
J. Functional Programming 5 (2): 225-277, April 1995 © 1995 Cambridge University Press 225

Lexical profiling: theory and practice

CHRIS CLACK, STUART CLAYMAN AND DAVID PARROTT
Department of Computer Science, University College London,

Gower Street, London WCIE, UK
(email: {clack, sclayman,dparrott}8cs.ucl. ac.uk)

Abstract

This paper addresses the issue of analysing the run-time behaviour of lazy, higher-order
functional programs. We examine the difference between the way that functional programmers
and functional language implementors view program behaviour. Existing profiling techniques
are discussed and a new technique is proposed which produces results that are straightforward
for programmers to assimilate. The new technique, which we call lexical profiling, collects
information about the run-time behaviour of functional programs, and reports the results
with respect to the original source code rather than simply listing the actions performed at
run-time. Lexical profiling complements implementation-specific profiling and is important
because it provides a view of program activity which is largely independent of the underlying
evaluation mechanism. Using the lexical profiler, programmers may easily relate results back
to the source program. We give a full implementation of the lexical profiling technique for
a sequential, interpretive graph reduction engine, and extensions for compiled and parallel
graph reduction are discussed.

Capsule Review

This paper describes a profiler for lazy higher-order programs evaluated by graph reduction.
Application programmers are the intended users of the profiler. The costs of evaluating
expressions are assigned to lexical units enclosing them in the source program: the effect is
much as if programs were executed using a 'call by value' rule; yet it reflects savings due to
actual 'call by need' evaluation. The prototype implementation is hosted by an interpreter,
and the paper discusses its application to some small examples with promising results.

To ensure accurate results in the presence of sharing, all components with shared uses
have to be treated as independent units for profiling purposes. Also, as the process of
graph reduction is quite heavily embellished, self-reference is an issue for the execution-time
profiler (see Section 5.6). It will be interesting to see how effective the scheme is for full-scale
applications — but that must await a future implementation in a widely distributed compiler.

1 Introduction to profiling

The aim of program profiling is to enable the programmer to use the resulting
information to determine whether parts of the program consume a disproportionate
amount of resources. For many real-world applications it is not just desirable but

t During the course of this work D. J. Parrott was supported by an SERC studentship.

226 C. Clack et al.

essential for a programmer to be able to monitor and subsequently alter the time and
space behaviour of the program. Without profiling information, it may be impossible
to rectify a program which exhibits degenerate behaviour.

Lazy, higher-order functional languages provide a programming framework which
is far removed from the details of instructing computer hardware. This high-level
framework enables a programmer to express problem solutions in a way that
closely resembles the problem specifications and which may exploit new software-
engineering techniques (Hughes, 1989). Unfortunately, the high level of abstraction
means that the executable form of a functional program is often unrepresentative of
the original source code, and vice versa. The source code may be amenable to a lim-
ited amount of complexity analysis, though this is not able to take into account the
algorithms used and the associated overhead incurred by the underlying evaluation
mechanism. Programmers rarely have intimate knowledge of the evaluation mecha-
nism and it is therefore difficult for them to reason about the time and space complex-
ity of a functional program. This contrasts strongly with imperative languages, where
the source code is a key factor in estimating a program's behaviour prior to execution.

If programmers find it difficult to anticipate run-time behaviour, they are likely to
find it even more difficult to interpret run-time profiles in order to reason about which
sections of a program need to be modified. A profiler is only worthwhile if it produces
information that can help a programmer to reason about improving programs.

To improve the quality of measurement tools for functional languages, we have
designed a profiler primarily for use by application programmers rather than func-
tional language implementors. Our profiler provides information that is related to
the way the program is written rather than to how it is evaluated; thus enabling
programmers to easily relate results back to the source program. The results di-
rectly reflect the lexical scoping of the source program, thus overcoming problems
caused by compile-time program transformation, lazy evaluation and higher order
functions. We call the technique lexical profiling.

The profiler counts function calls and accurately profiles the time and heap space
used by lazy, higher-order functional programs. It can be used to monitor programs
as they run and to build detailed trace information for post-mortem analysis and
debugging.

In the remainder of this section we discuss what the user expects from a profiler
and the different possible profiling techniques. In the next section we present a
number of existing profilers and discuss their merits. We then proceed to describe
our new profiling technique and give full details of compilation and run-time
implementation. We conclude the paper by providing a few short examples of the
profiler in use and discussing directions for further work.

/ . / Implementor vs. programmer views of profiling

A fundamental difference exists between the way in which application programmers
and system implementors naturally reason about the execution costs of functional
languages which use call-by-name evaluation semantics. In a call-by-value language

Lexical profiling: theory and practice 227

the source-level definition of expressions corresponds closely to the order of their
evaluation at run-time. For example, the run-time behaviour of:

x = fcbv(expl,...,expn)

is described as follows:
1. All of the arguments exp1,...,expn are evaluated (this is independent of the

definition of fcbv)-
2. The function, fcj,v, is executed. Any subexpressions contained within fcbv and

relevant to the result are evaluated.
3. The result is bound to x.

In a call-by-name language, delayed evaluation has the effect of transferring the
evaluation of an expression from the position in the code where it is declared to the
point where its value is required. Consider the following example:

y = fcbn(expi,...,expn).

Without a definition for fcbn, and further information about the context in which
y is used, the run-time behaviour cannot be determined beyond stating that if
y is evaluated then the function will be called and the result bound to y. Any
combination of the arguments may be evaluated or may remain unevaluated by
the function call. Moreover, the result may contain references to some unevaluated
arguments which may then be evaluated at a later time. Consider the following
definition of fcbn '•

fcbn{argu...,argn) = (arguargn)

Here, the result is a pair containing the first and last arguments passed to fcbn- The
pair can be constructed without evaluating any of the arguments. If the result, y,
later occurs in an expression of the form:

z = (fst y) + (snd y)

then the values of expl and expn will finally be needed and the expressions will
be evaluated. This is a simple example which clearly illustrates how difficult it can
be to reason about where expressions are evaluated. In large functional programs
the examples become much more complex, and unevaluated objects may be passed
through many function calls before evaluation occurs.

The difference between the call-by-value and call-by-name cases is significant. For
straightforward performance evaluation, application programmers find it simpler
to reason about the behaviour of call-by-value programs than of call-by-name
programs because expressions are always evaluated by the functions in whose
bodies they occur (see, for example, Nilsson and Fritzson's work on algorithmic
debugging (Nilsson and Fritzson, 1992)). To simplify reasoning about call-by-name
functional programs, we propose that the cost of evaluating expressions should be
reported to application programmers with respect to the lexical structure of the
source program. The program is still evaluated using call-by-name semantics but the
call-trace is constructed as if call-by-value evaluation had occurred. For example,
in the following definition:

/ g x = g expensive x

228

i

•j- 1

analyse

source program
(on this run-time system)

understand

V J

1

C. Clack et al.

system
mplementor

\
r--V--;.V---

^ ^ venfy ^

1 1 ' 'predict |observe|
1 J ' '

run-time
behaviour

observe

L _ J

applications
srogrammer

Fig. 1. How applications programmers and systems programmers relate functional programs
to their run-time behaviour.

(where g is non-strict in its first argument), call-by-name evaluation will cause
expensive to be evaluated in or below g (if it is evaluated at all); but call-by-value
evaluation would have caused expensive to be evaluated in / , prior to calling g. We
continue to treat expensive as a call-by-name argument, but if it is evaluated its
execution time is attributed to / . If the expensive expression is exhibiting degenerate
behaviour, the application programmer's attention is then drawn immediately to the
body of function / .

A system implementor takes a very different view of the situation. The actual
behaviour of the program at run-time is more important than the lexical relationships
within the original source code. The effects of call-by-name evaluation must be
reported exactly as they occur so that the knowledge can be used to improve
compile-time and run-time heuristics (e.g. dynamic scheduling).

Despite having different requirements and viewpoints, both application program-
mers and system implementors need to make a connection between the definition
of call-by-name functional source code and its eventual run-time behaviour. This is
illustrated in Fig. 1 where:

The application programmer observes the run-time behaviour of the program and
attempts to map this back to the original definitions in the source code.

The system implementor analyses the source program and attempts to use the anal-
ysis to predict its run-time behaviour. The run-time behaviour is also observed
by the implementor, in order to verify the success of the prediction. Analysis
of the run-time behaviour is made with respect to the run-time domain, hence

Lexical profiling: theory and practice 229

it is not necessary to map the run-time behaviour back to the lexical structure
of the source code.

In the first case the programmer performs a backward mapping from run-time
behaviour to the source program, and in the second case performs a forward
mapping from the source program to run-time behaviour. The difference between
the two viewpoints has a large effect on the way that profiling and monitoring tools
are constructed.

Sharing

The above discussion has focused on the different views taken by programmers
and implementors. We have proposed that in order to provide useful information, a
profiler should attribute costs as though call-by-value evaluation had taken place in-
stead of call-by-name evaluation. However, a lazy functional language also supports
optimized evaluation of shared subexpressions.

In a lazy functional language a shared subexpression is evaluated at most once,
by whichever part of the program first requests its evaluation. Sharing is often used
to make programs more concise, but it is also an important tool used by application
programmers for optimizing resource usage. It is therefore essential that a profiler
should reflect the changes in resource consumption which are related to the use of
sharing.

Call-by-name evaluation can also be used to optimize the performance of a
program, and indeed the lexical profiler proposed in section 3 faithfully reports
performance gains due to call-by-name evaluation. However, the lexical profiler
attributes these costs to program functions as though call-by-name evaluation had
occurred. By contrast, the lexical profiler makes sharing apparent to the programmer
rather than pretending that sharing had not taken place. We take the view that the
computational model for sharing is far simpler than that for call-by-name evaluation
(which results in an interleaving of evaluation which is difficult for an application
programmer to predict) and that it is important for a profiler to present information
about sharing.

Sharing is a global property of a program: to discover whether a top-level function
is shared it is necessary to inspect the whole program. Thus, in order for a profiler
to provide useful information regarding sharing it must profile the entire program at
once. We will return to the issue of sharing in sections 3 and 4.1.

1.2 Different kinds of profiling

There are at least three different kinds of profiling that can be undertaken in
functional programming environments:

Program profiling: Measurements relate to the program's behaviour. The profiler
may allow the programmer either to measure the one-off cost of an individual
expression inside a function body, or to measure the cost of an individual
function as an accumulation of the costs of all the applications of that function

230 C. Clack et al.

(of course, multiple expressions or multiple functions may be measured at
the same time). Furthermore, the profiler may determine the costs either
dynamically or lexically: in the former case, costs are attributed to the function
which is the immediate cause of the resource utilization, whereas in the latter
case costs are attributed to the function whose body contains that expression
which defines the resource utilization. The difference between dynamic and
lexical profiling is important for systems which use lazy evaluation.

Abstract machine profiling: This measures the effectiveness of the run-time system
by examining the overheads of function calls, function returns, heap manage-
ment, garbage collection, etc. (for example, see King, 1990).

Task profiling: This is particularly relevant in parallel environments where programs
are divided into tasks which execute on separate machines. The number and
size of the tasks are reported (see our related work in Parrott and Clack, 1992;
Parrott, 1993).

The last two kinds of profiling are clearly of more interest to functional language
implementors rather than functional programmers and will not be considered further.
The first kind of profiling is directly relevant to programmers, but the distinction
between the dynamic and lexical styles is subtle. With a strict language, the two
styles are identical, but in a lazy language the difference between the two styles
is more fundamental. Lexical profiling measures whether work happens, and how
much happens, with results being presented with respect to the source code. By
contrast, dynamic profiling measures when work is done.

Figure 2 presents three example programs which may be used to illustrate the
difference between dynamic and lexical profiling. These three programs perform the
same set of arithmetic operations but differ in where the expression x is declared
and evaluated (assuming lazy evaluation throughout). Table 1 shows the number of
primitive operations counted for the functions in each program using both lexical
profiling and dynamic profiling. The results of the lexical profiler always show the
cost of x being associated with the function in which x is lexically contained. The
results of the dynamic profiler highlight the presence and effect of laziness, and the
cost of x is associated with the function that required the value of x.

Although we may not be interested in precise numbers of primitive operations,
these examples illustrate the differences in the two profiling styles and show that
in order to appreciate fully how a program is evaluating, both styles may be used
together to provide a comprehensive view. If we consider just the count of prim-
itive operations using the lexical profiling style, the results given in Table 1 for
programs 1 and 3 are indistinguishable. Similarly, if we count just the primitive
operations reported dynamically then programs 1 and 2 are indistinguishable. Func-
tional language implementors can therefore benefit from using a lexical profiler in
conjunction with a dynamic profiler. Functional programmers, however, would re-
quire detailed knowledge of the underlying evaluation mechanisms to use a dynamic
profiler effectively.

Let us now consider an example in which dynamic profiling may give different
results each time the program is executed but where lexical profiling will give
consistent results. In the program:

Lexical profiling: theory and practice 231

Table 1. The difference between dynamic and lexical profiling.

Program

1
2
3

function in

... declared

f
g
f

which x is...

... reduced

h
h
g

1 •

1 •

Number of

lexical profile

f g

+ Px 1
1 1 +px

f Px 1

primitive

h

1
1
1

f

1
1
1

operations

dynamic profile

g

1
1

1 +Px

h

1+Px
1+Px

1

px = number of primitive operations to evaluate x

Program 1

Program 2

Program 3

f

ev "V
6 A

h x

f

g y

h x

f

g x

h x

= (g x) / 18
where x = (expression)

= (h x) * 10
= x + 12

= (g 20) / 28
= (h x) * y

where x = (expression)
= x + 22

= (g x) / 38
where x = (expression)

= x * (h 30)
= x + 32

Fig. 2. The three programs whose behaviour is analysed in the above table.

f = (g x) + (h x)
where x = expression

g x = h x • 10
h x = x + 32

the evaluation order of the primitive + is important. If the order is left to right
then a dynamic profiler will credit g with the evaluation of x, but if the evaluation
order is right to left then h will be credited. In a parallel system where the load
balance and evaluation order are non-deterministic, a dynamic profiler may return
different results on different occasions. Lexical profilers do not suffer from either of
these problems as results are associated with lexical scope, thereby providing a static
relationship between the source code and the run-time results.

A corollary of this relationship is that the interpretation of lexical profiling results
is independent of the underlying evaluation mechanism (though, of course the

232 C. Clack et al.

Fig. 3. An example call graph.

same program might exhibit differing performance on differing implementations).
In contrast, the data from dynamic profiling is always dependent on the evaluation
mechanism.

1.3 Methods of propagating profile-times

When a function is profiled, it is often desirable for the execution time reported
for that function to include the times of its subfunctions ('children') (Graham et al,
1982). In this section we discuss two complementary methods for propagating the
costs of functions to their parents. We call these statistical and inheritance profiling,
respectively. The lexical profiler described in this paper is amenable to both of these
methods of propagation.

For propagation to be 100% accurate, a profiler would need to reconstruct the
entire call-path for all function calls. However, the time and space costs associated
with building and analyzing complete program traces are prohibitive. In practice,
therefore, it is more common to log information concerning just the calls made by
each function to its immediate children (Graham et al, 1982). This is obviously less
comprehensive than a full program trace, and consequently leads to approximations
when profiled attributes are propagated from child functions to their grandparents.
For example, consider the following code:

f a = h a + l
g b = h b - 1
h x = ix + ix
i x = x + 1

Figure 3 shows the call graph for these function definitions. It is clear from the call
graph that the function i is called only from function h, but that h. is called from
both f and g.

When the code sequence is profiled we log separately the time spent in h due to
calls from f and the time spent in h due to calls from g. We also log the time spent
in i due to calls from h. The information recorded about the calls to immediate
children is therefore accurate. A problem arises, however, when we come to calculate
a total time for function f (i.e. including the time spent in its descendant functions
h and i). Without storing a complete call-path from f to i we are uncertain how
much of the time spent in i was ultimately due to calls originating at f and how
much was due to calls originating at g.

Lexical profiling: theory and practice 233

1.3.1 Statistical propagation

One solution to the above problem (Graham et al., 1982) is to divide i's time
according to the ratio:

number of calls from f to h
number of calls from g to h

(e.g. if there are six calls from f to h and 4 calls from g to h, then f will get 60%
of the time in i and g will get 40% of the time in i). This is the method used
by statistical profilers such as gprof: it assumes a linear correlation between the
number of calls to one function and the execution time of another. For the example
code given above the assumption is correct. However, in more complex examples
where calls to i are dependent on parameters passed to h, the correlation is less
likely to hold and the results may therefore be inaccurate.

1.3.2 Inheritance propagation

We observe that the process of propagating the time-costs of a subgraph to the root
node of that subgraph is equivalent to collapsing the subgraph to a single point.
The potential inaccuracy of the statistical style of propagation is due to incomplete
information being available when a subgraph is collapsed. Often, this problem may
be avoided by collapsing a subgraph prior to measuring costs; of course, it is the
profilers view of the graph that is collapsed, and not the actual call-graph.

For example, in Fig. 3 the subgraph whose root is h may be viewed as a single
node. Thus, for profiling purposes the sub-function i is treated as an extension of its
parent, and the total amount of time spent both in and below h may be propagated
accurately to f and g. The code outline would be profiled as though it had been
written thus:

f a = h a + 1
g b = h b - 1
h x = i x + i x

where
i x = x + 1

The above example demonstrates the use of inheritance to provide more accurate
information in the presence of sharing. However, we can also apply the inheritance
mechanism to arbitrary subgraphs to allow the programmer control over the amount
of profiling information that is reported. As an aid to further discussion, we define
the following terms (we use the term 'function' to refer to either a function or a
CAF: t this is discussed further in section 5.5):

An unprofiled function is a function which is subsumed into a parent during the
inheritance process - unless it is a shared function. Shared, unprofiled functions
cannot be inherited because there is an ambiguity as to which parent should
subsume the child. This issue is discussed further in section 4.

* Constant Applicative Form (Peyton Jones, 1987b).

234 C. Clack et al.

A profiled function is a function which is not subsumed into a parent during the
inheritance process.

A profiler that implements inheritance propagation can also provide the equivalent
of statistical propagation; all that is necessary is to post-process the results. However,
mutual recursion complicates the process and we leave the provision of a statistical-
mode post-processor to further work.

2 Existing profilers - a brief history

In this section we describe existing profilers for both imperative and functional
languages and consider how they have motivated and affected the design decisions
for our profiler.

2.1 gprof — an existing imperative profiler

The UNIX profiling tool gprof (Graham et al, 1982) produces a profile of a program
based on the program's dynamic call tree. Results are presented with an entry for
each profiled function, together with information about the parents and children of
the profiled functions. The data for child functions is propagated towards the root of
the call tree so that each node incorporates a measure of the expense of its subtrees.
The gprof profiler is based on an older program, prof, which does not propagate
information in this way but just reports how many times each function is called, the
amount of time spent in each function, and the percentage of total running time for
each function. The gprof mechanism is a great improvement over the simpler flat
style of profiling and, as a result, gprof has been used successfully with imperative
programs for many years.

The implementation of gprof is based on the assumption that code is statically
placed in consecutive memory locations at load time. The execution time of each
function is not measured exactly, but approximated by monitoring the location of
the program counter every l/60th of a second. A histogram of program counter
values is constructed and the amount of time spent in each function is estimated
by post-processing the histogram in conjunction with a map of code locations.
One problem with gprof is that it does not monitor space utilization and so cannot
provide full information for programs which make extensive use of dynamic memory
allocation (however, the mprof profiler (Zorn and Hilfinger, 1988) does provide this
facility). Finally, we note that gprof does not provide useful information for mutually
recursive functions because it collapses each strongly-connected component in the
call graph to a single point.

Despite the faults and inaccuracies mentioned above, gprof has proved to be
a useful tool for imperative programmers. This provides a motivation to develop
similar profiling tools for functional languages.

Lexical profiling: theory and practice 235

Table 2. Comparing string_to-int functions.

Input string-to-intl string-to-int2

II It

" 1 "
"12"
"123"
"1234"
"12345"
"123456"

cells

10
19
29
39
49
59
69

reductions

3
9
14
19
24
29
34

cells

19
47
77
107
137
167
197

reductions

7
23
41
59
77
95
113

2.2 Statistics provided by functional language implementations

Many functional language implementations (e.g. Miranda* (Turner, 1985)) provide
rudimentary statistical information detailing such things as the number of reductions
performed, and the total number of heap cells allocated during an evaluation. These
can be used to choose between two different program designs. For example, consider
the following two functions which both convert a string to an integer:

string_to_intl :: String -> Int

string_to_intl s

= string_to_int' s 0

where

string_to_int' [] v = v

string_to_int' (h:t) v

= string_to_int' t (10*v + (ord h - zero))

zero = ord '0'

string_to_int2 :: String -> Int

string_to_int2 s

= sum [x*y I (x,y) <- scale_factors]

where

scale_factors = zip (reverse digits) (iterate (*10) 1)
digits = map ((\v -> v - ord '0').ord) s

If we wish to determine which is the most efficient, we can compare their run-time
behaviour for a given input. Table 2 gives the number of cells allocated and the
number of reductions performed for the given input. (This experiment was conducted
using the Haskell interpreter, gofer.)

This data shows that although both functions display linear behaviour, one func-
tion is more efficient than the other and we would probably choose string_to_intl
to convert strings to integers in an application. Thus, statistical information from the
run-time system can sometimes be very useful; however, the information is limited
and if more information is required then a program profiler must be used.

* Miranda is a trademark of Research Software Ltd.

236 C. Clack et al.

2.3 The New Jersey SML profiler

The New Jersey implementation of Standard ML is remarkable for the fact that it
is supplied with a functional language profiler (Appel et al., 1988) which gives more
extensive information than the simple statistics discussed in section 2.2. The program-
mer chooses a subset of functions to profile and, for the purposes of profiling, the chil-
dren of these functions are subsumed into their parents. This is inheritance profiling
(see section 1.3). The accompanying manual directs the programmer to experiment
with multiple profiles of the same program, choosing different groups of functions
each time in an attempt to get a more accurate idea of the program's behaviour.

The profiler is designed to profile strict evaluation and does not profile usage of
heap space. Also, the results of the SML profiler can be difficult to interpret in
the presence of higher-order functions because the execution times of higher-order
arguments are attributed to special identifiers instead of to the real functions. The
authors of (Tolmach and Dingle, 1990) argue (with an example) that the ambiguous
results are of little consequence in short programs where a higher-order function
is called just once; they then suggest that the programmer should be able to guess
to which real function the special name refers. However, guessing is not so simple
for large programs where higher-order functions (such as map) are called repeatedly
with different higher-order arguments each time. The SML profiler coalesces all
applications of a single higher-order parameter into a single timing, thus losing vital
information (Appel et al., 1988).

2.4 UCL in-line cost primitive

An early profiling technique investigated at UCL was the use of in-line cost functions
(Parrott and dayman, 1990) for measuring the cost of evaluating an expression.
The technique used a cost function which had the equivalent semantic behaviour
to the identity function. In order to ensure referential transparency, the cost of the
evaluation was written to a special output stream which could not be accessed by the
program. For the primitive to work properly, we had to ensure that evaluation took
place at the right time for measurements to be meaningful. Normally, an application
of the identity function would not cause its argument to be evaluated. However, we
desired the argument of the cost function to be evaluated to the extent demanded by
the context in which the application occured. For example, in the expression n + f s t
(cost expr), expr is a pair whose first element is a number. In this context, the cost
to be measured is that of constructing the pair and evaluating the first element. To
ensure that the correct amount of evaluation was measured by the cost primitive
we therefore advocated the use of a run-time system which incorporated Burn's
evaluation transformers (Burn, 1987) to provide the necessary run-time information.

However, the in-line cost functions have drawbacks because the information
provided by a cost function is dependent upon its context at run-time. It is impossible
to interpret the results without thoroughly understanding the effects of laziness on
the evaluation of a program. In a parallel implementation, the order in which
expressions are evaluated cannot be determined and the timings returned by cost

Lexical profiling: theory and practice 237

will change from one program run to another. A fundamental problem with this
profiling technique is that it takes a microscopic view of the program - we prefer a
macroscopic view which reports its results at a level of abstraction understood by the
functional programmer. Furthermore, the cost functions do not provide information
about space usage or function call-counts.

2.5 Glasgow cost centres

Sansom and Peyton Jones (1992) introduced cost centres, which associate unique
names with the time and space costs of evaluating specified expressions. The im-
plementation is an extension of the Spineless Tagless G-Machine (Peyton Jones
and Salkild, 1989) used by the Glasgow Haskell compiler. When an expression is
to be profiled, the closure built to represent the expression is augmented with an
identifying tag which remains with the closure throughout its life. A register is added
to the STG-Machine in order to keep track of the current cost-centre. The register
is sampled at intervals to determine the amount of time spent in each profiled
expression. The key to the implementation of the Glasgow profiler is to ensure that
the current cost-centre register is set at appropriate times. The issues are complex
and are discussed in detail in Sansom's PhD thesis (in preparation). We describe a
similar mapping of our own profiling scheme to the TIM compiled abstract machine
in (Clack and Parrott, 1993).

Cost centres are the subject of current research and during the last year the
technique has been subject to many changes (see, for example, Sansom, 1993, 1994).
It is encouraging to learn that cost centres have now adopted the lexical approach
advocated in this paper. As a result, cost centres exhibit similar properties to those
described in section 3 of this paper. There are, however, two basic differences between
cost centres and the profiling scheme described here:

1. Cost centres are used to profile expressions: we choose to profile functions. This
distinction is largely stylistic, except for the treatment of shared expressions.
Cost centres require all Constant Applicative Forms (CAFs) to be profiled
separately, even if the programmer has not asked for these to be profiled, but
does not require shared functions to be profiled separately. By contrast, the
profiling scheme described in this paper does not distinguish between functions
and CAFs and only requires a CAF or function to be profiled separately if it
is shared. In section 5.1.3 we explore the consequences of different methods of
specifying which entities are to be profiled.

2. The implementation of cost centres requires a smaller space-overhead than the
implementation of our scheme. However, we believe that this is at the expense
of requiring complex transformations and the special treatment of CAFs. We
return to this issue in section 5.1.5.

3. The method of observing time is different: both Glasgow's method and our
method are subject to inaccuracies, but in different ways.

238 C. Clack et al.

2.6 Runciman and Waketing heap profiler

Runciman and Wakeling (1993) describe a profiler that monitors heap usage of lazy,
functional programs. Each cell allocated in the heap is tagged with a 'producer' name
(the name of the function which created the cell) and a 'construction' name (the type
of construction which the cell represents; typically the name of a constructor of an
algebraic data type). The memory occupied by the live heap (in bytes) is discretely
sampled and plotted as a function of time (in seconds); the area covered by this
graph is reported as a single (time x space) product at the top of the display and is
used as a measure of the cost of the program. One can also request heap-profiles
which are restricted to named functions (either as producers or consumers) - such
selection helps to 'home in' on a space fault. A great deal of attention has been
given to the presentation of the profiling results, to good effect.

A worked example in Runciman and Wakeling (1993) shows that heap profiling
can be very useful to functional language implementors, since the authors were
able to detect two serious faults in the abstract machine. Of course, an applications
programmer would not normally have access to the source code of the underlying
evaluation mechanism, and probably would not have the intimate knowledge of the
system which would enable her to detect and fix such faults. However, the worked
example in Runciman and Wakeling (1993) also shows how heap profiling can help
applications programmers to detect pipeline blockages by profiling producers, and to
detect programming blunders and algorithmic inefficiencies by profiling constructors.

The Runciman and Wakeling profiler is undoubtedly a major step forward, but it
is deficient in a number of areas:

1. The producer profile can indicate that a certain function (e.g. map) is responsible
for producing a disproportionate amount of cells; but there may be many
applications of the function in a program and the producer profile cannot
distinguish between the different applications.

2. There is (deliberately) no information about the time spent in functions or the
number of times each function is called.

3. Heap space is measured by visiting the whole graph at pre-determined intervals.
For large heaps (as in Runciman and Wakeling's example), the pauses caused
by these visits will be long. Thus, for practical reasons, an upper bound is
imposed on the sample frequency and this can cause the presented data to be
misleading due to quantization (though experience of heap profiling sequential
implementations (Runciman and Wakeling, 1992; Kozato and Otto, 1993;
Grant et al., 1993) suggests this is not problematic). A more acute problem
for distributed-memory parallel implementations is that this method will incur
high overheads, since in such systems a global graph walk can be extremely
expensive.

3 Lexical profiling

In this section we present a new technique for profiling lazy, higher-order functional
programs. We call this technique lexical profiling.

Lexical profiling: theory and practice 239

We aim to provide applications programmers with a straightforward method of
attributing the run-time resource consumption of their programs to the relevant
function definitions within the source code. Lexical profiling attributes the costs of
all, and only, those expressions textually contained within each profiled function to
that function. The advantage of lexical profiling is that it provides information that
is related to the way the program is written rather than to the way it is evaluated.
Consider the following short program:

let map f [] = []

map f (x:xs) = f x : map f xs

increment x = x + 1

g = map increment [1..1000000]

h = map increment [1..10]

in (g, h)

When this program is executed, increment will be invoked many times from within
map via map's higher-order parameter. The explicit references to increment, how-
ever, are lexically enclosed within the definitions of g and h. From the programmer's
point of view it makes sense to talk about the function increment which originates
from either g or h in preference to that which was invoked by map because this is
more readily related back to the source code. This is the essence of lexical profiling.
In larger examples where increment is passed as a higher-order argument to many
functions, the information provided by the lexical profiling style is far simpler for
the programmer to assimilate than the non-lexical alternative.

To achieve lexical profiling, we must solve the following two problems:

1. Higher order programming languages allow functions to be passed as ar-
guments to other functions and to be returned as results. Consequently, a
function application may be denoted in one part of a program and evaluated
elsewhere. Thus, the attribution of costs is non-trivial.

2. Lazy evaluation requires that objects are evaluated only as far as is necessary
for immediate use. Consequently, evaluation is temporally distributed and the
evaluation of several expressions can be interleaved. Correctly attributing cost
which is interleaved with other evaluation is similarly non-trivial.

In the remainder of this section, we provide further discussion of the technique
and the problems of higher-order and interleaved computation. Subsequent sections
explain how we solve the above two problems.

3.1 Properties of the lexical profiler

The lexical profiler collects statistics for user defined functions for either all top-
level functions or just those which the programmer requests.8 The profiler measures
the time and space used at run-time by profiled functions and reports the number
of calls made to profiled functions (and from where they originated). For lexical

§ Requests are expressed using compiler options rather than in-line program annotations.

240 C. Clack et al.

profiling the profiler must recognize when lazy arguments are being evaluated and
switch context so that the time and space required for the evaluation are attributed
to the function whose definition lexically contains the associated expression. The
context switch does not constitute a full function call so the number of calls made
must not be incremented.

Lexical profiling requires the compiler to record the lexical scope of functions
so that the run-time system can monitor the functions and attribute measurements
correctly in the presence of higher-order functions and lazy evaluation. The compiler
needs to access the source program early in compilation and is responsible for
maintaining the lexical affinities throughout all subsequent program transformations.

The run-time system is responsible for measuring the time spent in a function,
the number of calls to a function, and the amount of space used by a function. The
simplest of these is the number of calls to a function. This represents the number of
times that the function is applied to its full quota of arguments.

The space used by a function is defined as the number of heap cells which have
been allocated by that function and which have not yet been garbage collected. This
heap occupation is a function of time, whose graph is plotted (it may be helpful to
implementors if we distinguish those cells which are purely used for system purposes,
such as cells used to hold suspended tasks). We define space usage in terms of the
garbage collector activity because it is more useful for a programmer to know exactly
how much memory is actually being used, and is therefore not available for re-use,
than to be given information about how much memory constitutes the accessible
program graph (which is an implementation issue). Knowledge of actual memory
use will, for example, show whether the program will soon exhaust the available
heap memory.

If space usage is defined in terms of those cells that are not available for re-
use then the continuously-measured space profile generated by our profiler will be
characteristically different according to the type of garbage collector being used.
Figure 4 illustrates the difference between the characteristic space profiles for a
reference-counting garbage collector and for a raark-and-sweep or two-space copy-
ing collector. Reference-counting collectors (such as the one used by our graph
reduction engine) are typically more distributed in time than the other kinds
of collectors and the function of heap usage against time more closely follows
the implementor's view of the accessible heap. By contrast, the use of mark-
and-sweep collection means that the measured function is effectively a quantized
version of the accessible heap: the number of accessible cells in the program
graph only equals the number of cells in use immediately after a sweep opera-
tion and between sweeps only cell allocations (not deallocations) are measured.
Reference-counting does not, however, provide a perfect match between acces-
sible cells and those in use: cyclic structures might not be collected at all, in
which case the cells in use might be greater than the accessible cells (as shown in
Fig. 4).l

1 Cyclic cells can be collected by reference-counting garbage collectors: furthermore, the
collection of cycles can be distributed in time (e.g. see Wright, 1994).

Lexical profiling: theory and practice 241

Space Space accessible

Time

Mark and sweep / Two-Space Copying

Time

Reference Counting

Fig. 4. Space usage with different garbage collectors.

Current
function

in h

ing

inf

function
call

return

Time
(i) (ii) (iii) (iv) (v)

Fig. 5. Recording processing time under strict evaluation.

From the programmer's point of view it does not matter which garbage collection
technique is used, since the profiler will faithfully reflect the actual space utilisation
of the program. We use reference-counting garbage collection in our implementation.

The time spent in a function is the accumulation of small amounts of time
evaluating different parts of the function. This is illustrated in Fig. 5 (based on the
simple program presented in section 1.2), where time increments are recorded at
points (i)-(v) during the evaluation (i.e. when a function is called or when a return
is made). We do not include garbage collection time, which is recorded separately.

242 C. Clack et al.

3.2 Profiling in the presence of lazy evaluation

Under lazy evaluation, an expression appearing lexically within the function body of
one function might be evaluated by another function. For lexical profiling, the time
and space resources consumed during the evaluation of the expression should be
attributed to the function in which the expression was denoted, not that in which it's
evaluation was forced (the lexical attribution makes the programmer's job simpler
when searching for expensive code).

The following function definition illustrates the point:

f = g exp^ expB

Here, the expressions exp^ and exps originate from the definition of function f.
However, lazy evaluation semantics demand that each expression is only evaluated
when its normal form is definitely required; in this case neither expression will be
evaluated by f because they are merely passed as arguments to g. The lexical profiler
must therefore keep track of the origin of all argument expressions so that when the
expressions are eventually evaluated the profiler can assign the cost of the evaluation
to the correct function.

To correctly (lexically) attribute time costs, the profiler must therefore be able to
make a context switch. Figure 6 (once again based on the simple program in section
1.2) illustrates a context switch for a function f which passes an argument lazily to
a function g. When the evaluation of the argument is forced within the body of g
(at point (ii) in the figure) the profiler must record the time required to evaluate the
argument separately, and attribute it to f. When the evaluation of the argument is
complete (point (iii) in the figure), the profiler switches context again, and continues
to attribute time to g.

To log the time increments, a profile table is built for every profiled function. For
each profiled function fp, the table contains an entry which records the functions
from which fp originates and, for each unique origin, the number of calls to fp

and the accumulated processing time due to those calls. Each profile table is a
representation of calls from multiple parents to a single child. To generate the full
call graph the data for a single parent to multiple children is needed. This data can
be generated by inverting the profile tables. When the call graph is completed, the
profiling results are evaluated and returned to the user.

4 Compiling with profiling in mind

The profiler presented in this paper is amenable to both fully compiled and inter-
pretive abstract machines. To simplify the presentation we demonstrate the general
principles of the profiler's implementation using a sequential, interpreted model of
graph reduction. In this section we discuss modifications that must be made to
compilers. In section 5 we shall present details of the run-time mechanisms which
facilitate call-count profiling, time profiling, and space profiling, and in section 9 we
discuss how these techniques extend to fully compiled abstract machines.

Lexical profiling: theory and practice 243

Current
function

in h

in g

inf

function
call

return

context
switch

Time
(i) (ii) (iii) (iv) (v) (vi) (vii)

Fig. 6. Recording processing times in the presence of non-strictness.

f=
) \

colour 1
root g= J

colour 2
root

colour 1 colour 2

Fig. 7. An example of an unprofiled function which is shared by two profiled functions.

The following discussion assumes that functional programs are represented inter-
nally by the compiler as a parse-graph (e.g. see Parrott and Clack, 1991) and that the
nodes of the parse-graph are represented by cells that have been extended to include
profiling information. To keep track of the relationships between the parse-graph
and the source program we assign a unique colour for each function to be profiled.
Typically, colours will be represented by integers and will be assigned to every cell in
the parse-graph. Each cell also contains a 1-bit flag to indicate whether it represents
the root of the definition of a profiled function. When the flag is set, the cell is said
to contain a root-marker.

Colour assignment is performed in two stages. The first stage identifies the roots
of the function definitions within the graph:

244 C. Clack et al.

For each function to be profiled:

(i) locate the root of the subgraph which represents the function defini-
tion.

(ii) set the root-marker for this cell,
(iii) assign a unique colour to the cell.

The high-level function names are not present in the executable program; an auxiliary
file is therefore generated by the compiler so that the report process can map the
colour-coded profile data back to the original functions.

The second stage propagates the colours to the other cells in the graph:

For each cell whose root marker is set:

(i) recursively propagate the colour of the cell to all of its descendants,
terminating each branch of the recursion on encountering a cell whose
colour is already determined.
Notice that if a profiled function h makes a call to an (unshared) un-
profiled function i then the cells representing the application of i will
be descendants of h and will be given h's colour. This therefore im-
plements inheritance-mode profiling. See below for further discussion
of shared unprofiled children.

(ii) if the recursion terminates on a cell whose root-marker is not set
and whose colour is different from that being propagated then the
unprofiled child cell is shared by two (or more) profiled parents. Two
methods for dealing with this problem are described below.

4.1 Shared code

Figure 7 illustrates the problem of an unprofiled function which is shared by two
or more profiled functions. The graph represents the case when profiles are re-
quested for f and g, but not for h, where f, g, and h are defined as follows:

f = expu h
g = h expc

h = expB

Two possible alternative compile-time solutions are:

1. Duplicate the cells which represent the shared child, as demonstrated in Fig. 8.
If this solution is adopted then the result of the program is unchanged but
a loss of sharing occurs and the programmer therefore receives no feedback
regarding the beneficial effects of sharing. Furthermore, the overall resource
utilization of the program is distorted. We prefer not to implement this
solution.

Lexical profiling: theory and practice 245

f= I [
colour 1

root g= J \
colour 2

root

colour 1 / \ colour 1

A\ /BN
xolour 2 /\colour 2

f=
\

colour 1
root

Fig. 8. Duplicating the shared function.

g= J
colour 2

root

.colour 1
colour 3 (root)

.colour 2

Fig. 9. Profiling the shared function in its own right.

2. Profile the child separately in its own right (see Fig. 9). This may be achieved
either by means of a general-purpose shared-code colour or, more usefully, by
means of a unique colour for each shared, unprofiled function. The advan-
tage of this technique is that the sharing properties of the source program
are retained: the programmer can see the effect of using sharing to optimize
resource utilization, and the overall resource consumption of the program is
not distorted.

Glasgow cost centres provide a run-time solution to the problem of sharing, which
they call 'dynamic inheritance'. This has the advantage that shared expressions will
only be profiled separately if their profile has been requested (whereas we profile
all shared functions separately, regardless of whether this is what the programmer
requested). The disadvantages of dynamic inheritance are that it is an additional
run-time overhead and that all CAFs must be profiled separately, regardless of what
the programmer specified.

4.2 An example of the profiler's compilation phase

Figure 10 shows a graphical representation of the following piece of a program:

main = f 10
f x = h 1 (g x [1..1000])
g a b = a : reverse b

246 C. Clack et al.

main=

f=Ax.

g=X a b. : a

f 10

h 1 (g x [1. .1000])

g x [1..1000]

1 1000 [1..1000]

a : reverse b

reverse b

Fig. 10. A graphical representation of the example program.

Functional expressions corresponding to each of the graphical units are given on
the right-hand side of the figure.

In the first profiling pass, the compiler extends each of the cells in Fig. 10 by an
extra field to accommodate the profiling information and attaches root markers and
unique profiling colours to the relevant cells. Figure 11 illustrates the result of this
pass for the example program.

In the second profiling pass, the compiler propagates the profile colours to
descendant cells in the program graph. The results of this phase are shown in
Fig. 12. Notice that there is no problem with unprofiled shared code in this
example.

Once every cell has been coloured, any transformations which may subsequently
performed by the compiler on the graph must preserve the cell colours so that
knowledge of the lexical scoping of the original program is retained. The initial
colouring process may occur at an intermediate stage in the compiler (for example,
our prototype does colouring at the level of intermediate code) as long as the colours
directly relate to the source-level function definitions. Our prototype takes FLIC
(Peyton Jones and Joy, 1989) as input and we effect no further program transfor-
mations (though we do a substantial amount of static analysis and optimization);
thus, the issue of preserving colours in the presence of program transformation is
left to further work.

Lexical profiling: theory and practice 247

main= 1 10 ROOT
(main)

f 10

f=Ax.

1 1000

g=Aa b. : a

h 1 (g x [1. .1000])

g x [1. .1000]

[1..1000]

a : reverse b

reverse b

Fig. 11. Introducing root markers and unique root colours.

5 The run-time mechanisms

For straightforward interpretive graph reduction, a program is represented by a
graph of binary cells. Each cell consists of left-hand and right-hand fields whose
contents are determined by the abstract machine. (Other fields may also be required
by the reduction engine to store status information but these have no effect on the
profiling mechanism described here.)

5./ An extended cell representation for profiling

For profiling purposes, each cell will be extended with extra information supplied
by the compiler. In this section, we will determine how much extra information is
required; we begin with a simple example and show that this does not guarantee
to retain the lexical affinities of the source program. We detail two extensions to
the simple scheme: the first overcomes the loss of lexical affinities, and the second
facilitates enhanced information gathering.

5.2 A Adding constructor information to cells

A naive attempt at lexical profiling is shown in Fig. 13. The graph represents the
following program segment:

l e t g x = x exp^ expB
h = g f

in h
Each graph cell is augmented with the colour of the function which constructed it in

248 C. Clack et al.

main=

= Ax.

f

1 10

1
1 1

g=A a b.

ROOT
(main)

II

\r:

ROOT

(0

X

a

I
V_

II
reverse

(0

••

ROOT

(g)

b

1

(g)

1000 (0

£ 10

h i (a x [1..1000])

O x [1..1000]

[1..1000]

a : reverse b

reverse b

Fig. 12. Propagating profile colours downwards from the roots.

the same manner as the compiler's parse-graph shown in Figs. 10,11, and 12. We shall
henceforth use the terms constructor-function and its associated constructor-colour
(though the reader should take care not confuse these terms with Runciman and
Wakeling's 'constructor-profiles'). The graph segment shown in part (ii) of Fig. 13 is
the result of instantiating g with the argument field, @, using template instantiation
(Peyton Jones and Lester, 1992, Ch.2). The redex has been overwritten by the result
and the movement of key fields from graph segment (i) to graph segment (ii) is
illustrated by the labels ®, ©, and ©.

There are several points of interest in this example. Firstly, notice that the
constructor-colour, h, of the overwritten redex has not been updated. This is ex-
plained in more detail in section 5.4. Secondly, notice that in part (i) of the figure,
prior to instantiating g, the reference to function f was contained within a cell whose
constructor-colour was given as h but in part (ii) of the figure, after the instantiation,
the reference is contained within a new cell whose constructor-colour is given by
g. This clearly contravenes the rules of lexical profiling because it now appears as
though the reference to f occurred lexically within g."

5.7.2 Retaining lexical affinities

The above problem is due to the unboxed argument, @, and might naively be
solved by ensuring that all argument values are boxed. Figure 14 demonstrates this
principle. In part (i) of the figure, prior to the instantiation of g, the argument
containing the reference to f is boxed and thus occupies an extra cell. After the

See section 5.1.5 for a comparison between this problem and the current behaviour of
Glasgow cost centres.

Lexical profiling: theory and practice 249

Fig. 13. A naive attempt at profiling lazy, higher-order functions.

(i)

Fig. 14. Lexical profiling using boxed arguments.

instantiation (part (ii) of the figure), the cell is unchanged, hence maintaining a
constant constructor-colour for the reference to f.

The method of boxed arguments provides correct lexical profiling information
but requires the reduction engine to translate all unboxed arguments into boxed
values. This will need changes to be made to the way that most abstract machines
perform graph reduction and is extremely inefficient. Furthermore, this will distort
the space utilization of the program. Ideally, the profiling mechanism should only
require changes that relate directly to profiling and not to the reduction strategy.

Fortunately the problem can be overcome by assigning additional colouring
information to the left-hand field, L, and to the right-hand field, R, of each cell.
Since L and R each have their own profiling information, values can be safely
unboxed without losing vital information.

250 C. Clack et al.

L

CR *-OR

R
(root)

c <— o

Fig. 15. A fully augmented graph cell.

5.1.3 Identifying reference sites

With the above scheme, we may determine the degree to which functions are
responsible for consuming time and space; however, lexical profiling requires that
the costs for a function are categorized according to the different reference sites of
that function in the source program.

There are many ways in which this categorization may be achieved. For example,
the user might explicitly identify which reference sites are of interest and give them
unique names (Sansom and Peyton Jones, 1992) which would be used to define
the cell and field colour information. However, we chose to implement a different
method which automatically identifies the different reference sites. This has two
advantages:

1. The user is spared the effort of identifying the reference sites.
2. Where a function is degenerate only at a subset of its reference sites, the user

does not need to know in advance which reference sites to monitor.

The two disadvantages of our approach are:

1. The user may be provided with more information than necessary; however,
we provide the user with the facility to monitor specific functions, thereby
reducing the total amount of information gathered.

2. If more than one reference of the same function is made in a single expression,
our method will not distinguish between them.

To categorize function reference sites automatically, we redefine a colour to be a two-
colour pair denoted by c <— o. The <- operator is used to combine the two colours
of each pair into a single, compound symbol; we use a <— symbol as a metaphor
for lexical containment or derivation (thus c *— o means that 'this application of c
is lexically contained in the definition for o'). The colour c is the constructor colour,
whereas the colour o represents the reference site. Each graph cell and each of its
fields is extended with a colour pair, as depicted in Fig. 15.

The c, CL, and CR colours indicate the constructor-function for the whole cell, the
item in the left-hand field, and the item in the right-hand field, respectively. For
the cells of supercombinator templates, c = CL = CR. These are assigned statically
when the program is loaded, according to the colouring information supplied by
the compiler. When supercombinator templates are instantiated (see sections 5.2
and 5.3), a mutable copy of the template graph is constructed. The fields which
contained formal parameters in the template are instantiated with both the value

Lexical profiling: theory and practice 251

and the profiling colours of the actual parameters. Therefore, in the mutable part of
the program graph, the c, cL, and cR colours within a single cell may be different.

The colours o, OL, and OR are origin-colours and are used to record which functions
lexically contain references to the corresponding constructor-functions in the source
program. Profiling information can then be reported back to the programmer in
terms of the lexical function origins present in the source code. Consider the example
program given at the start of section 3. Here, the origin-colours of cells constructed
by map will be set to the colour of function g for the first call to map and to the
colour of function h. for the second call. Again, the o, OL, and OR colours may differ
from each other when either or both of the left- or right-hand fields are instantiated
by actual parameters. Since origin-colours are set during instantiation, they are not
defined for the cells of supercombinator templates.

5.1.4 Summary of colouring information

In total, we use six colours plus a 1-bit root-node marker which is set in the top cell
of profiled functions and reset in all other cells (see section 4). The six colours are
arranged into three pairs: c «— o (defined for the whole cell), CL <— OL (defined for
the left-hand field), and cR <— OR (defined for the right-hand field). Table 3 provides a
summary of the colouring information (where =̂= means 'is not necessarily equal to').

5.1.5 Comparing the six-colour scheme with Glasgow cost centres

We have now shown how full lexical profiling can be achieved using a six-colour
scheme. At this point it is worthwhile comparing our profiling scheme more closely
with its nearest alternative, Glasgow's cost centres (Sansom and Peyton Jones, 1992).

Cost centres employ a colouring scheme similar to that described in section 5.1.1.
Thus, only a single colour is required per closure. We have already described in
some detail the problems that are encountered with this scheme in the presence of
higher-order functions. In the defence of the single-colour mechanism, however, it
can be argued that functions really have zero cost and that it is their application
which consumes resources. If this argument is accepted then the lexical position of
a function applied to zero arguments is irrelevant, and the single-colour scheme is
acceptable. However, the eventual application of the function to its arguments will,
as a consequence, be determined dynamically. We believe that this contradicts the
spirit of lexical profiling because it is difficult for the programmer to make sense of
the profiling results in the context of the source code for the program. Furthermore,
when the function whose cost is assumed to be zero is actually a CAF, the single-
colour scheme may give incorrect results. The CAF may require some evaluation,
hence its non-zero cost should be attributed lexically, not dynamically. To avoid the
problems of attributing the cost of inherited CAFs, cost centres always profile CAFs
separately, regardless of whether or not they are shared. Furthermore, in recognition
of the problem of attributing the costs of higher-order functions, cost centres have
now been adapted so that a program transformation is applied to every top-level

252 C. Clack et al.

Table 3. A summary of colouring information.

Colour Description

c Identifies the function responsible for creating the current graph cell.

o Identifies the origin of the function responsible for creating the current
graph cell. From this colour we can determine where the function reference
was made, lexically within the source code.

cL Indicates which function originally created the left-hand field of the current
cell. This is needed to keep track of the constructor colour of functions
that have been passed as arguments. If the field contains a higher-order
argument then cL ^ c.
This colour is used in section 5.2 to determine the origin colour of a
profiled supercombinator when the supercombinator is instantiated.

Oi The origin colour of the left-hand field of the current cell. As for cL, if
the field contains a (higher-order) argument then OL =fc o.
This colour is used in section 5.3 to determine the origin colour of a
non-profiled supercombinator when the supercombinator is instantiated.

CR The constructor colour of the right-hand field of the current cell. Again,
if the field contains a higher-order argument then CR ^ c.
This colour is needed when the value of the field is passed as an actual
parameter to another supercombinator where it is subsequently applied
as a function to some arguments.

OR The origin colour of the right-hand field of the current cell. As for cR,
if the field contains a higher-order argument then oR =fc o and, again,
the colour is needed when the value of the field is passed as an actual
parameter to another supercombinator.

inherited function which is passed as a higher-order function: this effectively 'boxes'
the higher-order function to capture the cost centre of its reference site.

The six-colour scheme always attributes the cost of applying a function (including
CAFs) to the position in the source code where the function was referenced. It is a
simple scheme which does not require 'boxing' transformations and does not require
special treatment for CAFs.

5.2 Instantiating profiled supercombinators

If the root marker in the top cell of the supercombinator's template is set, then
the template represents a profiled function. Figure 16 illustrates the procedure for
instantiating profiled functions, using the supercombinators / i and fi which are
defined as follows:

f! = f2 exp.4
f2 x = expB x

Consider part (i) of the figure which represents the state of the reduction im-
mediately prior to the instantiation. The o, o/., and OR colours of every cell in /2's

Lexical profiling: theory and practice 253

(i)

©
—t

1 1
1—

f2=AX.
2—s

Fig. 16. Instantiating a profiled supercombinator.

(i)

f _ l x 12—?
1 \

2-+-1
X

2-*-?

(U)

2-t u-^-v

Fig. 17. Instantiating an unprofiled supercombinator.

template are as yet undefined. In this case, the origin of the reference to fi is given
by the constructor-colour, cL = s, in the left-hand field of the cell which points to
the function fi (in this example, it happens to be the left-hand field of the root
cell of the redex). That is therefore the value assigned to the origin-colours of the
instantiated graph shown in part (ii) of the figure. Notice that, as before, the colours
c *— o of the overwritten redex remain unchanged and that the actual parameter,
@, retains its colours, u *- v.

5.3 Instantiating unprofiled supercombinators

Figure 17 illustrates the procedure for instantiating a supercombinator whose root
marker is not set. This uses the same supercombinator definitions as Fig. 16 but
represents a call to a function, f2, that is not being profiled in its own right. For
the purposes of profiling, fi has been subsumed into its origin-function, f\. The

254 C. Clack et al.

instantiation therefore differs from that of profiled supercombinators in two ways.
Firstly, the constructor-colour in the left-hand field of the redex will always be
identical to that of the subsumed supercombinator. Secondly, the origin-function
for the subsumed supercombinator is the same as the origin-function of the profiled
function into which it was subsumed. Therefore, the origin-colour of each new cell
generated by the instantiation of {fix) is determined by the origin-colour, oi = t, in
the left-hand field of the root node of the redex. All other aspects of the instantiation
are identical to the profiled case.

5.4 Profiling functions

In this section we present the techniques used for profiling functions. Our techniques
make almost no distinction between the profiling of functions and the profiling of
CAFs. However, other profilers (such as the Glasgow cost centres) find that CAFs
present particular difficulties and so the next section will specifically address the
profiling of CAFs.

Call-count profiling

The number of calls to a profiled function is determined by the number of times its
associated supercombinator is instantiated. Sections 5.2 and 5.3 described two types
of instantiation, the first of which deals with profiled supercombinators. Call-counts
are incremented only for profiled supercombinators.

A separate call-count register is maintained for every c *— o combination, where c
is statically bound to the cells of the supercombinator template and o is determined
by the method described in section 5.2.

Space profiling

Space profiling uses the profiling colours c *— o attached to the cells in the program
graph to determine the total number of cells allocated for a function and the
maximum number of cells allocated at any one time. Space profiling information is
recorded separately for each c «— o combination and requires only small changes
to be made to the cell allocation and garbage collection code so that the relevant
registers are updated each time a cell is allocated or deallocated. To monitor
continuously the number of heap cells that are currently active we assume reference-
count garbage collection (Glaser et al., 1988; Hughes, 1987; Axford, 1990; Hudak,
1986; Lermen and Maurer, 1986; Shute, 1988). If a different style of garbage
collection were used, such as two-space copying (Baker, 1978; Rudalics, 1986) or
mark/sweep (Cohen, 1981; Hughes, 1985) then the number of active heap cells could
only be approximated by an upper bound. This would only be accurate immediately
after a garbage collection has taken place and would steadily lose accuracy as cells
become inactive, up to the next collection (see also section 2.6).

In classical graph reduction the root node of the redex is overwritten with the
result after each reduction has taken place to ensure that shared values are not

Lexical profiling: theory and practice 255

recomputed (there are many and varied discussions about this in, for example,
Johnsson, 1984; Augustsson, 1984; Fairbairn and Wray, 1987; Peyton Jones, 1987a,
b; Burn et al., 1988; Peyton Jones and Salkild, 1989; Augustsson and Johnsson,
1989a, b). In particular, we note that the result of a reduction may not require
any cell allocation (for example, consider the identity function) and so the above
sharing requirement means that many graph reducers transform the root node of
the redex into an indirection node (Peyton Jones, 1987b). This indirection node may
be garbage collected once all the pointers to the node have been dereferenced -
until that time, however, the indirection cell will remain part of the live heap and
it seems reasonable to attribute this space cost to the function which first allocated
the cell (since the space cost is a direct result of the sharing of that function).

Thus, for space profiling purposes we must take care when overwriting a redex to
leave the profiling colours of the cell intact (the profiling colours for the fields may
change of course), otherwise the de-allocation of the cell by the garbage collector will
decrement a different space-usage register to that which was incremented when the
cell was allocated. The overwriting of the root node of the redex with an indirection
has the added benefit that the space occupied by a data structure will be attributed
to the function which constructed it rather than to the function which allocated the
root cell of the redex. The colours attached to the fields of the updated redex ensure
that the higher-order lexical profiling continues to function correctly.

Time profiling

The implementation of time profiling is closely tied to graph traversal. In our
simple interpretive reduction engine, graph traversal is restricted to the operation
of unwinding the current spine of the graph in search of the next function to apply.
The profiler maintains a separate timing for each c^ <— OL colour combination
and makes use of a current ct <— oL register. We use the colours of the left-hand
field because the spine of the graph is encoded there and it is the pointers in the
spine which determine function calls. Notice, however, that when a rib (Clack and
Peyton Jones, 1986) is evaluated, the current CL <— OL register will take its value
from the redex of the rib, which occupies the right hand field of a graph cell.

At the start of the reduction all timers are zeroed, the current CL <— OL register
is set to the cL <— oL of the initial redex, and the system time is read and stored
in t. Reduction then proceeds as normal by unwinding the spine. When unwind
encounters a cell whose c'L <— o'L colour differ from the current ci <— oi:

(i) The current system time t! is read.
(ii) The accrued time for cL <— OL is incremented by the elapsed time t? — t.
(iii) The timer t is updated with t'.
(iv) The current cL *— OL register is set to c'L <— o'L.

The unwind operation is performed each time a redex is overwritten. As long as
the unwind always starts at the overwritten redex, no further action is required
to profile time costs. This mechanism provides the required time, space, and call-
count profiling information even when lazy evaluation causes the graph to become
fragmented and results in many context switches.

256 C. Clack et al.

Garbage Collection costs are not included in function time costs; it is a simple
matter to temporarily suspend timings while garbage collection occurs. However, it is
in general a subtle matter to decide how much storage allocation (and deallocation)
cost should be attributed to the function and how much to the storage manager. A
function should be charged for the time it takes to claim or free a cell, but should
not be charged with the costs of general storage management which benefits all
functions".

5.5 Profiling CAFs

Constant Applicative Forms (CAF) are not necessarily instantiated in the same way
as normal functions because they have no arguments. If a top-level identifier is a
CAF then our profiler allows it to be profiled and the CAF is coloured in the same
way as a normal function would be coloured. The only way in which a profiled
CAF is treated differently is that supaercombinator instantiation cannot be used
as the trigger for incrementing the call-count. In our implementation a profiled
CAF is detected when the unwind operation (Peyton Jones, 1987b) passes through
a cell whose root marker is set. The appropriate c *- o call-count register for the
associated CAF is then incremented: just as with profiled supercombinators, c is
statically bound to the cells of the CAF and o is determined by the method described
in section 5.2.

Space profiling of CAFs is carried out in exactly the same way as space profiling of
any other function. A CAF is charged for the space used in its graph representation,
including any embedded data structures, and any space utilized by subsumed,
unprofiled functions: space utilized by any profiled functions referenced by the CAF
will not be charged to the CAF. Embedded data structures may not reach their
final form unless the CAF is applied to other arguments, but any space utilized is
still charged to the CAF. Similarly, subsumed unprofiled functions may not require
instantiation unless the CAF is applied to other arguments, but any space utilized
is charged to the CAF.

Time profiling of CAFs is achieved in the same way as the time profiling of
any other piece of graph. Time is attributed to the CAF when the graph cells for
the CAF are traversed, when embedded data structures are evaluated, and when
subsumed unprofiled functions are instantiated.

5.6 Accuracy and overheads of the technique

The above technique for measuring the time utilized by functions is only as accurate
as allowed by the system clock, and cumulative errors may be large for an interpretive
reducer.

Typically the system clock will provide time to the nearest 0.02 seconds, though

** In general, the implemented of a profiling system will find that reference counting costs
are easy to attribute but hard to factor out and report separately, whereas stop and copy
costs are easy to factor out, but harder to attribute.

Lexical profiling: theory and practice 257

some modern UNIX workstations provide higher-resolution timers (for example, 2 or
4 times higher resolution). Furthermore, the overhead of inspecting the system clock
may differ from system to system. The large number of start/stop measurements
will combine the timing inaccuracies and will lead to correspondingly large worst-
case errors - however, the expected errors in the measured times are much more
reasonable, as can be verified by implementing a statistical error package which,
for example, convolves the probability density functions for each measurement. We
have incorporated error analysis into our prototype profiler, but this is not yet
fully debugged and so we leave the reporting of expected errors to a subsequent
paper.

The lexical profiling technique also imposes an overhead on execution time. This
leads to a problem of self-reference, in that a program's computational costs may
become distorted because of the presence of the profiling mechanism. We would
like to be able to demonstrate that the overheads of lexical profiling are in linear
proportion to the costs of unprofiled execution. Informally, this may be argued from
the observation that no new abstract machine instructions are added, and that where
an abstract machine instruction is extended then the overhead in space and time is
always a (small) constant. However, if the modified instructions are executed more
often than the unmodified instructions then this may still lead to a distortion in the
computational costs. There is little point in attempting an analytic approach to this
problem, since there is no theoretical basis on which to calculate the proportionate
use of individual abstract machine instructions. Rather, experimental observation
must be employed.

Our prototype profiler uses an interpretive graph reducer as a simple demonstrator.
Experimental results of profiling overheads for interpretive graph reduction are of
little use to the research community (since interpretive graph reduction was long ago
superseded by compiled graph reduction) and so we defer our experimental analysis
of overheads until we have implemented profiling for a compiled reducer. We have
already started this work and we will report our results in a subsequent paper.

It is possible to use sampling (Sansom and Peyton Jones, 1992; Graham et al.,
1982) of the current cj, <— o^ register in order to minimize the cumulative errors
and to reduce the start/stop timing overheads, but at the cost of possible loss
of information if the sampling frequency is too large. This does not detract from
the essential nature of lexical profiling, but merely incurs measurement errors in a
different (and possibly lesser) way to those incurred by the start/stop technique.

5.7 Single-stepped example of lexical profiling

In this section the steps of the reduction shown in Fig. 18 are explained with specific
reference to lexical profiling activities. The figure is based on the following function
definitions:

h = g f
g x = x exp^
f y = + exps y

and the explanation relies on the profiling terms described in the previous sec-

258 C. Clack et a\.

©_

1 y
root

f-«-?

f-«-?
+

(ii)

1 (a)

1

g-*-h
I

f=Ay.^Ii^

+ V

(iii)

©
g-*-h

f-*-h
+

f-*-h
l

Fig. 18. Lazy, higher-order profiling.

tions; the reader should be familiar with these before continuing. In this example,
the root of the program is denoted by the • symbol.

Part (i)

1. The current c/, <— oL register is set to h *- • and the spine is unwound (the
time for h <— • is not yet updated).

2. The profiled function, g, is encountered and the origin-colour for the function
is determined from the left-hand field of h where cL = h.

Lexical profiling: theory and practice 259

Part (ii)

1. The redex is overwritten with the instantiated copy of g (the cell allocator
increments the space usage for g <— h as the new cells are allocated). The
formal parameter, x, has been overwritten by the argument field, ®, complete
with its profile colours, h <— •.
The origin-colour of the reference to g is set to h as determined in part (i). It
is written into OR in field © and into o, OR, and oi of the cells in the subgraph,
A. The latter requires a graph traversal of A, but we note that this is required
anyway since A is part of the function template and must be copied.

2. The call-count for g <— h is incremented.
3. The spine is unwound a second time (again, the timers are not yet updated).
4. The profiled function, f, is encountered and the origin-colour for the function

is determined from the field ® where cL = h. This is correct because the
reference to f originated from h in part (i).

Part (Hi)

1. The instantiation proceeds as before. The redex is overwritten with the instan-
tiated copy of f (the cell allocator adjusts the space-usage for / <— h as the
cells are allocated). The argument field, ®, overwrites the formal parameter
and the origin-colours in and below field © are set to h.

2. The call-count for / <— h is incremented.
3. The spine is unwound for a third time and, since the f *— h colours of the

left-hand field differ from the current cL «- OL register value of h <— •, the
elapse timing is adjusted for h <— •. The current CL <— OL register is set to
/ *—h and the unwind continues until the primitive function + is reached.

4. At this point the values of A and B are required. Each is reduced in turn before
the + function can be executed. Notice that the profile colours of A and B
correctly identify their constructor- and origin-functions, hence the technique
has behaved correctly in the presence of lazy evaluation.

6 Operational semantics

The following operational semantics for lexical profiling assumes the existence of an
operational semantics S for an interpretive graph reducer. The full definition of £
is beyond the scope of this paper but, for lexical profiling purposes, we assume that
$ possesses the following clauses:

S\j G describing the action taken by the reducer immediately after a pointer in the
spine of the graph has been followed during an unwind operation.

&A G describing the action taken by the reducer immediately after moving to
the root of an argument redex to evaluate that argument, but prior to the
evaluation.

Si G describing the action taken by the reducer to instantiate a supercombinator.

260 C. Clack et al.

We have assumed that all three of these take a single state variable, G, which
describes the entire state of the reduction, including: the graph being reduced, the
supercombinator templates, and any stacks that may be required.

To describe the action of the lexical profiler, S is superseded by $'. Except for
the three clauses listed above, each clause of $ has a direct equivalent in &' that is
expanded with the following items of state:

(L, R,CL*- 0£J CR<— OR, C<—O, root) which represents the state of the current cell in
the graph. The components of the tuple are described as follows:

L is the left-hand field of the cell
R is the right-hand field of the cell
CL*-OL is the constructor and origin colour for the left-hand field
CR <—OR is the constructor and origin colour for the right-hand field
c«— o is the constructor and origin colour for the whole cell
root is set to 1 if the cell represents the root of a profiled function, and is set

to 0 otherwise.

{cc*—oc} represents the value of the current CL*—OL register.
T is the set of timings for all c*-o pairs. We define the semantic function z(c <— o)

to return the timing for a specific c<-o pair and the syntax T[C<— O += s] to
indicate an increment of s seconds to that timing within the set of timings.

fi is the set of counters which keep track of memory-usage for all c <— o pairs. We
define the semantic function n(c<—o) to return the memory-usage for a specific
c*—o pair and the syntax [i[c<-o += m] to indicate an increment of m graph
cells to that memory-usage within the set of counters.

K is the set of counters which monitor the number of function invocations. A
separate counter is stored for each c <— o pair, indicating the number of
function calls as measured for the corresponding arc in the lexical call graph
of the program. We define the semantic function K(C <— o) to return the call-
count for a specific c*—o arc, and the syntax K[C*—O += 1] to indicate a unit
increment to that call-count within the set of counters.

t which records the time at which the current cL <— o/. register was last set.

The three clauses Sy, &A, and Si are replaced by £?u, 2PA, and 2?u respectively.
These are defined in Figure 19. Notice that SPy, 3PA, and S?i refer to clauses S'v, S"A,
and S\. As expected, these behave exactly as $u, $A, and Si except that they are
extended with the state items described above. ^ 0 is used for initialisation.

7 Experience gained using the lexical profiler

This section shows the results obtained from the UCL lexical profiler. Our inspi-
ration for the lexical profiler originated in PhD research involving large functional
applications (Clayman, 1993) and we are strongly motivated to continue the devel-
opment of our prototype profiler so that it is effective with such large applications.
In our preliminary studies we have run the profiler on a number of programs rang-
ing from small, familiar benchmarks such as the nqueens problem to a relational

Lexical profiling: theory and practice 261

(L,R,cL<-oL,cR*-oR,c<-o,r) {cc<-oc} x H K G t
= S'O (L,R,cL<-oL,cR<^oR,c<-o,r)

{CL<-OL} T0 Ho Ko[cL<-0L = r] G tc

(L,R,cL*~oL,cR<r-oR,c<^o,l) {CC+-OC}T fiicGt
= S'U (L,R,cL<-oL,cR*-oR,c<^o,\) {cL<-oL}

*[cC <-oc + = (tc - t)] H K[C<-O + = 1] G tc, if (cL <-oL) ± (cc

= <?'[, (L,i?;Cz.<-Oi,CR+-oR,c<-o,l) {cc<-oc}

= <?'(; (L , / ? , CL < - 0 L , CR < - OR, C < - O, 0) {CL < - OL}

T[CC<-oc + = (tc - t)] n K G tc, if (cL<-oL) j= (cc*-oc)
= S'V (L,R,cL*-oL,cR*-oR,c+-o,0) {cc*-oc} t HKGt, if (cL<^oL) — (cc*-oc)

{L,R,cL*-oL,cR<-oR,c<-o,l) {CC*-OC}T: HtcGt

= S'A (L,R,cL<-oL,cR*-oR,c<^o,l) {cL<-oL}
T[cc^oc+=(tc-t)]nK[c<-o+=l] Gtc, if (cL<-oL)^(cc<-oc)

= 8'A (L,R,cL<-oL,cR+-oR,c<^o,l) {cc<-oc}
x \i K[C*-O += 1] G tc, if (cL <-oL) = (cc *-oc)

{L,R,cL<r-oL,cR+-OR,c*-o,0} {cc*-oc} x IIKG t

= S'A {L, R,cL*-oL,cR*-oR,c*-o, 0> {cL <^oL}
i:[cc*-oc += (tc-t)] liKGtc, if (cL<-oL) ^ (cc*-oc)

= S'A (L,R,cL*-oL,cR*-oR,c<^o,0) {cc*-oc} t \IKG t, if (cL<-oL) = (cc<-oc)

(SC y,R,cL<-oL,cR<^oR,c*-o, 1) {cc<-oc} T M K G t
= <T/ (SC/ , .R ,C L <-O L ,C R <-OR,C<-O,1)

{ C C
< - O C } T M [X < - S + = | S C > ' |] K[C<-O+= 1] Gt

where (s<-r) = (cL<-oL)

(SC>,R,C L <-O L ,CR<-OR,C<-O,0) { C C < - O C } T / I K G £

= <yj (SC y', R,Ci.<-OL,CR<-OR, C<-O,0>
{cc^oc} x n[x*-t += \SC y\]KGt

where (s*-t) = (cL*-oL)
y' = y[x+-t/cL*-oL; x

Fig. 19. Operational semantics for lexical profiling.

database of several hundred lines of code. We have not yet had the opportunity to
use the profiler on a large application, but the examples in this section will provide
a guide to the kind of results which may be obtained.

We present profiling results for three programs:

1. The first program is a small, specially-constructed example which will demon-
strate how the lexical profiler may be used to detect a common programming
problem: a pipeline blockage.

2. The second program is the familiar nqueens problem, which demonstrates
that it is important for a profiler to measure time consumption of a program
as well as heap space consumption.

262 C. Clack et al.

3. The final program investigates the different resource consumptions of two
styles of programming: the composition of standard higher-order functions
(which encapsulate recursion) versus the use of explicit recursion. This example
uses the lexical profiler to demonstrate the tradeoff between time and space.

For our experiments we have used the UCL experimental interpreting reducer
(rather than an optimized compiled reducer) and space usage is reported in terms of
heap cells (rather than bytes) since we believe that a cell count is more informative
than a byte count for an implementation which uses cells with a fixed number of
fields (the sizes of cells may vary from run to run according to different compiler
and profiler options and a byte count would therefore require more work from the
user when making comparisons between runs, though we appreciate that a byte
count would probably be required for an implementation with a variable number
of fields per cell). The profiling data for time and call-count is presented separately
from the space usage data and execution times are accumulated and reported for
every profiled function. The statistics for each function are subdivided according to
the functions that called it, and times denote the actual execution time rather than
the elapsed wall-clock time. The time for (reference count) garbage collection is
determined separately and is not included in the time for any function. The profiler
produces tabular data for call-count and timing: this data has been post-processed
and is presented as vertical bar-charts.

7.1 Detecting a pipeline problem

In Runciman and Wakeling (1993), significant improvements are made to a program
called clausify which calculates the clausal forms of a series of propositional
formulae. The improvements are the result of a repeated process of profiling and
program modification. During the exercise a pipelining problem was discovered and,
by reasoning from the heap-profile, the programmers were led to notice the abberant
behaviour of a partial application of the f oldr function.

It was intended that a list of values would be generated lazily using f oldr and
that the result would be consumed lazily by a pipeline of processing functions.
However, using a heap profiler it was possible to observe that the whole list was
being constructed strictly as soon as its first value was needed. As the list was large,
it occupied a large area of memory; when the problem was solved by making the
program less strict, the list was constructed and garbaged incrementally.

The reported problem was due to tail-strictness. This is important because func-
tions that are unexpectedly tail-strict will construct whole lists even if only a portion
of the result is ultimately to be consumed. Therefore, the issue of increased heap-
occupancy is compounded by wasted processing effort.

The problem is not, however, inherent in the f oldr function because f oldr is not
tail-strict. The tail-strictness property is introduced by the higher-order parameter.
Consider the following Haskell program which illustrates an extreme example of
this problem:

Lexical profiling: theory and practice 263

0 00 0.10 0.02 0 00 0 00 0.14 0.02 0.00 0 00 0 02 0.02

40.00

60.00

Time (seconds)

Fig. 20. Call counts and time profile for a blocked pipeline.

f x [] = x:[]
f x (y:ys) = x:y:ys

rev : : [a] -> [a]
rev [] = []
rev (y:ys) = (rev ys) ++ [y]

myhead : : [a] -> a
myhead = head . (f oldr f [])

mylast : : [a] -> a

mylast = head . rev . (f oldr f [])

inc : : Int -> Int

inc x = x + 1

main print ((myhead . map inc) [1..1000]

+ (mylast . map inc) [1001..1010])

The above example program was translated into FLIC and was then executed and
profiled using the UCL lexical profiler. The p r i n t function was dropped from
the FLIC version (our experimental reducer does not yet offer a [Response] — >
[Request] interface) and head and map were defined in the standard prelude.

264 C. Clack et al.

Space Usage

10000 —

8000—

6000—

4000—

2000—

f<-myhead/ \

/ \

main<-(unprofiled)

foldr<-myhead

20 40 60 80

Time (seconds)
100 120

Fig. 21. A space-profile of a blocked pipeline.

The following functions were profiled: f, rev, myhead, mylast, head, foldr,
and main. Both map and inc were subsumed by the profile for main.

The example program ran in just over 111 seconds, with the profiler reporting 23.36
seconds for garbage collection. The call-count results shown in Fig. 20 demonstrate
that 1000 calls were made to f from myhead and 10 calls were made to f from
mylast: the call-count for the former is suspiciously high. Furthermore, the space-
profile given in Fig. 21 shows that the majority of heap allocations are made by
f when called from myhead, even though we might reasonably expect myhead to
extract the first item without constructing the entire list (for clarity, the space profile
only shows results for f < —myhead, main< — (unprof iled) and f oldr< —myhead:
all other results were insignificant).

Here, f (needlessly) pattern matches on its second argument and therefore requires
foldr to have built the tail of the list before it can return its result. The partial
application foldr f [] is therefore tail-strict, which entails unnecessary work for
myhead; this is an extreme example of a pipeline blockage.

The space-profile demonstrates the user-friendliness of lexical profiling. The lexical
profiler reports that the faulty function is f as used in the definition of myhead,
whereas a dynamic profiler would report that the faulty function was f called from
foldr. Thus, a dynamic profiler would leave the programmer in some doubt as to
whether the problem occurs in myhead or mylast. In a large program, foldr might
be used in a hundred different places: by contrast, the definition for myhead only
appears once.

The program may be modified to remove the unnecessary pattern matching
from f:

f : : a -> [a] -> [a]
f x y = x:y

Lexical profiling: theory and practice 265

8

6

4

2

200

400

6.00

8.00

0 00

• ~
1 *

0 . 1 0 . 0 2 0 0 . 1 2 0 . 0 2 0 . 0 2
III

=

III
II

1 1 —

0 — 0

—

—

1

0

1

0

2

0

2

=

0

1 1

0 .02 0

12.00 ;

Time (seconds)

Fig. 22. Call counts and time profile for an unblocked pipeline.

The results of profiling the new program (given in Fig. 22) show that only one call
is now made to f from myhead. The program took just over 16 seconds to run,
including 3.76 seconds of garbage collection.

The new space-profile is given in Fig. 23: notice that the scales used for both axes
are very different from those used in the initial space-profile (and again notice that
we have only labelled the significant data). The space-profile shows that the pipeline
blockage has successfully been eliminated: the peak space usage has been reduced
from over 10,000 cells to about 1,400 cells, and the execution time has dropped
from 111 seconds to about 16 seconds. Furthermore, by comparing the shapes of
the curves we observe that all of the work performed by main in Fig. 21 during the
first 85 seconds seems to have been eliminated.

7.2 Example profile of the nqueens program

This program tries to put n queens on a chess board such that they are all safe. The
program can try placing from 1 queen up to 8 queens on the board and returns a
list of all the valid results. In the following test program the first 10 elements, with
7 queens on the board, are calculated:

queens :: Int -> [[Int]]
queens 0 = [[]]
queens (m+1) = [p++[n] I p<-queens m, n < - [1 . . 8] , safe p n]

safe : : [In t] -> In t -> Bool
safe p n = a l l not [check (i , j) (m,n) I (i , j) <- z ip [1 . .] p]

where m = 1 + length p

266 C. Clack et al.

Space Usage

H O O -

DOO—

(GOO-

SIX)—

600 —

400—

200 —

0i

main<-(unprofiled)

rev<-mylast

0 10 15

Time (seconds)

20

Fig. 23. A space-profile after the pipeline is unblocked.

check :: (In t . In t) -> (Int .Int) -> Bool
check (i , j) (m,n)

= j==n I I (i+j==m+n) I I (i-j==m-n)

a l l :: (a -> Bool) -> [a] -> Bool
a l l p = and . map p

and : : [Bool] -> Bool
and = foldr (&&) True

main = take 10 (queens 7)

The program was compiled for profiling, and results were requested for the functions
queens, safe, check, and main. Some of the other functions were shared and were
therefore automatically profiled: however, the shared functions made an insignificant
contribution to the computation and in the interests of clarity we have therefore not
presented this data. The call-count and timing data for this program are given in
Fig. 25 and the space-profile is given in Fig. 24: the clarity of both figures has been
improved by discarding insignificant data.

The space results presented give similar information to the Runciman and Wake-
ling heap profiler but are in a different form. Runciman and Wakeling present their
data as cumulative strata, whereas the lexical profiler presents the data for each
function absolutely^.

Attention is drawn to the queens function as it uses the most space. The lexical
profiler also produces call-count and timing data. By analysing Fig. 25, attention is

ft It would not be difficult to post-process the space usage data to generate a report in the
style of Runciman and Wakeling.

Lexical profiling: theory and practice 267

Space Usage

queens<-queens

safe<-queens

check<-safe
' main<- (unprofiled)

200 400 6O0 800 1000

Time (seconds)

Fig. 24. Heap usage results for nqueens program

Calls jr

/ / / /

2000

1500

1000

500

1 1

742

Illllllllllllll

2003

m
i

m
i

m
i

•»

1.12 22.48 69.82 ^ 103.06

520.76

Time (seconds)

Fig. 25. Call-count and timing results for nqueens.

268 C. Clack et al.

Calls

2003

742

4 2 4 . 6 4

Time (seconds)

Fig. 26. Call-count and timing results for new nqueens.

drawn to the function safe. It has been called on 742 occasions with an accumu-
lated time of 520 seconds (70% of the program execution time). Clearly, the safe
function might benefit from some optimization. The body of safe is primarily an
application of a l l to the function not and a list comprehension. Since the first ar-
gument is a compile-time constant, the partial application a l l not can be redefined
as:

allFalse :: [Bool] -> Bool
allFalse [] = True
allFalse (Truerr) = False
allFalse (False:r) = allFalse r

and safe can be redefined as:

safe p n = a l l F a l s e [check (i , j) (m,n) I (i , j) <- z ip [1 . .] p 3
where m = 1 + length p

The call-count and time data of the new version of the program are presented in
Fig. 26 (the new space profile is not significantly different from Fig. 24 and so is not
shown).

The function safe now executes in 80% of the time that it used to and the whole
program is 15% faster. This has demonstrated the benefit of profiling call-counts
and time in addition to space.

Lexical profiling: theory and practice 269

sumSquares :: Int -> Int
sumSquares n = (sum . map square . upto 1) n

upto :: Int -> Int -> [Int]
upto n m = if n > m then []

else n : upto (n+1) m

square :: Int -> Int
square x = x*x

main = sumSquares 400

Fig. 27. The sum of squares program.

7.3 Verifying program behaviour - sum of squares

In this section the profiler is used to verify whether a hand-coded function performs
better than a function-composition pipeline which does the same job.

This example is a program to sum the squares of a list of numbers. Ferguson and
Wadler (1988) suggest that the pipelining style of programming (through the use
of function composition), which is common in functional languages, is inefficient
as there is a need to build and immediately destroy intermediate list elements. A
more efficient version can be written which has the same semantics and operational
behaviour as the pipelining version. However, this efficient version has the disad-
vantage that it is considerably less clear than the pipelining version. In this section,
the profiler is used to verify Ferguson's statement. Ferguson defines the sum of the
squares to be:

(sum . map square . upto 1) n

A program to evaluate this expression is shown in Fig. 27. By profiling this program,
the results obtained for call-count and function times are displayed in Fig. 28 and
the heap usage results are displayed in Fig. 29.

It is interesting to note that the precise quantitative data provided by the call-
count profile can be just as useful as the qualitative comparison of the relative
heights of columns on the graph. For example, the first call-count profile of our
sumSquares program was rather surprising in that it indicated 399 recursive calls
to upto, rather than the expected 400. Thus, a difference of just 1 call highlighted
a bug in the program: the use of >= instead of > in the definition of upto. The
utility of call-counting has a long history: the first imperative profiles were mainly
concerned with call counts for performance and debugging, as illustrated in Knuth
(1971).

A second version of the sum of squares program, which Ferguson says is more
efficient, is given in Fig. 30. The results of profiling this program are displayed in
Fig. 31 and Fig. 32.

The profiling results demonstrate that Ferguson is correct in stating that the second
version of sum of the squares is faster, because the second version executes in 14

270 C. Clack et al.

_S\ ; *

Calls ,////+/* /
? / / / / / /

f

350

300

250

200

150

400 400 400

0 0 . 0 4 8 . 3 4 0 . 0 2 8 . 6 4 0 9 . 5 2 2 . 0 4

Fig. 28. Call-count and timing results for sumSquares

seconds whereas the first version took 36 seconds. However, in the second version,
the space usage has a larger peak than the first version. Thus, if space utilization is
more important for an application than speed of execution, the function-composition
style is preferable. The subtle effects of laziness mean that such trade-offs are not
always obvious to the programmer and therefore a profiler which offers both time
and space measurement can be of great assistance.

8 Summary and current status

One of the major problems in developing applications in lazy, functional languages
is the lack of tools which aid the programmer in debugging and analysing the
run-time behaviour of the application. This problem is compounded by the fact
that functional programmers and functional language implementors have different
requirements and view program behaviour in different ways.

We have examined the different perspectives of programmers and implementors
and have examined the different existing profiling techniques. Most existing profilers
are either limited in the information they provide, or only provide information in
a way that is useful for language implementors, or both. A notable recent success

Lexical profiling: theory and practice

Space Usage

sura<-sumSquares

271

uptcx-upto

••••... •..• .-r. --.:.—.r—7.-?.:T.-— map<-map

1000 2000 3000 4000

Time (seconds)

Fig. 29. Heap usage results for sumSquares program

sumNsquares n

sumNsquares' res m n

main

= sumNsquares' 0 1 n

= if m > n then a

else

sumNsquares' (res + square m) (m+1) n

= sumNsquares 400

Fig. 30. The alternative sum of squares program.

has been the heap profiler from Runciman and Wakeling (1993). By contrast, we
have concentrated on providing a profiler which will (a) provide time, space and
call-count profiles, and (b) present information in a way that is more meaningful
for applications programmers.

We have presented the design and implementation of a profiler which measures
call-count, time, and heap space usage of lazy, higher-order functional languages
using a new technique called lexical profiling.

Lexical profiling collects information about the run-time behaviour of functional
programs, and reports the results with respect to the way programs are written
rather than to how they are evaluated. It is important because it provides a view
of program activity which is largely independent of the underlying evaluation
mechanism, and therefore programmers may easily relate results back to the source
program. Furthermore, neither profiling annotations nor primitives need to be
learned as lexical profiling allows the program to be executed without alteration.

272 C. Clack et al.

Calls

Time (seconds)

400

0 0.04 9.18 1.94

Fig. 31. Call-count and timing results for sumNsquares

Space Usage

2000—

1500-

1000-

500 —

/
/

/
/

/
/

/

/
/

/
/

/
/

/
/

/
/

|
5

1

110

(sumNsquares'<-su

\
\
\
\
\
\
\
\
\
\
\
\

\
\
\
1

1
15

mNsqu

120

Time (seconds)

Fig. 32. Heap usage results for the sumNsquares program

Lexical profiling: theory and practice 273

Full implementation details have been provided for a sequential, interpretive graph
reduction engine, and we have analysed three example programs to show how lexical
profiling may be used to detect a pipeline blockage, to illustrate the importance of
time profiling and to verify previous claims regarding the use of intermediate lists.

A sequential interpretive profiler has been in use at UCL for several months and
has proved invaluable for detecting bugs in Haskell programs (the interpretive re-
ducer is only used for profiling, not for full-blooded evaluation). The current version
is not quite complete in that it uses FLIC code (Peyton Jones and Joy, 1989) as its
input - we have not yet modified the Haskell compiler, so although we can profile
Haskell programs it is necessary to provide function names as seen in the FLIC
intermediate code. Our output is not as pretty as that produced by the Runciman
and Wakeling heap profiler, but is sufficient for our prototype implementation. A
parallel implementation based on the DIGRESS system at Athena Systems Design
Ltd. is now well advanced and we hope to start work on a compiled version soon.
We have not yet felt the need to implement the statistical style of profiling.

9 Further work

The techniques presented in this paper are illustrated using a sequential, interpreted
model of graph reduction. However, they can also be implemented as part of a fully
compiled abstract machine and on a parallel reduction architecture. These extensions
are discussed below. Additionally, we wish to follow the success of Runciman and
Wakeling (1993) by implementing constructor profiling. At present we do not do
constructor profiling as our system uses FLIC as its input, and any indication of
the names of constructors have been stripped by the Haskell compiler: in the FLIC
source only PACKs are seen.

Our next implementation step is to modify the Haskell compiler so that we
can profile Haskell functions rather than FLIC functions. This will raise three
issues: (i) how to profile the extra functions which are created by the compiler, for
example during lambda-lifting and other optimizations, (ii) how to preserve colours
throughout the various transformations which the Haskell compiler applies to the
program, and (iii) how to profile separately compiled modules. So far we have
avoided all three of these issues because the user sees the FLIC source code and
specifies individual FLIC functions to be profiled - including, if necessary, those
functions which have been added by the compiler and whose names are visible to
the user. When we modify the Haskell compiler we will need to decide what to do
with the additional functions (since their names will not be visible to the user) -
it seems reasonable to assign to them the colour of the definition from which they
were lifted, though it is not yet clear how the costs of Haskell dictionaries (which are
introduced as a result of the type hierarchy) should be attributed. The preservation
of colours is something which can only be addressed once we know more about the
internals of the Haskell compiler. Separate compilation should not present many
problems: we expect that compilation of a module to intermediate code will cause
all functions to be coloured, and that the linker will resolve the colours to reflect
those functions that the programmer wishes to profile.

274 C. Clack et al.

It has been our intention to provide a statistical profiling mode by post-processing
the results of inheritance-mode profiling. This would be fairly straightforward apart
from the unresolved issue of what to do with mutually recursive functions. However,
we have not yet felt the need for the statistical style and so this extension currently
has a low priority.

Finally, we note that lexical profiling provides information about the lexical
affiliations of run-time constructs which could be used as the basis for a lexical
debugger: for example, not only recording the values of actual arguments each time
a specified function is called, but also recording for each call where that application
occurs in the text of the program.

9.1 Extending lexical profiling to compiled graph reduction

Compiled graph reduction typically makes much more use of the stack for calcu-
lations which do not need to be written out to the heap. The heap is used when
shared objects such as closures and data structures are built (Fairbairn and Wray,
1987; Burn et al, 1988; Peyton Jones and Salkild, 1989; Augustsson and Johnsson,
1989b). To implement our profiling technique for compiled abstract machines such as
TIM (Fairbairn and Wray, 1987) or the Spineless Tagless G-Machine (Peyton Jones
and Salkild, 1989), it will therefore be necessary to ensure that space utilization of
the stack is monitored, in addition to space utilization of the heap. Time profiling
and call-count profiling will be similar to the interpretive implementation. However,
template instantiation in an interpretive reducer is replaced by a code sequence in a
compiled reducer. Thus, it will be necessary to modify the code generator to produce
code to deal correctly with colour manipulation. We have already started work on
a lexically-profiled, lazy version of the TIM compiled graph reducer (Fairbairn and
Wray, 1987, p. 38): we will report our results in a subsequent paper (Clack and
Parrott, 1993).

9.2 Extending the technique to parallel graph reduction

Lexical profiling can be extended to parallel graph reduction by distributing the
profile tables among the processing elements of the parallel machine.

For post mortem profile reports, each processing element will have a local profile
table which will be updated in the usual manner. At the end of a program run, a
global profile table is generated from the collected local tables. Once a program is
coloured it is not significant where a function executes.

A parallel profiler is currently being implemented on the DIGRESS system at
Athena Systems Design Ltd. This profiler not only provides post-mortem profile
results, but also provides a dynamically updateable global profile table which can
be used to report heap usage as the program executes ('on-the-fly' profiling helps
to debug programs which run but do not produce output within a reasonable time
- this common problem is often due to to an overly strict function in a pipeline
which may attempt an infinite evaluation, and in a large program a profiler is
necessary in order to detect which pipeline is defective). This requires a special

Lexical profiling: theory and practice 275

purpose processing element dedicated to the collection and presentation of data.
The other processing elements are responsible for supplying incremental profiling
information at regular intervals. The key challenge here is to strike a balance between
keeping displayed information up to date and swamping the parallel computation
with profile messages.

Acknowledgements

We are greatly indebted to Rex Page, of the Amoco Production Company's Tulsa
Research Center, for his encouragement and support of this work. We also thank
Athena Systems Design Ltd. for their help with the parallel implementation of the
profiler and Dennis Parrott for debugging the implementation and for proof-reading
drafts of this paper. Finally, we thank our two referees for their detailed comments
and suggestions which have enhanced the presentation of this material.

References

Appel, A. W., Duba, B. F. and MacQueen, D. B. (1988) Profiling in the presence of optimization
and garbage collection. Distributed with the New Jersey SML compiler.

Augustsson, L. and Johnsson, T. (1989a) The Chalmers Lazy ML compiler. The Computer
Journal, 32(2): 127-141.

Augustsson, L. and Johnsson, T. (1989b) Parallel graph reduction with the (v, G)-machine.

In: Proc. FPCA Conference, pp. 202-213. ACM.

Augustsson, L. (1984) A compiler for Lazy ML. In: Symposium on Lisp and Functional

Programming, pp. 218-227. ACM.

Axford, T. H. (1990) Reference counting of cyclic graphs for functional programs. The

Computer Journal.

Baker, H. G. (1978) List processing in real time on a serial computer. Comm. ACM, 21(4):

280-294.

Burn, G. L., Peyton Jones, S. L. and Robson, J. (1988) The Spineless G-Machine. In: Proc.

Lisp and Functional Programming Conference, pp 244-258. Snowbird, UT.

Burn, G. L. (1987) Evaluation transformers - a model for the parallel evaluation of functional
languages. In: Proc. FPCA Conference, pp. 446-470. ACM, Springer Verlag. (extended
abstract), LNCS 274.

Cohen, J. (1981) Garbage collection of linked data structures. A CM Comput. Surv. 13(3).

Clack, C. D. and Parrott, D. J. (1993) Compiled lexical profiling for tim. In preparation.

Clack, C. D. and Peyton Jones, S. L. (1986) The four-stroke reduction engine. In: Proc. Lisp

and Functional Programming Conference, pp. 220-232. ACM.

dayman, S. (1993) Developing and Measuring a Parallel Rule Based System in a Functional

Programming Environment. PhD thesis. University College London.

Fairbairn, J. and Wray, S. C. (1987) Tim: A simple, lazy abstract machine to execute
supercombinators. In: Proc. FPCA Conference. Lecture Notes in Computer Science Vol.

274. Springer-Verlag.

Ferguson, A. B. and Wadler, P. (1988) When will deforestation stop. Technical report, University

of Glasgow, Department of Computing.

Graham, S. L., Kessler, P. B. and McKusick, M. K. (1982) gprof: a call graph execution
profiler. ACM Sigplan Notices, 17(6): 120-126.

276 C. Clack et al.

Glaser, H., Reeve, M. and Wright, S. (1988) An analysis of reference count garbage collection
schemes for declarative languages. Technical report, Imperial College London.

Grant, P. W., Sharp, J. A., Webster, M. F. and Zhang, X. (1993) Some issues in a functional
implementation of a finite element algorithm. In: Proc. FPCA Conference. ACM.

Hudak, P. (1986) A semantic model of reference counting and its abstraction (detailed
summary). In: Proc. Lisp and Functional Programming Conference, pp. 351-363. ACM.

Hughes, J. (1985) A distributed garbage collection algorithm. In: Proc. FPCA Conference,
pp. 256-272. ACM,

Hughes, J. (1987) Managing reduction graphs with reference counts. Technical Report
CSC/87/R2, University of Glasgow.

Hughes, J. (1989) Why functional programming matters. The Computer Journal, 32(2): 98-107.
Johnsson, T. (1984) Efficient compilation of lazy evaluation. In: Proc. Conference on Compiler

Construction, pp. 58-69. ACM.
King, I. (1990) The efficiency and generalisation of the various abstract machines. In: M. J.

Plasmeijer (ed), 2nd International Workshop on Implementation of Functional Languages on
Parallel Architectures, pp. 255-280. University of Nijmegen.

Kozato, Y. and Otto, P. (1993) Benchmarking real-life image processing programs in lazy
functional languages. In: Proc. FPCA Conference. ACM.

Knuth, D.E. (1971) An Empirical Study of FORTRAN Programs. Software - Practice and
Experience, 1: 105-133.

Lermen, C-W. and Maurer, D. (1986) A protocol for distributed reference counting. In: Proc.
Lisp and Functional Programming Conference, pp. 343-350. ACM.

Nilsson, H. and Fritzson, P. (1992) Algorithmic debugging for lazy functional languages. In:
Proc. Fourth International Symposium on Programming Language Implementation and Logic
Programming, Linkoping, Sweden.

Parrott, D. J. (1993) Synthesising Parallel Functional Programs to Improve Dynamic Scheduling.
PhD thesis, University College London.

Parrott, D. J. and Clayman, S. (1990) Report on 'cost' and 'debug' primitive extensions to
FLIC. Research note RN/91/79, Department of Computer Science, University College
London.

Parrott, D. J. and Clack, C. D. (1991) A common graphical form. In: Proc. Phoenix Seminar
& Workshop on Declarative Programming, pp. 224-238. Springer-Verlag. (Also Research
Note RN/91/27 Dept. of Computer Science, University College London.)

Parrott, D. J. and Clack, C. D. (1992) Paragon - a language for modelling lazy, functional
workloads on distributed processors. In: Proc. UK Performance Engineering Workshop.
(Also UCL Research note RN/92/72.)

Peyton Jones, S. L. (1987a) The tag is dead - long live the packet. Posting on fp electronic
mailing list.

Peyton Jones, S. L. (1987b) The Implementation of Functional Programming Languages. Prentice
Hall.

Peyton Jones, S. L. and Joy, M. S. (1989) FLIC - a Functional Language Intermediate Code.
Internal Note 2048, University College London, Department of Computer Science.

Peyton Jones, S. L. and Lester, D. R. (1992) Implementing Functional Languages: a tutorial.
Prentice Hall.

Peyton Jones, S. L. and Salkild, J. (1989) The Spineless Tagless G-Machine. In: Proc. FPCA
Conference, pp. 184-201.

Rudalics, M. (1986) Distributed copying garbage collection. In: Proc. Lisp and Functional
Programming Conference, pp. 364-372. ACM.

Runciman, C. and Wakeling, D. (1992) Heap profiling of a lazy functional compiler. In: Proc.
Glasgow Workshop in Functional Programming. Springer-Verlag.

Lexical profiling: theory and practice 211

Runciman, C. and Wakeling, D. (1993) Heap profiling of lazy functional programs. J.

Functional Programming, 3(2).

Shute, M. J. (1988) Y-less execution through fractional reference-counting. Draft report,

Middlesex Polytechnic.

Sansom, P. M. and Peyton Jones, S. L. (1992) Profiling lazy functional languages. In: Proc.

Glasgow Workshop in Functional Programming, pp. 227-239. Springer-Verlag.
Sansom, P. M. (1993) Time profiling a lazy functional compiler. In: Proc. Glasgow Workshop

in Functional Programming. Springer-Verlag.
Sansom, P. M. (1994) Execution Profiling for Non-strict Functional Languages. PhD Thesis

(in preparation), University of Glasgow, Department of Computing.

Tolmach, A. P. and Dingle, A. T. (1990) Debugging in Standard ML of New Jersey. Distributed

with the New Jersey SML compiler.

Turner, D. A. (1985) Miranda: A non:strict functional language with polymorphic types. In:

Proc. FPCA Conference, pp. 1-16. ACM,

Wright, P. J. (1994) Optimised Redundant Cell Collection for Graph Reduction. PhD thesis,
University College London, Department of Electronic Engineering.

Zorn, A. B. and Hilfinger, P. (1988) A memory allocation profiler for C and LISP programs.
In: Proc. USENIX Conference, pp. 223-237.

