossible, as SAP
to decouple the KPI descriptions from the application do-uses proprietary protocols. The SAP system can nonetheless
main via the use of arpplication Description Language reportthe number of sessions provided an appropriate query
(ADL). Though it is possible to build elasticity conditions is formulated. The monitoring agent would be responsible
based purely on infrastructure level performance indisato for such queries and forwarding obtained responses, bridg-
this may prove limiting. Indeed, the disk space, memory oing the gap between application and monitoring infrastruc-
CPU load may not accurately reflect the current needs of thiare.
application, as will be seen in the evaluation. This languag  KPI qualified names would be considered global within
will allow the description of services in terms of compo- the scope of a service. If there exists a need to distinguish
nents, parameters of interest and their monitoring reguirehe KPI measurements produced by multiple instances of a
ments. same component, this is achieved by using distinct quali-

Alongside the syntactic requirements, a suitable monified names. Monitoring agents can, for example, include in-
toring framework must exist. A service provider is expectedstance IDs in the qualified name. The structure of the quali-
to expose parameters of interest through Iddahitoring  fied name itself would not fall within the scope of the man-
Agents responsible for gathering suitable application levelifest specification. Instances of an application servica as
measurements and communicating these to the service maghole however would be considered distinct. At the imple-
agement infrastructure. Though communication protocolgnentation level, KPIs published within a network are tagged
with the underlying framework are outside the scope of theyith a particular service identifier, and rules, coverediel
manifest language, there must exist a correlation betweepgill also be associated with this same identifier. Multiple
the events generated by the monitors and the KPIs describ@gktances of an application service would hence operate in-
in the manifest. This is modelled in Figure 3. dependently.

Application Domain | Service Management | Application Description Language
N Infrastructure H

[t e — Elasticity RulesWith respect to the rule syntax, we adopt an
: ICf,TZ?‘ciﬁegory : oot Event-Condition-Actioapproach to rule specification. This
| [1ytuersting !\ [Frame: qualiediame i i initi
SAPWebDispatcher] || [+Omestamp Date | Quaifech is a widely adopted model for rule definition, adopted for ex-
) Aeearomanor | To.- ample in active databases and rule engines, and suitedin thi
ost(.. H KPL . . . . .
Dogineence fjlcomecty I ——r L [reey: G instance. Based on monitoring events obtained from the in-
Centralinstonce i Tl Y L frastructure, particular actions from the VEEM are to be re-
" Coiatginstance) ! § _ Th ; . quested when certain conditions relating to these everds ho
LosProces | E— ;'tszéf*kémkg f[rue. This requires ruIe; to be expressed V\_/lth_respect to the
N e P L vitiaisys() interface of the underlying VEEM and monitoring events.
: : A representation of the elasticity rules based on a gen-
Fig. 3 Application Description Language eral rule-base model and their relationship to monitoring

events and the Cloud infrastructure is illustrated in Fégur
The syntax specifies conditions, based on monitoring events
Based on our running example, the figure exempli-at the application layer or otherwise, which would lead to
fies the relationship between the ADL, the RESERVOIRspecified actions, based on a set of operations presented by
application-level monitoring infrastructure, and the lapp the VEEM. The operations, modelled on the OpenNebula
cation domain. The syntax of the ADL consists of one orframework capabilities will involve the submission, shut-
more named components, with a number of associated KPldown, migration, reconfiguration, etc. of VMs and should
These KPIs are identified using appropriate qualified namese invoked within a particular time frame. The conditions
(e.g.com sap. webdi spat cher . kpi s. sessi ons), thatwill  are expressed using a collection of nested expressions and
allow the underlying infrastructure to identify corresparg ~ may involve numerical values, arithmetic and boolean oper-
events obtained from an application level monitor and for-ations, and values of monitoring elements obtained. The re-
ward these to subscribers responsible for the enforcenfient ationship between KPIs specified in the manifest and these
elasticity rules. events has been described in the previous section. The elas-
We are concerned in the SAP example with the numticity rules will be supervised by the Cloud infrastructate
ber of simultaneous web sessions managed by the web ditie Service Manager layer during the running of the soft-
patcher, as there is a proportional relationship between ravare system and it is expected that a rule interpreter will re
source requirements and sessions. The number of simulteeive events from the infrastructure or application mansito
neous sessions will be used as a basis for scaling the numbaand trigger such operations accordingly.



ElasticityRule ¢ + Rulelnterpreter
T i elasticityRules
+name: String Y +veem:VEEM

VEEM

H T - H +evaluateRules()
+name: String ' 1 Expression ElementSimpleValue | Set | | QualifiedElement |q_._
' '
+invoke(Operation) ! - 1 +value ' 67
l ' Trigger +evaluate() T—
' ubscriber
« T T H
'
Parameter n * L actions op y1 V i
Operation -
“+name: String - o <o A - el [ <<interface>> 1 notify(Event)
+type: String * name: String H 1.2 FormulaElement H
+value H B .
' ' monitoringRecords
1 ' *
H | LessThan |——| Equal | NumericalOperation |<}—{ BasicArithmeticOperation
suspend ' TimeConstraint MonitoringEvent
| H |GreaterOrEqua\Than|——| NotEqual | A -
+value ForAl Sum H +ID:String
+unit: String | LessOrEqualThan |__| And | —etd H +name: QualifiedName
! i : +declaredvariable Multiplication | | *{YPe: Category
' [ Implies I—_| or | v |+value:string
N N +timestamp: Date
H | Iff |——| GreaterThan | H
submitvM H ot Subtraction H

H . | Service Management
Virtual Execution Environment ! Elasticity Rule Model ! Infrastructure

Fig. 4 Elasticity Rules Syntax

With respect to the example, this language enables uyserformance indicators can be computed at the application
to express that virtual machines with new Dialog Instancefevel, before being forwarded to the service manager.
should be created as the number of user sessions maintained
by the SAP web dispatcher grows in order to handle the in4.2.2 Semantic Definition
creased load. A concrete example of an elasticity rule will
be provided in Section 6. We examine in this section the dynamic semantics of the

) . . . ] ] manifest language as OCL constraints on the relationship

It is worth briefly discussing the subject of time man- enyeen the syntactic model of the manifest and the infras-
agement. The service provider controls the timelinessef thy,,cture and application domains. Dynamic semantics are
response in multiple ways. Firstly the rate at which mon-oncerned with deployment and run-time operation. These
itoring events are sent by the application level monitor i specify behavioural constraints that the system stioul
entirely dictated by the application and this should be balyghere to during its execution.
anced against expected response time to avoid duplicate Tphe question of how and when we verify that these con-
responses. Secondly service providers can specify a tiMgyaints hold true during the provisioning of a service $tiou
frame within which particular actions should take place, ag)e giscussed briefly. Defined invariants should be true at any
described above. Finally, the currenttime can be introduce,omentin time, however it is not feasible in practice to con-
as a monitorable parameter if necessary. tinuously check for this. Instead it is preferable to tie the

Additionally service providers may prefer expressingve”f'cat'on to monitoring events or specific actions, sugh a

conditions regarding a series of measurements within a tim@ NeW deployment. Another question to be posed is what
frame rather than focusing on single events. We may be cors'ould be done when an evaluation of the state system does
cerned here with the average number of active sessions int it the specified constraints. This will depend on the con-
window in order to limit the impact of strong fluctuations. {€Xt: @n €xception may occur, or an operation should be in-
While the language is extensible and presents the 0ppoy_(_)ked to t_rlggersome corrective action, as would be the case
tunity to provide such functionality, and we are currentlyWith €lasticity rules.

working on the ability to specify a time series and opera—S ice Denl nAs th ifost | d by th
tions related to that time series (mean, minimum, maximum ervice DeploymenAs the manifest is processed by the

etc.), this can be achieved by aggregating measurements ‘&' '0Ys mdepednde;nt comp((j)nent-s of ]:che Sgrv!ce. Managa]er
the application level, with the monitoring agent performin to generate a dep ‘,’yme”t escriptor for su mission to the
such tasks. VEEM, it becomes important to ensure that the final prod-

uct, which may be expressed using a different syntax, is stil

Elasticity rules can be a powerful tool to express ca4n line with the requirements of the service provider. In the
pacity constraints. The structure is kept purposely simplecase of RESERVOIR, the VEEM would introduce it's own
not intended as a substitute for a programming languageleployment template. Using OpenNebula as a reference im-
elasticity rules only aim to inform the Cloud infrastruatur plementation of a VEEM, the deployment template relied
of the corrective process to be undertaken. Auto-scaling igpon by the system is roughly based on a Xen configura-
not a form of capacity planning but it aids in introducing ation file. The association between manifest and deployment
certain degree of flexibility in resource allocation whigk e template is illustrated in Figure 5.
sures that strong and often unexpected variationsindemand It is presumed that the service manager’s
can be met. In general, more complex relationships betweeavani f est Processor will be responsible for parsing



monitoringRecords@pre-append(e)

OkSDesTﬂ'vW VirtualMachineDescriptor OVFEnvelope — Evaluate elasticity rules and check adjustment
e e +name: Stiing T oreeer context Rulelnterpreter::evaluateRules ()
+kernel_cmd: String [~ o d | +nets:Network[] . ici
e oma: St :;:nrrk\?rsvmnn;ube B post: e lasticityRules—>forAll(er |
+boot: String +Requirements: String if self.evaluate (er.expr) 0 then
+input: Input . ~
‘+graphics: Graphics manifest er.actions>forAll(a | veem”invoke (a.req))
DiskDescriptor . [ ApplicationDescription else true
+t + Stril . H
oy Comporen endif)
Harget: String L — Query simple type value
*remdonty: boolean . context Rulelnterpreter::evaluate (el:
- preter - |

ElementSimpleType )Real
post: result = el.value
— Obtain latest value for monitoring record
— with specific qualified name
context Rulelnterpreter:: evaluate (ge:
QualifiedElement): Real

NIC

ManifestProcessor

+mac: String

+bridge: String
+target: String
“script: String

ServiceConfigDesigner

post:
Fig. 5 Service Manifest and Deployment Descriptor if monitoringRecords>select(name=ge .name)
—>last(}->exists () then
result = monitoringRecords
—>select (name=ge.name)

i i —>last (). value
the manifest and generating one or more deploymentise result = ge.default

templates accordingly. Thesr vi ceConfi ganal yzer may "% | e expressions

be used to further optimise the placement with regards te- Defined as post in order to use recursion
the multiple sites at which it may be deployed, though the®*""¢*t Rulelfiepreter is evaliate (exprs
manifest specification is not concerned with this. It is onlypost:

. . ff expr.op.ocllsTypeOf(GreaterThanjhen
necessary to ensure that the optimisation process respects it self.evaluate ((op.eb>first () >

certain constraints regarding resource requirements. ighi f:éfu-lf":a';‘ate ((op.et>last()) then

a design by contracapproach [36]. We are not concerned else result = 0

with the actual transformation process, but rather that the " 'f

final product, i.e. the deployment descriptor, respectsier

constraints. These can be expressed in OCL as follows: endif

icnovnztext Association This OCL pseudo-codeis only a subset of the complete OCL

manifest.vm—> forAll ( v | specification that aims to illustrate how we can specify the
depdescriptor . exists ( d correct execution of elasticity rules with respect to thie ru
d.memory = v.virtualhardware . memory && syntax. The code is split into a number of individual seg-
d(i'jﬁlfzgfrf:f; filesasSet) > ments. The first simply states that monitoring events ob-

select(id = v.id)}->first (). href tained are expected to be collected as records for the pairpos

y of later evaluation. The second element states that if the co

. o , , ditional element of one of the elasticity rules is found to be
This OCL description is a sample of what is required 10y e then particular actions should have been invoked. To
estab!lsh a relationship between manifest and deployme'?éiterate, the operations are side effect free, implyiag tio
descriptor. Here, we describe that there should be at leagiqcessing of any kind will take place in an OCL statement.
one deployment descriptor generated for every virtual syspsiead we only check that there has been communication

tem described in the manifest definition that has the samgii, the VEEM to invoke certain operations if the condi-

identifier and memory requirements. The full OCL specifi-tjons gescribed hold true. How it is implemented is then left
cation contains a full mapping of attributes of our manifest,, developers.

language to that of a VEEM deployment descriptor. The final segments relate to the evaluation of the condi-

Servi lasticitySimilar] it th q tions themselves. Theul el nterpreter: eval uate(ge:
ervice ElasticitySimilarly, we can specify the expecte Qual i fi edEl enent) describes that upon evaluation of the

outcome of elasticity r_ule enforcement With respect to bOtr‘fules, values for key performance indicators describeden t
the syntax of the manifest and the underlying RESERVO”%ocument are obtained from the monitoring records, by ex-

components. OCL operations asiele effect fregas in they amining the latest monitoring event with matching qualified

do not alter _the state of the sys_tem. Neyerthgless they can lf’l%lme. This defines the relationship between KPIs and mon-
ysed to verify that the dynam!c-capamty ad.JL.Jstments haVFforing events. This asynchronous model is chosen because
indeed taken place when elasticity rule conditions havae beethe Cloud infrastructure does not control a
met, using thg@ostcontext.

This is described in OCL as follows:

pplication leve
monitoring agents. As there is no guarantee over how often
monitoring information is provided, and rules may involve
— Collect monitoring records upon notification measurements from several services, it is for the implemen-
context Rulelnterpreter:: notify(e: Event) . X X
post: monitoringRecords = tation to determine when the rules should be checked to fit
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within particular timing constraints rather than tying cke  as the Java Metadata Interface (JMI) standard and OCL in-
to the reception of any specific monitoring event. Finally th terpreters, and is available at [34].
last segment illustrates the recursive evaluation of expre

sions based on the type of formula selected by the service We have extended the framework for the purpose of this
provider. work. Our extensions introduce the ability to create, edit

and validate manifests describing services to be deployed
on a RESERVOIR based infrastructure. Element attribute
values are input via the graphical interface in accordance

While the specification of our manifest language is keptW|th the structure of the language. Infrastructure related

free of implementation concerns, the model-denotatigmal a tributes and configuration values may be included in order

proach adopted here provides a basis for automatically dé(-) verify that OCL constraints are correctly maintainedisTh

riving concrete human or machine readable representatiorﬁnay be used amongst other things to verify that deployment

of the language that can be manipulated by the end-user cqié_scrlptors gene_rgted by the mfr_astructure fit within the r
uirements specified by the manifest as covered.

processed directly by the RESERVOIR based infrastructure!
Moreover, beyond creating and editing the manifest itself, i .
the syntax and accompanying semantics can be used as in- Vi@ the interface, users can additionally request the cre-
put for a generative programming tool to automate the gertion of stand-alone monitoring instruments in Java capabl
eration of applications to control the provisioning praces  ©f interaction with our implementation of the RESERVOIR
In practice, the RESERVOIR architecture may be im-framework, which will be described |n.det_a|I in Section 5.
plemented using a wide range of programming Ianguage-g_hese are currgntly of two forms. The firstis 5|mply_r_espon-
and existing technologies. The semantic definition desdrib sible f_or ggthenng a”?' reporting the valugs of ;peuﬁc KPls
in this paper will generally serve as an important softwaredescr'bed in the manifest. The second will validate the cor-

engineering artefact, guiding the design and developmer’ifaCt gnfprcement of e'aS“F'tY rules by evaluatllng mcog;nlq
of components. However, the potential for errors to occurmonltorlng events and verifying where appropriate that sui

during the provisioning process always exists, due to img;\ble adjustment operations were invoked by matching en-

plementation or a failure to correctly interpret the speaffi tr||es alr;d t|mehframes In !nfras}tructural Iogsb. Th(;_frﬁm:vvor
tion of our language. We can assist in identifying and flag—a so allows the generation of custom stubs which the ser-

ging such errors bprogramaticallygenerating monitoring vrl]ce prm_nder me%/ usefd asa b§15|s for the ﬁevzll(_)pm_ent by
instruments which will validate run-time constraints prev the service provider of monitoring agents, handling issues

ously described in Section 4.2.2. The process by which thi§UCh as communication protocols, measurement labelling
is achieved s illustrated in Figure 6 and packaging, and providing a control interface to man-

age frequency and operation. This would have to be supple-
mented with appropriate probes responsible for the applica
tion level collection of measurements.

4.2.3 Concrete syntax

..........................................................

i Syntax model i+ Semantic model

Constraints

Java code is generated from a combination of data ob-

i ; , i tained from the specification, element values input by the
e a—— : — P : user and Java templates, the latter being used to bridge the
l Code generator l gap between the abstract model of the infrastructure and

the actual implementation. As previously discussed, ssue

such as communication channels for the distribution of mon-

itoring events fall outside the scope of the manifest lan-
guage specification. Templates provide the necessary code
to gather KPI measurements or parse infrastructure logs and

pass this information to OCL interpreters.

Service
Definition
Manifest
Java/XML/
Hutn ...

Application/
Domain
monitors

OCL interpreter

Fig. 6 Programatic Generation of Monitoring Instruments

The tool hence serves the following purposes: firstly,
it allows users to specify and manipulate manifests. Sec-
In previous work, we have developed the UCL-MDA ondly it allows the generation of code allowing the service
tools [28], a graphical framework for the manipulation of provider to verify the correct provisioning of a service at
EMOF and OCL implemented as a plug-in for the Eclipserun-time according to the semantics of the language. Fi-
IDE. The framework relies on existing standards for thenally it provides the means of interfacing a service with the
transformation of EMOF models and OCL into code, suchRESERVOIR monitoring architecture.
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5 Service Lifecycle Management

The service lifecycle encapsulates the initial deploynoént
a service, whereby a Service Provider sends a manifest de-
scribed in the language detailed above to a cloud, through to
the first instantiation of one or more service componengs, th
monitoring of said components, and finally the additional
deployment, undeployment and resizing of service compo-
nents as demand and workload evolves. All of these com-
plex functions are undertaken through the collaboration of
the Service Manager, the Monitoring Framework, and the
VEEM, and are just one of the many control loops that are
required within a cloud computing environment.

In this section we describe these components and dis-
cuss the implementation decisions that were taken to ensure
a scalable, manageable service management infrastructure

5.1 Service Manager

@ Service Provider

[] o

OVF-based deployment S
interface

Service Manager

Manifest
Parser

Lifecycle
Management

HTTP Rule
Internal [ Engine

Server

],

Virtual Machine (VEE)
management interface

38855

Virtual Execution Environment Manager

Fig. 7 Service Manager Architecture

Previous sections have dealt with the language to define ser-
vice manifests, describing the requirements that havedriv
its design along with its abstract and concrete syntax.én th
current subsection we describe in detail the Service Man-
ager, which is the main component of the RESERVOIR
middleware that processes descriptions in the manifest lan
guage, instantiates the services, and manages theseeservic
throughout their lifecycles.

The Service Manager within the overall RESERVOIR
stack has been already introduced in Figure 1, with a more
detailed architecture shown in Figure 7. It exposes a de-
ployment interface to Service Providers, based on the OV
based service manifest language discussed in Section 4.2.1
Itinteracts with the Virtual Execution Environment Manage
(VEEM) via a REST based interface to handle the deploy-
ment and management of the virtual machines composing
the application of the service providers .

The main components of the Service Manager are de-
scribed below. Although it includes many additional com-
ponents (e.g. for accounting and billing), we focus here on
the ones related to service deployment and elasticity for th
sake of clarity. These are:

Manifest parser: The parser handles and processes the ser-
vice specification (in OVF) provided by the Service
Provider, extracting from it a suitable service lifecycle
that meets the provider requirements.

Service Lifecycle Manager: This component controls the

sending individual deployment descriptors to create new
VEEs.

Rule Engine: The rule engine enforces scaling rules during

service runtime. Itis based on a business engine (the cur-
rent Service Manager implementation uses Drools [11])
which takes KPI monitoring information as input for the
given rule set derived from our specification, resulting in
scaling operations when some rule is triggered.

f1TTP internal server: The Service Manager includes an

internal HTTP server to provide virtual machine images
that the VEEM needs to deploy new virtual machines. In
particular, the HTTP server is used to place both the base
image containing operating system and service software
and the image containing the customization data. The
server is needed because it is preferable to include ref-
erences to the images in the REST messages than pass-
ing the actual images themselves, which are usually very
large.

Taking into account these various components, we now de-
cribe how the Service Manager implements the manifest
anguage semantics descibed in Section 4.2.2 for both ser-
vice deployment and service elasticity.

5.1.1 Service Deployment

service lifecycle and is in charge of all service man-rpe senyice deployment process consists of 7 steps. These

agement operations, including initial deployment, run-
time scaling and service termination. The Service Life-
cycle Manager orchestrates all the other Service Man-

are illustrated in the left of Figure 8. The workflow is as
follows:

ager components and interfaces with the VEEM in orde(1) The Service Provider issues a service deployment oper-

to actually implement the management operations, e.g.

ation to the Service Manager. The main parameter for
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@ Service Provider @ Service Provider

Monitoring
1) Bus__
Service Manager Y Service Manager
Manifest Manifest
Parser Parser
4 (2)
4) (3) 4) 3) (2)
HTTP Llfecycle Rule HTTP Llfecycle Rule |-
Internal Management Engine Internal Management Engine
Server Server
) ® (5 @ ® 3
Y Y Y Y
:'_*F """""" s :’-¥ """""" \ :'- --------------- ‘:
i Activation H H Activation g H Probe O H
1 | Engine ' 1 | Engine ' E B
i ' : § H 1M
i Service VEE | i Service VEE } i Service VEE |
Virtual Execution Environment Manager Virtual Execution Environment Manager

Fig. 8 Service Deployment Workflow (left) and Service Elasticitpifflow (right)

this operation is the service manifest, expressed in OVHAt is worth mentioning that, although we are showing just the
The Manifest Parser processes the file and, as result afeation of a single virtual machine, the subflow composed
this task, an internal representation of the service marnby steps 5-to-7 repeat for every VEE needed for initial ser-
ifest is built, to be used for the other Service Managewice deployment. For example, if the initial layout of the

components. service is composed of a load balancer, a web server, and a
(2) The service deployment command is issued to the Sedatabase, each with its own virtual machine, then three of
vice Lifecycle Manager. these 5 to 7 cycles will be done.

(3) The Service Lifecycle Manager sets up and installs the
elasticity rules specified in the manifest in the Rule En-
gine, so it starts enforcing them when the service gets
deployed.
(4) The Service Lifecycle Manager interacts with the HTTPS-1.2 Service Elasticity
server to set up all the images required by the virtual ma-
chines composing the service. For each virtual machiné/Vhen considering a running service, the process by which
two images are provided — the base image, and the diskasticity is managed has a dedicated workflow, which is
containing the customisation data (e.g. IP address) ashown in the right hand side of Figure 8. The steps are as
cording to the OVF Environment format (see [10]). Both follows:
the reference to the base image and the customisation
data are extracted from the service manifest.
(5) The Service Lifecycle Manager sends a deployment ddd) Monitoring probes running in the virtual machines are
scriptors to the VEEM to create a new VEE. continuously sending KPI measures to the Monitoring
(6) The VEEM gets the base disk for the VEE, creates it Framework.
and boots it. The created VEE is shown in a dashed liné2) The Monitoring Framework provides KP!I information
in the figure. to the Rule Engine running at the Service Manager level.
(7) The customization disk is attached to the VEE (typically(3) When the KPI value triggers a given elasticity rule to
as a virtual CD/DVD) so the Activation Engine thatruns ~ Scale up the service, the Rule Engine issues a command
as part of the VEE boot procedure can access the cus- (O the Service Lifecycle Manager.
tomization data and configure the VEE properly (e.g. (4) A customization disk is generated for that image in the

setting the assigned IP in the operating system configu- HTTP internal server.
ration). (5) The Service Lifecycle Manager follows the conven-

tional procedure (described in Section 5.1.1 workflow
in steps 5-to-7) to deploy a new virtual machine.
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5.2 Monitoring Framework Federation: so that any virtual resource which reside on
another domain is monitored correctly

Key to facilitating the ow of information in a cloud based 14 estaplish such features in a monitoring framework re-
environment is a monitoring process via which various met'quires careful architecture and design.

rics regarding the operation of services and infrastr@éctur - The RESERVOIR monitoring system covers all of the

can be circulated to the required components in a scalab|gyerS and components presented in Figure 1 of Section 2.

and effective way. We have already covered the relationthe following sections provide details of the design of the
ship between provider requirements specified in the mangReservoIR monitoring system.

fest and measurements obtained from the monitoring frame-
work, and resulting scaling operations. 5.2.1 Producers and Consumers

Here we discuss the implementation of the monitoring
framework itself, and the design decisions that were taien ttpe monitoring system itself is designed around the concept
ensure that its operation does not affect the performance ¢ producers and consumers. That is there are producers of
the network itself or the running service applications sliki monitoring data, which collect data from probes in the sys-
achieved by ensuring that the management components onm and there are consumers of monitoring data, which read
receive data that is of relevance: In a large distributetesys e monitoring data. The producers and the consumers are

there may be hundreds or thousands of measurement proi&shnected via a network which can distribute the measure-
which can generate data. It would not be effective to have al,onts collected.

of these probes sending data all of the time, s0 a mechanism The collection of the data and the distribution of data are
is needed that controls and manages the relevant probes. yeat with by different elements of the monitoring system
Existing monitoring systems such as Ganglia [17], Na-sg that it is possible to change the distribution framework
gios [19], MonalLisa [20], and GridICE [2] have addressedyjithout changing all the producers and consumers. For ex-
monitoring of large distributed systems. They are designegmple, the distribution framework can change over time, say
for the fixed, and relatively slowly changing physical in- from |P multicast, to an event bus, or a publish / subscribe

frastructure that includes servers, services on thoses®Iv framework. This should not affect too many other parts of
routers and switches. However, they have not addressed e system.

assumed a rapidly changing and dynamic infrastructure as
seen in virtual environments. In the physical world, new Max 5 5 pData Sources and Probes
chines do not appear or disappear very often. Sometimes

some new servers are purchased and added to a rack, offmany systems probes are used to collect data for system
server or two may fail. Also, itis rare that a server will MOVe management [17] [9]. In this regard, this monitoring frame-
from one location to another. In the virtual world, the 0ppo-yyork will follow suit. However, to increase the power and
site is the case. Many new hosts can appear and disappggixipility of the monitoring we introduce the concept of a
rapidly, often within a few minutes. Furthermore, the vétu  gat4 source. A data source represents an interaction and con
hosts, can be migrated from one network to another, still régo| point within the system that encapsulates one or more
taining their capabilities. probes. A probe sends a well defined set of attributes and
It is these characteristics that provide a focus for thgalues to the consumers, defined in a data dictionary. This
monitoring framework. We have determined that the mairkgn pe done by transmitting the data out at a predefined in-
features for monitoring in a virtualized environment which teryal, or transmitting when some change has occured.

need to be taken account of are: The measurement data itself is sent via a distribution
Scalability: to ensure that the monitoring can cope with aframework. These measurements are encoded to be a small
large numbers of probes as possible in order to maximise the network utilization.

Elasticity: so that virtual resources created and destroye&onsequently, the measurement meta-data is not trandmitte

by expanding and contracting services are monitore§ach time, but is kept separately in an information model.
correctly This information model can be updated at key points in the

lifecycle of a probe and can be accessed as required by con-

Migration: so that any virtual resource which moves from Sumers.

one physical host to another is monitored correctly
Adaptability: so that the monitoring framework can adapts 5 3 prope Data Dictionary
to varying computational and network loads in order to
not be invasive One of the important aspects of this monitoring design is the

Autonomic: so that the monitoring framework can keep specification of a Data Dictionary for each probe. The Data
running without intervention and reconfiguration Dictionary defines the attributes as the names, the types and
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the units of the measurements that the probe will be sending
out. These consist essentially of the KPIs that are specified Data Source
in the service manifest.

This is important because the consumers of the data can /L
collect this information in order to determine what will be Probe  bemmmmmemeeees Measurement
received. In particular, for the Service Manager, this in-
formation will allow specifications in the manifest to be A A
phgcked in elasticity aqd SLA rules. At present many mon- Probe Attribute Lo oo Probe Value
itoring systems have fixed data sets, with a the format of

measurements being pre-defined. The advantage here is that

as new probes are to added to the system or embedded in tFg-  Relationship Model
application, it will be possible to introspect what is being

measured.

The measurements that are sent will have value fieldi each of these, a producer of data only needs to send one
that relate directly to the data dictionary. To determinéolvh  copy of a measurement onto the network, and each of the
field is which, the consumer can lookup in the data dictioconsumers will be able to collect the same packet of data
nary to elaborate the full attribute value set. Probes véll b concurrently from the network.
embedded in both the infrastructure and the application ser
vice componentg thgmselves. To manage scaling acco_rdir@;;]z'6 Design and Implementation Overview
to our process, it will be the responsibility of the service
provider to ensure that probes embedded in the virtual Mapjithin the monitoring framework there are implementations
chines to be deployed rely on a data dictionary that is cong the elements presented in the relationship model shown in

sistent with the KPIs specified in the service manifest. figure 9. In this model we see, a DataSource which acts as
the control point and a container for one or more Probes.
5.2.4 Measurements Each Probe defines the attributes that it can send. These are

set in a collection of ProbeAttribute objects, that spettify
The actual measurements that get sent from a probe wilame, the type, and the units of each value that can be sent
contain the attribute-value fields together with a type andvithin a measurement.
a timestamp, plus some identification fields. The attribute- \When a Probe triggers a monitoring event by sending a
values contain the information the probe wants to send, thRleasurement, the Measurement has a set of values called
type indicates what kind of data it is, and the timestamp hagrobe Values. The Probe Values that are sent are directly
the time that the data was collected, as modelled in Segelated to the Probe Attributes defined within the Probe.
tion 4.2.1. When the system is operating, each Probe reports the

The identification fields are used to determine for whichcollected measurement to the Data Source. The Data Source

component or which service and from which probe this datfpasses these measurements to a networking layer, where
has arrived from. We rely for this purpose on the qualifiedthey are encoded into an on-the-wire format, and then sent
names discussed in Section 4.2.1. As there are multiple corgver the distribution network. The receiver of the monitor-
ponents which need monitoring and multiple running sering data decodes the data and passes reconstructed Measure-
vices, the consumer of the data must be able to differentiatgents to the monitoring consumer. Encoding measurement
the arriving data into the relevant streams of measurementgata is a common function of monitoring systems [17] as it

increases speed and decreases network utilization.
5.2.5 Distribution Framework In the monitoring framework, the measurement encod-

ing is made as small as possible by only sending the values
In order to distribute the measurements collected by théor a measurement on the data distribution framework. The
monitoring system, it is necessary to use a mechanism thadefinitions for the Probe Attributes, such as the name and
fits well into a distributed architecture such as the managehe units are not transmitted with each measurement, but are
ment overlay. We need a mechanism that allows for multipldield in the information model and are accessed as required.
submitters and multiple receivers of data without havirgj va The current implementation is written in Java, and the
numbers of network connections. For example, having mangutput for each type currently uses XDR [30]. As such each
TCP connections from each producer to all of the consumetype defined uses the same byte layout for each type as de-
of the data for that producer would create a combinatoriafined in the XDR specification. All of this type data is used
explosion of connections. Solutions to this include IP mul-by a measurement decoder in order to determine the actual
ticast, Event Service Bus, or publish/subscribe mechanisntype and size of the next piece of data in a packet.
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Key _ Value The RESERVOIR monitoring system has been used suc-

/datasource/datasource-id/nameg_datasource name cessfully to provide data on all the elements of the cloud

/probe/probel-id/datasource datasource-id hi dth . . h

Tprobelprobe2-id/datasource datasource-id architecture an t e running services [8] [16] [7]._T e mea-

surements supplied have been used for the service lifecycle

/probe/probeN-id/datasource datasource-id management, such as service elasticity, as well as for ac-
Table 1 Information Model Entries for a Datasource counting and billing. In the following section on evaluatjo

these measurements are used for the real execution of a com-

Key Valie putational chemistry application.

/probe/probe-id/name probe name

/probe/probe-id/datarate probe data rate 6 . | luati

/probe/probe-id/on is the probe on or off Experimental Evaluation

/probe/probe-id/active is the probe active or inactive _ )

/schema/probe-id/size no of attributes N In the evaluation of our work we aim to prove the follow-

/schema/probe-id/0/name | name of probe attribute 0 ing hypothesis: provided that an architecture definitior co

; Scﬂem: proge-!g; g;typ_;a typ_f ?f prObE a“trt”?gtet 00 rectly specifies requirements and elasticity rules, anithiea

SCeMAProhe-Icrunits units Tor probe atrbute Cloud computing infrastructure obeys the constraints-den

/schema/probe-id/1/name name of probe attribute 1 . . . o - -

tified in the semantic definition, then tlyiality of service

/schema/probe-id/N/units | units for probe attribute 0 that can be obtained from a Cloud computing infrastructure

should be equivalent to that obtained were the application
hosted on dedicated resources. In addition, through the spe
ification of elasticity rules, providers can consideraldy r
duce expenditure by minimising over-provisioning.

We will demonstrate this hypothesis by deploying a pro-

The Information Model for the Monitoring System holds all duction level service on an infrastructure consisting &f th
of the data about Data Sources, Probes, and Probe Data DRRESERVOIR stack. The Service Manager of the RESER-

tionaries present in a running system. As Measurements aPIR st_ack incorporates monitprs _that vglidate the spe;tifig
sent with only the values for the current reading, the metaCONStraints. The selected service is a grid based applfcati
data needs to kept for lookup purposes. By having this In[espon3|bleforthe computa’qonal _predlct|on of organyser
formation Model, it allows consumers of measurements t¢2! Structures from the chemical diagram [12]. _
lookup the meaning of each of the fields. The al_ppllcqtlon opgrates according to_ a predefined
In many older monitoring systems this information workflow involving multiple web based services and For-

model is stored in a central repository, such as an LDAI—J’ran programs. Up to 7200 exe<_:ut|on_s of these programs
may be required to run, as batch jobs, in both sequential and

server. Newer monitoring systems use a distributed ap_araIIeI form, to compute various subsets of the prediction
proach to holding this data, with MonAlisa using JINI asP ' P P

o . Web services are used to collect inputs from a user, coordi-

its information model store. . ) .

For the imol ) ¢ the Inf ion Model nate the execution of the jobs, process and display results,

h ort z |mpD_em_T)ntat(|jor|1_|o r;[ 'Ie' bnl orrg;:’tll?nf 0 he \(/jv_e and generally orchestrate the overall workflow. The actual
‘_’]B/e lésef a |§tr| uted | a‘I?h' a”e ( h ) for t € 'Sf'execution of batch jobs is handled by Condor [33], a job

tributed Information model. This allows the receivers o scheduling and resource management system, which main-

Megsurement datato Iookup the flellds recelyed to determmt%inS a queue of jobs and manages their parallel execution
their names, types, and units. The information model nodegn multiple nodes of a cluster.
uses the DHT to interact among one another. This case study provides many interesting challenges
The implementation has a strategy for converting an obyhen deployed on a Cloud computing infrastructure such
ject structure into a path-based taxonomy for use as keys 95 RESERVOIR. Firstly, the application consists of a num-
the DHT. The IDs of the Data Sources and the IDs of the,er of different components with very different resource re
Probes are important elements of this taxonomy. quirements, which are to be managed jointly. Secondly, the
For each Data Source, the keys and values shown in tablesource requirements of the services will vary during the
1 are added to the DHT. For each Probe, the keys and valugfetime of the application. Indeed, as jobs are created, th
shown in table 2 are added to the DHT. For each Probe, thgumber of cluster nodes required to execute them will vary.
keys and values shown in table 2 are added to the DHT.  Our goal in relying upon a Cloud computing infrastructure
Using the encoded data from the information model, anyill be to create airtualised clusterenabling the size of the
of the consumers of the monitoring data, in particular thecluster to dynamically grow and contract according to load.
management overlay, can evaluate all the meta-data of the For this evaluation, we will compare the quality of ser-
measurements. vice, i.e. the duration required to complete the predigtion

Table 2 Information Model Entries for a Datasource

5.2.7 Information Model Encoding
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when executing this workflow on a dedicated cluster, comtails from the scheduler and run the jobs as local processes.
pared to a Cloud computing infrastructure that provides supEach node runs only a single job at a time and upon com-
port for our abstractions. We are not concerned here witpletion of the job transfers the output back to the scheduler

the overhead of hypervisors such as Xen, which are weknd advertises itself as available.

documented [6]. Instead we are concerned with evaluating

the costs of dynamically adjusting the resource provisigni

during the application lifecycle and determining whether a
appropriate level of service can still be obtained.

6.1.2 Deployment

Packaged as individual virtual machines encapsulating ope
ating system and other necessary software components, the

6.1 Testbed Architecture j[hree components are de_ployed on the RESERVOIR—based
infrastructure. The associated manifest describes thaceap
6.1.1 Service components ity requirements of each component, including CPU and

memory requirements, references to the image files, start-
ing order (based on service components dependencies), elas
ticity rules and customisation parameters. For the purpose

O ion Service

I WA Serves _— of thg expe_riment, the Orche_stration and Grid Mana_gement
BpelEngine [Adm% ynamic scaling Ser_wces.wnl be allocated a f|>_<ed set qf resources, with only
CondorHanager Condor Exeo. Service a single instance of each being required. The Condor exe-
e cution service however will be replicated as necessary, in
 Manager order to provide an appropriate cluster size for the pdralle
Manager execution of multiple jobs.

777777 The elasticity rules will tie the number of required Con-

VEE Host . . . . .

dor execution service instances to the number of jobs in

J queue as presented by the Condor scheduler. This enables
Host A| Host B Host C| | HostD| | HostE| | HostF

us to dynamically deploy new execution service instances as
the number of jobs awaiting execution increases. Similarly
as the number of jobs in the queue decreases it is no longer
necessary to use the resources to maintain a large cotiectio
The testbed we use is illustrated in Figure 10. Threef execution nodes, and hosts in the Cloud can be released
main types of service components can be distinguishedccordingly. This is expressed as follows in the manifest us
The Orchestration Servicés a web based server responsi-ing an XML concrete syntax, which conforms to the abstract
ble for managing the overall execution of the application. | syntax described in Section 4.2.1. We use a similar elastic-

presents an HTTP front end enabling users to trigger prety rule for downsizing allocated capacity as the queue size
dictions from a web page, with various input parametershrinks.
of their choice. The Business Process Execution Languag<eE L B
. i . lasticityRule name=
(BPEL) [21], is used to coordinate the overall execution of <Trigger>
P i <TimeConstraint unit="ms%*5000</ TimeConstraint
the ponmorph search, .relyln.g on external services to gen- Z¢, hression
erate batch jobs, submit the jobs for execution, process the (@uk.ucl.condor.schedd.queuesize /
. . . . (@uk.ucl.condor.exec.instances.size +1)y 4) &

results an(_JI trigger new comput_a.nons if reqwred. . (@uk. ucl . condor . exec. instances . size 16 )

TheGrid Management Servids responsible for coordi- <//$><_presswu>

. . . . </ Trigger>
nating the execution of batch jobs. It presents a web serV|ce<Acti§,§J run=
based interface for the submission of jobs. Requests are ayél';’:ﬁ'g?’t\;“gm';uc' -condor. exec.ref)™
thenticated, processed and delegated to a Condor scheduler
which will maintain a queue of jobs and manage their exe- The elasticity rules will refer to key performance indi-
cution on a collection of available remote execution nodescators that are declared within the context of the appbaeati
It will match jobs to execution nodes according to workloadstructure. This is expressed as follows:
and other characterlstlcs_(CI?U, memory, etc.). On_ce atta_rggApp,icationDescrilotion
node has been selected it will transfer binary and input filesname="polymorphGridApp2

. . . <Component name="GridMgmtService” ovf:id="GW

over and remotely monitor the execution of the job. <KeyPerformancelndicator category="Agent” type="ims"

The last type of componentis ti@ndor Execution Ser- <Frequency unit="s>30</Frequency
. . <QName-uk . ucl.condor.schedd. queuesizEQName
vice, which runs the necessary daemons to act as a Condolx;/ keyPerformancelndicatas
execution node. These daemons will advertise the node as aff component

available resource on which jobs can be run, receive job de- ApplicationDescription

Fig. 10 Testbed Architecture

"AdjustClusterSizeUp”
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All components and KPIs are declared in this man-nodes. This mapping however is transparent to the Service
ner. This enables the infrastructure to monitor KPlI meaManager, Service Provider and application.
surements being published by specific components and as-
sociate them to the declared rules according to the previ 1 3 Metrics
ously stated semantics. In this particular instance we are
specifying that a monitoring agent associated with the Gridt is also important to briefly describe the characteristits
Management Service will publish measurements under thghe overall application workflow, in order to determine ap-
uk. ucl . condor . schedd. queuesi ze qualified name every propriate metrics for the experiment. Our primary indica-
30 seconds as integers. tor of quality of service is the overallirn around timeof

The overall management process can hence be describgdorediction. The turn around time can be defined as the
as follows: upon submission of the manifest, the Servicemount of time elapsed between the moment a client user
Manager, which is responsible for managing the joint aHocarequests a search to the moment results are displayed on the
tion of service components and service elasticity, willsgar web page. As previously stated, the overall process com-
and validate the document, generating suitable individuabines functionality from a number of different Fortran pro-
deployment descriptors to be submitted to the VEEM begrams into a larger workflow. Based on our selected input,
ginning with the Orchestration and Grid Management comtwo long running jobs will first be submitted, followed by
ponents. The VEEM will use these deployment descriptorain additional set of 200 jobs being spawned with each com-
to select a suitable physical host from the pool of knowmpletion to further refine the input. We must also take into
resources. These resources are running appropriate liypersccount the additional processing time involved in orches-
sor technology, in this case the Xen virtualisation systemirating the service and gathering outputs.
to provide a virtualised hardware layer from which the cre-  Another important metric to consider is that of resource
ation of new virtual machines can be requested. Upon daisage. The goal of service elasticity is to reduce expendi-
ployment, the disk image is replicated and the guest operatures by allowing Service Providers to minimise overprovi-
ing system is booted with the appropriate virtual hardwargioning. While the actual financial costs will be dependent
and network configuration. on the business models employed by Cloud infrastructure

When the Grid Management component is operationalproviders, we can at the very least rely upon resource usage
a monitoring agent, as described in Section 4.2.1, will beas an indicator of cost.
gin the process of monitoring the queue length and broad-
cast the number of jobs in the queue on a regular bag 1 4 Experiment results
sis (every 30 seconds) under the selected qualified name

(uk. ucl . condor . schedd. queuesi ze). These monitoring \we compare turn-around time and resource usage obtained
events, combined with appropriate service identifier nfor on our Cloud infrastructure with elasticity support with
mation, will be recorded by the rule interpreter componenthat obtained in an environment with dedicated physical re-
of the Service Manager to enforce elasticity rules. Whensoyrces. The objective is to verify that there are no strong
conditions regarding the queue length are met (i.e. there agariations in turn around time, but a significant reduction
more than 4 idle jobs in the queue), the Service Manager Wil resource usage. The results are illustrated in Figure 11.
request the deployment of an additional Condor Executioffhe number of queued jobs is plotted against the number
componentinstances. Similarly, when the number of jobs i Condor execution instances deployed. Both charts show
queue falls below the selected threshold, it will request th large increases in queued jobs as the first long running jobs
deallocation of virtual instances. complete and the larger sets are submitted. In addition, the

The actual physical resources which are managed by thést chart represents the execution of the application in a
RESERVOIR infrastructure used in this experiment consistiedicated environment and shows a set of 16 continuously
of a collection of six servers, each of them presenting allocated execution nodes. The second chart represents the
Quad-Core AMD Opteron(tm) Processor 2347 HE CPU an@xecution of the application with elasticity support, slsow
8 GBs of RAM and with shared storage via NFS. OpenNebthe increase in the number of allocated nodes as jobs in
ula v1.2, as the VEEM implementation, is used to managgueue increases, and a complete deallocation as these jobs
the deployment of virtual machines on these resources agomplete. The overall turn around time and resource usage
cording to the requirements specified by a Service Managesbtained is described in Table 3.

Both the Orchestration and Grid Management compo- As we can see from the results, a 7.15% increase in turn
nents will be allocated the equivalent of a single physicabround time occurs. As there is little difference in exeouiti
host each, due to heavy memory requirements, and up totémes in the individual batches of jobs on either the ded-
Condor Execution components may be deployed on a sirieated or virtual cluster, the increase in turn around time
gle physical host, limiting the maximum cluster size to 16comes primarily from the additional time that is taken to
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Execution with dedicated service Execution with dynamic service deployment
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Fig. 11 Job Submission and Resource Availability
Dedicated Cloud ; ; H
Environment | Infrastructure a fully dedmated enwronme_nt vyhere resources are pont!nu—
Search turn around time (5 8605 9220 ously available, even more significant cost savings wilsexi
Complete shutdown time (s N/A 9574 . : : :
Average exection node Examining logs of sea\_rches copducted during this pe_'rlod,
for run 16 10.49 and based on cost savings obtained here, we have estimated
until shutdown N/A 10.42 that Il ti id d by 69.18%
Percentage differencet at overall resource consumption would drop by 69.18%,
Resource usage saving 34.46% due to the fact that searches are not run continuously; no
Extra run time (jobs) 7.15%
_ searches were run on two days of the week, and searches,
Table 3 Experiment Results though of varying size, were run only over a portion of the
day, leaving resources unused for considerable amounts of
time.

create and deploy new instances of the Condor execution
service as jobs are added in the queue. This can be verified
in Figure 11, where a small delay can be observed between re|ated Work
increases in the number of jobs in queue, and the increase
in Condor execution services. The overhead incurred is dugluch of this work builds on the foundation previously es-
to the deployment process, which will involve duplicating tablished with SLAs, where we used a model denotational
the disk image of the service, deploying it on a local hyperapproach to specify service level agreements for web-based
ViSOf, and booting the virtual machine, and the registratio app"cation services [29] In this paper, we have aimed to
process, which is the additional time required for the sErvi broaden the approach to encapsu|ate Cloud Computing prim-
to become fully operational as the running daemons registgfives and environment, providing a specification for a man-
themselves with the grid management service. There eXisffest language describing software architecture, physica
ways of reducing this overhead independently of the Clou@uirements, constraints and elasticity rules.
computing infrastructure, at the expense of resource Usage | addition, it is worth examining research developments
such as relying on pre-existing images to avoid replication rejated to service virtualisation, grid computing and com-
A 10 minute increase of time in can however be constiponent based software architecture description languages
tuted as reasonable considering the overall time frame of with respect to virtual environment deployment descrip-
search, which is well over 2 hours. This is particularly truetions, the manifest language proposed here builds upon the
as we consider the overall resource usage savings. Inde@pen Virtualisation Format (OVF) [10], whose limitations
as can be seen in the table, with respect to execution nodesave already been discussed.
the overall resource usage decreases by 34.46% by relying There exists a number of software architecture descrip-
on service elasticity. This is because the totality of the-ex tion languages which serve as the run-time configuration
cution nodes are not required for the initial bulk of the run,and deployment of component based software systems. The
where only 2 jobs are to be run. Itis only in the second stageDDLM Component Model [32], for example, outlines the
that more nodes are required to handle the additional jObS.requirements for creating a deployment object responsible
Of course the savings here are only considered in théor the lifecycle of a deployed resource with focus on grid
context of the run itself. If we consider the overall use @& th services. Each deployment object is defined using the CDL
application over the course of a randomly selected week olanguage. The model also defines the rules for managing the
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interaction of objects with the CDDML deployment API. there is potential to adapt many aspects of our approach to
Though the type of deployment object is not suited to vir-the platform specific interfaces and tools.
tual machine management, the relationship between objects
and the deployment API can be compared to our approac .
oy - P . app é]ConcIusmn and Future Work
we have undertaken here, providing a semantic definition for
the CDL language. However in our case the relationship bel- .
- . ) - ~n this paper, we have proposed an abstract syntax and se-
tween domain and syntactic models is performed at a higher . O . . )
. . : . mantic definition for a service manifest language which
level of abstraction, relying on OCL to provide behavioural,_ . .
. N . builds on the OVF standard and enables service re-
constraints. Our specification is hence free of implementa- . . .
: o quirements, deployment constraints (placement, co-latat
tion specific concerns.

) and startup/stopping order) and elasticity rules to be ex-
The general approach to dynamic and automated proviressed. We believe that clear behavioural semantics are of

sioning may also be compared to the self-managing coMsaramount importance to meet quality goals of both the Ser-
puting systems associated with autonomic cOmputing rejice and Infrastructure provider. Our model-driven apptoa
search [14]. While our approach to elasticityeiplicit, in aims 1o strengthen the design of the RESERVOIR stack,
that providers define appropriate scaling rules based on 3Bentifying functional capabilities that should be presamd
event condition action model, we have laid a foundation,,ngtraints the system should observe. We also explored the
for further methods to be developed relying on pFEdiCtivereIationship between a novel RESERVOIR monitoring in-
and autonomic mechanisms to anticipate future allocatiof,structure and service manifest, focusing particularly

changes and further minimise over-provisioning, prowdin \qtions such as data dictionary and the KPIs defined at the
monitoring channels and a rule based framework for the dyapsiract layer. Such relationship has served to drive the im
namic management of services. plementation of the monitoring infrastructure.

Finally it is important to examine current developments  We have shown experimentally that the implementation
in production level Cloud environments, such as Amazon'sf these concepts is feasible and that a complete archieectu
EC2 offering [1]. In particular, auto-scaling has beenantr definition that uses our manifest syntax can enable Cloud
duced by Amazon to allow allocated capacity to be autocomputing infrastructure to realise significant savingeein
matically scaled according to conditions defined by a servicsource usage, with little impact on overall quality of ser-
provider. These conditions are defined based on observed fgce. Given that a Cloud can deliver a near similar quality
source utilisation, such as CPU utilisation, network astiv  of service as a dedicated computing resource, Clouds then
or disk utilisation. Whilst the approach laid out in this pap have a substantial number of advantages. Firstly applica-
can be used to define elasticity rules based on such metriggen providers do not need to embark on capital expendi-
this can prove limiting. With respect to the evaluation, theture and instead can lease the infrastructure when they need
need to increase the cluster size cannot be identified througt. Secondly, because the elasticity rules enable the -appli
these metrics as we require an understanding of the schedghtion provider to flexibly expand and shrink their resource
ing process. The ability to describe and monitor appligatio demands so they only pay the resources that they actually
state is crucial if we wish to correctly anticipate demand. need. Finally, the Cloud provider can plan its capacity more

In addition, the focus of our paper has primarily beenaccurately because it knows the resource demands of the ap-
on Infrastructure-as-a-Service Clouds. Neverthelesssiill  plications it provides.
important to briefly discuss the relevance of this work with  While Cloud computing is still a relatively new
respectto Platform-as-a-Service (PaaS) Clouds such as Wiparadigm, and as such changes in standards, infrastructura
dows Azure [18]. PaaS Clouds provide an additional levetapabilities and component APIs are inevitable, definieg th
of abstraction over laaS Clouds, providing a runtime envisoftware architecture of services hosted on a Cloud with re-
ronment for the execution of application code and a set opect to the capabilities of the underlying infrastructisre
additional software services, such as communication protdkey to optimizing resource usage. This allows us to bridge
cols, access control, persistence, etc. Windows Azurevallo the gap between application and infrastructure and previde
services to be described as distributed entities: clieats ¢ the means for providers to retain some control over the man-
specify the interfaces exposed by services, communicatiomgement process.
end points, channels and roles (web or worker) and different  Our work paves the way towards quality of service aware
hardware requirements may be allocated. However a need service provisioning. In future work, we aim to develop ap-
control the management, distribution and lifecycle of fiault propriate syntax and semantics for resource provisioning
component systems still exists, though with the added beneservice level agreements. Building upon the approach laid
fit of application specific operations being more readily ex-out here, we aim to provide a framework for the automated
posed to the infrastructure. How this is implemented will bemonitoring and protection of service level obligationsdxzhs
tied to the specifics of the platform itself but we do believeon defined semantic constraints.
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