
1

Monitoring, Aggregation and Filtering for Efficient
Management of Virtual Networks

Stuart Clayman, Richard Clegg, Lefteris Mamatas†, George Pavlou and Alex Galis
Dept of Electronic Engineering, University College London, London, UK

Email: sclayman@ee.ucl.ac.uk, richard@richardclegg.org, gpavlou@ee.ucl.ac.uk, agalis@ee.ucl.ac.uk
† Space Internetworking Center, Dept. of Electrical and Computer Engineering,

Democritus University of Thrace, Xanthi, Greece
Email: emamatas@spice-center.org

Abstract—Virtual Networks are characterised as highly dy-
namic network environments, where topologies and nodes adapt
rapidly to changes in user and service demands, user location
and context changes, or resource constraints. This paper presents
a rigorous assessment of an Information Management Overlay
(IMO) suitable for monitoring virtual networks. The IMO system
allows complex monitoring tasks to be performed in a scalable
manner in order that the network manager can monitor the
desired network properties in a way which is accurate, scalable,
and low-bandwidth. The monitoring architecture is decentralised,
not resource intensive (in terms of memory or CPU), and
adaptable to a wide range of virtual topologies.

The IMO architecture uses Information Aggregation Points
and Information Collection Points to scalably aggregate, filter,
and collect data. The IMO is tested for scalability in both
simulation (with over 35,000 thousand nodes) and on a custom-
made virtual network testbed (with over 700 virtual routers),
where we show that it performs well at a variety of monitoring
tasks. This paper shows that the system is scalable and that intel-
ligent configuration of the monitoring system greatly improves its
efficiency. Furthermore, filtering can help reduce the monitoring
load, however, the improvement brought in by filtering is greatly
dependent on the nature of the monitoring task.

I. INTRODUCTION

In order to manage the challenging and dynamic infras-
tructures of virtual networks there needs to be a monitoring
system which can collect and report on the behaviour of the re-
sources, combined with a management system that can use the
monitoring information in order to make decisions regarding
network behaviour. In this paper we present an information
management platform, called the Information Management
Overlay (IMO), which is an infrastructure that regulates in-
formation flow based on the current state and topology of the
network environment. In particular, we address the problem of
implementing and testing an Information Management Overlay
(IMO) for dynamic virtual networks (or any other dynamic
types of networks)

The IMO consists is a decentralised router-level monitoring
system which collects data from nodes in a network, a system
of aggregation points used to gather such data, and an IMO
controller which controls data collection, data aggregation, and
aggregation node placement. The testing of this infrastructure
takes place both on a dedicated testbed for virtual networks
(where the monitoring system runs on a network with over
700 virtual routers running on eleven physical machines) and

in simulation (where topologies with over 35,000 simulated
nodes have been tested). The virtual routers were designed and
built for this research. Extensive evaluation of the monitoring
system shows that (i) the a specially devised node placement
algorithm is efficient, (ii) the monitoring system scales very
well as the network grows and (iii) the filtering system for
aggregation points can significantly reduce monitoring traffic,
however, the reduction depends on the nature of the metric to
be monitored.

The IMO is an important step towards a unified information
management infrastructure for virtual networks. The work
presented here is a rigorous and detailed test of the Information
Management Overlay introduced in [1]. The actual monitoring
software used on each virtual router is known as Lattice and
was introduced in [2] and [3]. This paper reports on a success-
ful large scale testbed deployment of the monitoring software
with IMO control algorithms and a large-scale simulation test
of this control.

In [1], a node placement algorithm known as HotSpot was
tested on a virtual network testbed using the Xen hypervisor
[4]. It used a static topology, with 33 virtual machines over
three physical machines. This paper takes a different approach
by using a lightweight virtual network testbed based on Java
Virtual Machines, which can run either virtual routers or
virtual service elements. This is complemented with a much
more lightweight simulation. This allows for much larger scale
tests – in the testbed, the 33 routers from [1] was improved to
over 700 routers and in simulation 35,000 nodes. The HotSpot
placement algorithm from [1] is replaced by a novel placement
algorithm for dynamic networks, called Pressure which greatly
improves upon HotSpot. In contrast to [1] this paper considers
dynamic topologies and this is an important improvement over
the static tests. A real life virtual network is highly dynamic.

The structure of the paper is as follows. Section II describes
the research background regarding the problem addressed.
Section III describes the proposed monitoring framework.
Section IV describes how the framework was implemented and
tested in simulation and in a real-life virtual network testbed.
Section V describes tests of node placement algorithms. Sec-
tion V describes scalability tests. Section V describes tests of
information filtering. Finally, section VI concludes this paper.

2

II. BACKGROUND

Virtual networks aim at better utilisation of the underlying
infrastructure [5] in terms of (i) reusing a single physical or
logical resource for multiple other network instances, or (ii) to
aggregate multiples of these resources, in order to obtain more
functionality, such as providing a pool of resources that can be
utilised on demand. As an example, virtual networks can be
aggregated (or federated) together. Such an approach requires
aggregation and dissolution of control, data, and information
planes, which is a challenging problem. Manageability is
considered to be the biggest concern for network virtualisation
[6].

Management applications need to be adaptive to a rapidly
changing environment with respect to specific network prop-
erties, and to service or user requirements, as examples. This
implies that management applications should be supported
by a platform that collects, processes, and disseminates in-
formation characterising the virtual network. Monitoring is
a main management problem in the network virtualization
environment [6].

Key design requirements of an information management
infrastructure are: (i) information collection from the sources
(e.g., virtual routers), (ii) information processing that produces
different information abstractions, and (iii) information dis-
semination to the management entities exploiting that infor-
mation. It is common that such design approaches aggregate
information using aggregate functions. In [7], the authors
employ a QoS data aggregation/refinement technique in order
to ensure end-to-end service quality stated in service level
agreements (SLAs). Other approaches addressing the funda-
mental trade-off between information accuracy and manage-
ment overhead using information aggregation include [8] and
[9]. Consequently, real-time monitoring of network parameters
may introduce significant communication overhead, especially
for the root-level nodes of the aggregation trees. Information
flow should adapt to both the information management re-
quirements and the constraints of the network environment,
one example being: changes in the information collection
configuration.

Existing proposals on monitoring virtual networks primarily
cover experimental infrastructure focused on monitoring or
explore particular monitoring aspects. For example, Planetlab
[10] uses resource monitoring through a resource broker,
realizing admission control. In [11], the authors propose
monitoring over virtual networks as an enabler technology for
accountability. Their focus is mainly on secure information
probing mechanisms. In Cabo [12], topology discovery is
realized through a discovery plane that uses flooding for
dissemination of reachability information. In [13], the authors
describe a solution for monitoring information representation
through MIBlets, i.e., logical structures providing abstract
and selective views of the physical network resources al-
located to virtual networks. Virtual Internet infrastructure
[14] supports dynamic discovery, deployment, and monitoring.
Multiple overlays coexist, supporting control and network
recursion. In [15], the authors introduced a common abstrac-
tion layer for all the management software in order to be

able to aggregate information from diverse, even conflicting
management paradigms, followed by different infrastructure
providers. Other proposals target at specific virtual network
environments, e.g., VNRM [16] for ATM networks.

In [17], the authors introduce performance metrics and an
evaluation methodology for assessing performance of network
and service monitoring frameworks. They studied the effect
of load and number of managed nodes on scalability as well
as the impact of management activities on the user-perceived
performance of the framework. The same authors provide
a queuing theoretical model of commonly used monitoring
frameworks that explores scalability limits of such environ-
ments [18]. In this paper, we also consider scalability as a
critical aspect. In [19], the authors evaluate different placement
algorithms in the context of Content Distribution Networks
(CDNs). In [20], the authors investigate the performance of
topology-informed replicated server placement.

Existing monitoring systems such as Ganglia [21], Nagios
[22], MonaLisa [23], R-GMA [24] and GridICE [25] have
addressed the monitoring of large distributed systems. They
are designed for fixed, and relatively slowly changing physical
infrastructure that includes servers, services on those servers,
routers and switches. However, they have not addressed or
assumed a rapidly changing and dynamic infrastructure as
present in virtual environments. In the physical world, new
nodes/routers do not appear or disappear very often. Some-
times some new routers and servers are purchased and added
to a rack, and a router or server may fail. Also, it is rare
that a server will move from one location to another. In the
virtual world, the opposite is the case. Many new virtual
routers and virtual hosts can appear and disappear rapidly,
often within minutes. Furthermore, the virtual hosts can be
migrated from one network to another while still retaining their
capabilities. Approaches, such as [26], perform monitoring
over virtual networks, at the service level, without addressing
the constraints of the virtual network environment.

III. INFORMATION MANAGEMENT OVERLAY

The Information Management Overlay (IMO) described
here is a fundamental component of an Autonomic Network
architecture [27]. The IMO can be seen as an implementation
of a Knowledge Plane (such as the Knowledge Plane proposed
in [28]) for a network which provides an interface for man-
agement applications to gain information about a network. The
aim of the IMO is to allow the efficient and scalable collection
of data about a running network. In this paper, we present
an IMO which is suitable for virtual networks. In a virtual
network, the topology may change dynamically as new nodes
may be added to the network at any time.

The IMO is a management infrastructure that collects,
processes, and disseminates information from/to the network
entities and management applications, acting as an enabler
for autonomic self-management functionality. It consists of
the IMO Controller and a number of IMO-nodes placed
at different points in the network, forming a hierarchy. A
Management Application can interact with the IMO Controller
(see Figure 1) by specifying its requirements in terms of the

3

Distributed IMO Controller

Policy
Engine

Optimization
Algorithms

Management
Application

Router Router Router Router

Router Router Router Router

IA
P

IA
P

IC
P

IC
P

IA
P

IC
P

IC
P

IC
P

IC
P

Information
Store

M
on

ito
ri

ng
 d

at
a

C
on

tr
ol

 a
nd

 S
el

ec
tio

n

Fig. 1. Information Management Overlay (IMO) Controller and Routers

information sources, the type of information, the monitor-
ing rate, the aggregation function, etc. Furthermore, it can
specify performance optimisation requirements with respect
to network overhead or processing cost. The IMO Controller
performs overlay-wide control of the platform and enforces
decisions by communicating with the appropriate IMO-nodes,
in order to satisfy the above requirements.

The key factors that allow the IMO to be scalable, efficient,
and robust are the quantity and the placement of the IMO-
nodes. Since the latter are a subset of the network nodes, each
topology should be carefully analysed, based on algorithms
that enable the optimum deployment of the IMO-nodes in an
automated manner.

The IMO-nodes themselves may have one of the following
roles: (i) to collect information, acting as Information Col-
lection Points (ICPs), (ii) to aggregate information, acting as
Information Aggregation Points (IAPs), or (iii) both, acting
as Information Collection & Aggregation Points (ICAPs). Our
infrastructure supports both optimum placement of IMO-nodes
and information filtering based on accuracy objectives, in order
to adjust the performance-related trade-offs.

Information Collection Points (ICPs) originate the data to
be monitored. They are either the machines where that data
is generated or monitoring points associated with a network
of machines and collecting the data for that network. The
ICPs are built as a Lattice Data Source and are controlled
by the IMO. The IMO may select the nature of the data to be
collected, the frequency of data collection, and various filtering
options.

Information Aggregation Points (IAPs) aggregate the data
from the ICPs. The IMO configures each ICP to send its data
periodically to one IAP (an IAP may also be an ICP, which
is an instance of an ICAP, in which case it keeps the data).
The data sent to the IAPs may be filtered or combined using
various statistical functions. The IAPs are built as a Lattice
Data Consumer.

The IMO Controller is responsible for the setup and op-
timisation of the overlay. It takes input from a management
application regarding the optimisation requirements, such as
the percentage of nodes that are to be IAPs or the filtering that

is required at ICPs. It then configures the ICPs and the IAPs
via their respective controllers. The IMO Controller has many
components, but its 3 main components are: the optimisation
algorithms, the information store, and the policy engine. These
are the core part of the IMO management and decision making
machinery. These components and well as the ICP and IAP
are described in more detail in [1].

IV. TESTBED FRAMEWORK

This section describes the testbed and methods used to test
the IMO system. The experimental framework described here
uses a common experimental harness to drive both testbed
run results and simulation results. The test runs are replicated
several times to ensure replicability of results.

The testbed consists of a large number of software routers
running inside Java Virtual Machines (JVMs) across a smaller
number of physical host machines. The routers are logically
independent software entities, which communicate with each
other via network interfaces. The virtual router was developed
by the authors to implement much of the IP stack in an
efficient way. Each physical machine can run as many as 70 of
these virtual routers. The testbed executes on eleven physical
machines running the elements of the IMO.

The underlying monitoring framework used by the testbed
on the routers, known as Lattice, is described in [2] and [3].
The Lattice monitoring system has been used successfully to
provide data on all of the virtual elements and the running
services of a cloud computing service environment [2] as well
as for virtual networks [3]. The measurements supplied have
been used for service and network management.

The virtual routers used in the testbed are relatively complex
software entities. They can be started and stopped in less than
a second. They can be linked or unlinked to create quickly
changing network topologies. The routers use distance vector
routing with the split-horizon hack and poisoned reverse at-
tempting to mitigate the count-to-infinity problem. In addition,
routed packets have a time-to-live (to ensure they do not get
stuck in routing loops). The routers, therefore, pass data hop-
by-hop over the virtual network.

Each virtual router also implements virtual ports and net-
worked applications can be run on a datagram socket interface
over these virtual ports. The Lattice monitoring software is run
over these virtual ports. In this system, every virtual router is
an ICP and a selected subset are IAP (and the ICP and IAP
code is run as a Lattice application on every virtual router).
Each ICP is informed which IAP it should pass data to and
the monitoring data is routed hop-by-hop like any other data.

The results given in this paper, whether from simulation or
from the testbed, have a common structure to aid compara-
bility. Each “experiment” lasts one hour, results are collected
every ten seconds, and the last fifty of these are averaged.
Each point on the graph is then averaged over five experiment
replications. The mean is plotted and error bars of plus and
minus one standard deviation. Each point on every testbed
graph therefore represents five hours of testbed time (simula-
tions are, naturally, not done in real time). For simulation the
traffic on the network is estimated using equation (1) whereas
in the testbed setting the generated traffic is measured.

4

Because the final deployed nature of virtual networks re-
mains quite uncertain, the testbed and simulation here rely on
the input of arbitrary probability distributions to model node
arrival rates and how nodes link together. In the experiments
performed here, nodes arrive as a Poisson process (exponential
distribution of inter-arrival times) as this has been shown to
be a realistic distribution for a number of real traffic arrival
processes on the current Internet [29, table 3]. Links are added
between nodes as a random process, with every new node
having one link plus a number of extra links, with a Poisson
distribution. The nodes are linked at random (so older nodes
will tend to acquire more links).

In the testbed framework the traffic generated by monitoring
can be directly measured. This is the traffic between all the
ICPs and their associated IAP generated by the monitoring
data. For the simulation, this traffic level must be estimated,
and is defined here.

Let N(t) be the set of nodes in the network at time t
and let Dj(t) be the distance (number of hops) from node
j to its nearest aggregation point at time t. An estimate for a
normalised traffic level T (t) is then given by

T (t) =
∑

j∈N(t)

Dj(t). (1)

The Pressure algorithm is now defined. Define the “pressure
score” for a node j, Pj(t) as

Pj(t) =
∑

i∈N(t)

max(0, Di(t)− di,j),

where di,j is the distance (in hops) from node i to node j. This
can be calculated in a decentralised way by a node asking its
neighbours for their distance and value of Di(t) and this query
being passed on recursively. It can be shown that choosing
the node with the maximum pressure score Pj(t) is a locally-
optimal, greedy algorithm for reducing the traffic as defined in
(1). That is to say, the node with the highest Pj(t) is the best
possible choice of a single node to become an IAP if the goal
is reduction of traffic reduction. (The choice is only locally
optimal as it takes no account of future network evolution or
future choices of IAP).

For comparison, an algorithm from our previous work [1]
called HotSpot is used. The HotSpot score for a node is

Hj = d(1)3j + d(2)2j + d(3)j ,

where d(i)j is the number of neighbours at i hops node j
has. This algorithm is used for comparison in addition to the
baseline Random algorithm which simply picks any non-IAP
node with equal likelihood.

In every experiment, a minimum proportion of nodes to
be IAPs is selected. This is monitored every ten seconds.
If the proportion of IAPs is below this, then a new IAP is
selected according to either Pressure, HotSpot, or Random.
ICPs update their preferred IAP when new IAPs are added or
when topologies change.

In a large network it is envisaged that the IMO controller
selecting the IAP would be decentralised. The calculation of
HotSpot and Pressure scores do not require global information
and could be achieved by the nodes successively querying

their neighbours. The selection of the node with the highest
score to become an IAP can then be achieved with standard
decentralised election algorithms.

V. RESULTS

The first part of this section describes how the traffic
changes as the proportion of IAPs changes. The word “nodes”
is used here and for the rest of the paper as a generic term
incorporating routers in the testbed or simulation nodes. IAP
nodes are a subset of these nodes chosen as IAPs. Each
experiment run (whether in simulation or on the real testbed)
takes a similar form. The network of nodes is grown from an
empty network, using parameters as described in section IV.
In simulation, new nodes arrive in the network at an average
rate of one per second, so that after a one hour long run the
network will average 3,600 nodes. On the testbed, new nodes
arrive at the slower rate of one per twenty seconds, so that the
average size is 180 nodes at the end of an hour.

Figure 2 (top) shows the estimated traffic per node versus
the proportion of nodes which are IAPs for the simulation
network. Three different node placement algorithms are tried.
The traffic is in arbitrary units as calculated from equation
(1) and is scaled by the number of nodes in the network.
The proportion of nodes which are IAPs is tested with 1%,
2%, 5%, 10% and 20%. As would be expected, the higher
the proportion of IAPs the less the estimated traffic per node.
Roughly speaking, doubling the proportion of IAPs removes
around 0.4 units of traffic per node for each scheme. The effect
of changing the assignment scheme remains considerable. As
it is expected, the Pressure scheme is best, the HotSpot scheme
comes second, and the Random scheme is worst of all. The
effect of moving from Random (the least efficient scheme)
to Pressure (the most efficient) is approximately the same
as doubling the proportion of IAPs in the network, which
shows that an intelligent choice of IAP selection algorithm
is certainly important.

Figure 2 (bottom) shows the same experiment on the testbed
with an average of 180 nodes per run. Node proportions
of 2% ,5% and 10% are tested (less than that would mean
only two IAPs on the testbed one of which is always the
first node create). The results are very similar to those from
simulation although, due to the smaller network size, the
error bars are proportionally larger. The Pressure algorithm
clearly outperforms Random and seems to outperform HotSpot
(although this could be argued since the results a re within
one standard deviation). The advantages are more clear over
HotSpot as the proportion of IAPs grows (this would be
consistent with the idea of the Pressure algorithm being better
at assigning monitoring nodes since it is used more often when
there are more IAPs).

The conclusion of this section, therefore, is that the place-
ment algorithm chosen for placement of IAP nodes for the
IMO can make an important difference to the level of mon-
itoring traffic observed. This finding is consistent in both
simulation and on the testbed. While the simulation results
are clearer (more nodes can be used for testing) the testbed
results verify that the benefits do occur on a real system.

5

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

E
s
ti
m

a
te

d
 t
ra

ff
ic

/n
o
d
e

Proportion of nodes which are IAPs

Pressure
HotSpot
Random

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

T
ra

ff
ic

 p
e
r

n
o
d
e
 p

e
r

s
e
c
o
n
d
 (

b
y
te

s
)

Proportion of nodes which are IAPs

Pressure
HotSpot
Random

Fig. 2. Proportion of nodes as IAPs vs estimated traffic: Top (simulation).
Bottom (testbed).

The second part of these results describe how the monitoring
framework scales as the number of nodes increases. Figure 3
(top) shows the estimated traffic per node versus the number of
nodes for the three placement algorithms in simulation. Node
arrival rates are varied and five runs of each size are tried.
The network size varies from an average of 36 nodes per
run to an average of 36,000 nodes per run. It is important
to note that the x-axis is plotted on a logscale. The number of
nodes varies from around forty to around seven thousand. As
can be seen, in common with the results from the previous
section, the Pressure algorithm performs best, the HotSpot
algorithm second best and the Random algorithm worst of
all. More importantly, the scaling behaviour of all algorithms
is acceptable and of the Pressure algorithm, very much so.
For smaller experiments, the error bars (one standard deviation
above or below the mean for five experimental runs) are large.
This is to be expected since with only 40 nodes the placement
of four IAPs could greatly vary the results. Also, if a particular
experiment happened, by chance, to have 41 nodes (and hence
five IAPs) the difference in traffic levels would be large. The
most important conclusion is that the increase in traffic as the
network increases in size is small (especially for the Pressure
algorithm).

Figure 3 (bottom) shows the scaling results from the testbed
using 10% of nodes as IAPs and using the same three place-
ment algorithms. This confirms the good scaling behaviour

of both the Pressure and HotSpot algorithms, and shows
that the traffic does not grow greatly as the network size
increases. Obviously, the testbed cannot run as many nodes
as the simulation, the mean arrival rate is varied up to one
router every five simulated seconds, giving the mean size of
the final network as 720 nodes. As expected, Pressure is better
than HotSpot, which is in turn better than Random (although,
again, this conclusion should be treated with caution due to
the size of the error bars in smaller network sizes). Note that
the variation in number of nodes between the algorithms is
due to statistical variation between runs.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 10 100 1000 10000 100000

E
s
ti
m

a
te

d
 t
ra

ff
ic

/n
o
d
e

Number of nodes

Pressure
HotSpot
Random

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0 100 200 300 400 500 600 700

T
ra

ff
ic

 p
e
r

n
o
d
e
 p

e
r

s
e
c
o
n
d
 (

b
y
te

s
)

Number of nodes

Pressure
HotSpot
Random

Fig. 3. Traffic per node vs no. of nodes: Top (simulation). Bottom (testbed).

The conclusions of this section are two fold. Firstly, the
Pressure algorithm shows the best behaviour regardless of the
proportion of IAPs as the number of nodes in the network
grows. Secondly, the scaling behaviour of the monitoring
system is excellent. The amount of monitoring traffic per node
does not increase greatly as the network grows in size (indeed
given error bars there’s little reason to suppose it increases at
all). These are encouraging results in simulation and on the
testbed for implementation of this monitoring system in a large
network.

The third and final part of these results show the effects of
filtering monitoring data at the ICP. Testbed results are shown
with parameters as described in section IV and with a mean
arrival rate of one node per twenty seconds, giving an average
final network size of 180 nodes. As usual, each point on the
graph is the average of five hour long experiments.

6

Figure 4 (top) shows the results of filtering the traffic so that
no monitoring data is sent unless the recorded level varies by
2%, 5% or 10% compared with the last value sent. The CPU
utilisation on the host machine is monitored. The proportion
of IAPs is varied between 2%, 5% or 10% but, for clarity so
that error bars do not overlap the points are shifted slightly
to the left and right of their true positions. Only the Pressure
placement algorithm is tested. As can be seen, the filtering
in this case is not greatly effective at reducing traffic levels.
Although traffic is reduced, the reduction is relatively minor
even with the 10% filter in place. It is likely that this is because
the CPU utilisation varies greatly from moment to moment.

Figure 4 (bottom) shows the same results but for monitoring
memory usage instead of CPU utilisation. Note the logscale
on the x-axis. Due to the nature of the testbed, the memory
usage rises throughout the period of the experiment. However,
the rise is slow and over short time periods the memory usage
remains relatively constant. In this case, therefore, the filtering
is extraordinarily effective in reducing monitoring traffic. For
example, in the scenario where 2% of nodes are IAPs the
traffic is reduced from 3,700 bytes per node per second to only
3.3 bytes per node per second. In the no filter case, monitoring
data is sent every second. In the 2% filter case, monitoring data
is sent, on average only every 1,100 seconds. There seems
to be no significant variability in the results depending on
filter level. The degree of difference in filtering effectiveness
between the this and the CPU monitoring scenario could not
be more marked although the examples were not selected
with this in mind. It is clear that this type of filtering can be
ineffective or extremely effective at reducing monitoring traffic
depending on the nature of the quantity monitored. While this
was expected the authors were greatly surprised by the extent
to which this was the case.

Clearly, in choosing the filtering level there is a tradeoff be-
tween accuracy and traffic reduction. In the case of monitoring
CPU utilisation filtering did not greatly reduce traffic and no
filtering would be a sensible choice. In the case of monitoring
memory load 1% filtering is a sensible choice and 10% fil-
tering loses accuracy without making further traffic reduction.
This highlights a need for such filters to be automatically tuned
to the nature of the traffic being monitored.

VI. CONCLUSIONS

This paper has described the implementation and testing
of an Information Management Overlay (IMO) for virtual
networks (and other highly dynamic network environments).
The system described uses both Information Collection Points
(ICPs) and Information Aggregation Points (IAPs) in conjunc-
tion with an IMO Controller to provide a scalable solution
to monitoring and managing networks where topologies may
change quickly.

The tests were carried out in simulation (for over 35,000
nodes) and in a real testbed of virtual routers (for over 700
routers). The results have shown that the proposed monitoring
system performed extremely well, and that the choice of
placement algorithm is important as intelligent placement of
aggregation points can reduce monitoring traffic greatly. The

 2000

 2500

 3000

 3500

 4000

 4500

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ff
ic

 p
e
r

n
o
d
e
 p

e
r

s
e
c
o
n
d
 (

b
y
te

s
)

Proportion of nodes which are IAPs

No filter
2% filter
5% filter

10% filter

 1

 10

 100

 1000

 10000

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ff
ic

 p
e
r

n
o
d
e
 p

e
r

s
e
c
o
n
d
 (

b
y
te

s
)

Proportion of nodes which are IAPs

No filter
2% filter
5% filter

10% filter

Fig. 4. Effectiveness of filtering: Top (CPU usage). Bottom (memory usage).

system presented scales extremely well as the amount of
monitoring traffic per node on the network did not significantly
increase with the size of the network, by several orders of
magnitude. The Pressure algorithm works better than the older
HotSpot algorithm at reducing traffic and both are better than
Random as would b expected. Finally, filtering the monitored
traffic was shown to be a potentially useful way to reduce
the level of monitoring traffic. The success of the filtering in
reducing traffic depends greatly on the nature of the entity to
be filtered and what a management system, which is to filter
intelligently, must do with regard to the nature of the entity
being monitored.

A future direction for this work would be automating the
filtering process. It is clear that for the memory monitoring, 2%
filtering is good for reducing traffic but for the CPU monitoring
the reduction in accuracy is unlikely to be worth the trade-off.
An intelligent automatic system could detect the appropriate
level of filtering based upon a management input describing
the relative importance of information accuracy objective [30]
and traffic reduction.

ACKNOWLEDGEMENTS

This work is partially supported by the European Union
UniverSELF [31] project of the 7th Framework Program.

7

REFERENCES

[1] L. Mamatas, S. Clayman, M. Charalambides, A. Galis, and G. Pavlou,
“Towards an information management overlay for emerging networks,”
in NOMS 2010, 2010.

[2] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino,
L. Vaquero, K. Nagin, and B. Rochwerger, “Monitoring service clouds
in the future internet,” in Towards the Future Internet - Emerging Trends
from European Research. IOS Press, April 2010.

[3] S. Clayman, A. Galis, and L. Mamatas, “Monitoring virtual networks
with lattice,” in Management of Future Internet - ManFI 2010, 2010.
[Online]. Available: http://www.manfi.org/2010/

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand et al., “Xen and the art of
virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177,
2003.

[5] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, vol. 38, pp. 34–41,
April 2005. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1058219.1058273

[6] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Comput. Netw., vol. 54, pp. 862–876, April 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.comnet.2009.10.017

[7] Y. Lin and M. Chan, “A scalable monitoring approach based on
aggregation and refinement,” Selected Areas in Communications, IEEE
Journal on, vol. 20, no. 4, pp. 677–690, 2002.

[8] A. Prieto and R. Stadler, “A-gap: An adaptive protocol for continuous
network monitoring with accuracy objectives,” IEEE Transactions on
Network and Service Management (TNSM), vol. 4, no. 1, pp. 2–12,
2007.

[9] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi, “Holis-
tic aggregates in a networked world: Distributed tracking of approximate
quantiles,” in Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. ACM, 2005, pp. 25–36.

[10] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “PlanetLab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 3, pp. 3–12, 2003.

[11] E. Keller, R. B. Lee, and J. Rexford, “Accountability in hosted
virtual networks,” in Proceedings of the 1st ACM workshop on
Virtualized infrastructure systems and architectures, ser. VISA ’09.
New York, NY, USA: ACM, 2009, pp. 29–36. [Online]. Available:
http://doi.acm.org/10.1145/1592648.1592654

[12] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in
your spare time,” SIGCOMM Comput. Commun. Rev., vol. 37, pp.
61–64, January 2007. [Online]. Available: http://doi.acm.org/10.1145/
1198255.1198265

[13] W. Ng, D. Jun, H. Chow, R. Boutaba, and A. Leon-Garcia, “MIBlets:
A practical approach to virtual network management,” in Integrated
Network Management, 1999. Distributed Management for the Networked
Millennium. Proceedings of the Sixth IFIP/IEEE International Sympo-
sium on. IEEE, 1999, pp. 201–215.

[14] J. Touch, Y. Wang, L. Eggert, and G. Finn, “A virtual internet architec-
ture,” ISI Technical Report ISI-TR-2003-570, 2003.

[15] M. Feridan, M. Moser, and A. Tanner, “Building an abstraction layer for
management systems integration,” in Proceedings of the 1st IEEE/IFIP
International Workshop on End-to-End Virtualization and Grid Manage-
ment (EVGM2007), 2007, pp. 57–60.

[16] W. Ng, R. Boutaba, and A. Leon-Garcia, “Provision and customization
of ATM virtual networks for supporting IP services,” in ATM Workshop,
1999. IEEE Proceedings. IEEE, 1999, pp. 205–210.

[17] A. Lahmadi, L. Andrey, and O. Festorh, “Performance of network
and service monitoring frameworks,” 11th IFIP/IEEE International
Symposium on Integrated Network Management, 2009.

[18] A. Lahmadi, L. Andrey, and O. Festor, “Design and validation of an
analytical model to evaluate monitoring frameworks limits,” Eighth
International Conference on Networks, 2009.

[19] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web
server replicas,” in INFOCOM 2001. Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 3. IEEE, 2001, pp. 1587–1596.

[20] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-informed internet
replica placement* 1,” Computer Communications, vol. 25, no. 4, pp.
384–392, 2002.

[21] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: Design, implementation and experience,” Parallel
Computing, vol. 30, p. 2004, 2003.

[22] “Nagios,” http://www.nagios.org/.

[23] H. Newman, I. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu, “Mon-
ALISA : A distributed monitoring service architecture,” in Proceedings
of CHEP03, La Jolla, California, 2003.

[24] A. Cooke, A. J. G. Gray, L. Ma, W. Nutt et al., “R-GMA: An information
integration system for grid monitoring,” in Proceedings of the 11th
International Conference on Cooperative Information Systems, 2003,
pp. 462–481.

[25] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. L. Rubini,
G. Tortone, and M. C. Vistoli, “GridICE: A monitoring service for grid
systems,” Future Gener. Comput. Syst., vol. 21, no. 4, pp. 559–571,
2005.

[26] J. Liang, X. Gu, and K. Nahrstedt, “Self-configuring information man-
agement for large-scale service overlays,” in INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. IEEE.
IEEE, 2007, pp. 472–480.

[27] A. Galis, S. Denazis, A. Bassi, P. Giacomin et al., Management
Architecture and Systems for Future Internet Networks. IOS Press,
http://www.iospress.nl, ISBN 978-1-60750-007-0, April 2009.

[28] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A
knowledge plane for the internet,” in SIGCOMM ’03: Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications. New York, NY, USA: ACM,
2003, pp. 3–10.

[29] R. Clegg, C. Di Cairano-Gilfedder, and S. Zhou, “A critical look at power
law modelling of the internet,” Computer Communications, vol. 33,
no. 3, pp. 259–268, 2010.

[30] A. Prieto and R. Stadler, “Adaptive distributed monitoring with accuracy
objectives,” in Proceedings of the 2006 SIGCOMM workshop on Internet
network management. ACM, 2006, pp. 65–70.

[31] Univerself consortium, “Univerself project,” http://www.
univerself-project.eu/.

