
IEEE Communications Magazine • December 200840 0163-6804/08/$25.00 © 2008 IEEE

INTRODUCTION

Live content delivery over the Internet is highly
desirable, but challenging. Removing the need to
deploy specialized resources would allow anyone
to broadcast and reach consumers anywhere in the
world. This facility could be used by many applica-
tions — the most obvious being IPTV for the dis-
tribution of live audio-visual content, but other
applications such as real-time multi-user 3D envi-
ronments and games could also be envisioned.

While multicast and quality of service (QoS)
mechanisms at the network layer seem ideal for
delivering live entertainment content, deploy-
ment is still limited. Lack of multicast can be
overcome, although not efficiently, by using uni-
cast connections to consumers. Lack of network
layer QoS, however, inevitably impacts quality of
experience (QoE) observed as interruptions to
the playback of many currently deployed
client/server applications. Borrowing from tradi-
tional content delivery networks (CDNs) for Web
content, IPTV service providers currently fence
off a small portion of the Internet and deploy
native multicast, traffic differentiation, abundant
capacity, and dedicated infrastructure. Although
this walled garden gives acceptable results, even

for 8 Mb/s high definition (HD) H.264 TV chan-
nels, it is neither scalable nor cheap.

Application-layer multicast-like solutions typ-
ically rely on organized distribution trees [1], so
they are sensitive to churn (frequent peer arrivals
and departures). On the other hand, file distri-
bution systems like BitTorrent [2] achieve high
resilience to churn with swarming: splitting the
file into small data units and ensuring that these
pieces are distributed among the set of peers
participating in the download. In this way peers
obtain parts of the file from many peers in paral-
lel, increasing resilience. However, content deliv-
ered in this way can only be consumed once the
full download has been completed.

Variations of BitTorrent for on-the-fly con-
sumption of swarmed content such as PPLive [3]
suffer from relatively long startup delay and
playout lag. In addition, they often require
provider-provisioned resources (super peers) to
assist content distribution by providing supple-
mentary upload capacity beyond the capacity
provided by the consuming peers.

Our solution is a peer-to-peer live streaming
system where all resources are provided by the
peers themselves. All peers participate in the
distribution and consumption of one or more
streams produced at a single source — the peer-
caster. Upon joining a stream, peers attach them-
selves to other peers according to distributed
topology management and capacity allocation
algorithms that aim at minimizing startup delay
and playout lag across the entire swarm.

The article is organized as follows. First we
discuss the problems to be addressed by a swarm-
ing system delivering real-time content. The fol-
lowing sections then describe the main aspects of
the system: the construction of an overlay net-
work to deliver swarmed media streams with
QoS considerations; the discovery of peers par-
ticipating in a stream in a scalable way; the par-
ticipation of non-consuming peers to increase the
capacity of the system; and an incentive mecha-
nism that enables claiming past contributions
from peers with no prior interaction. Following
the description of the main components of our
solution, we describe how they fit together to
form an overall system for streaming live media
content over a fully distributed peer-to-peer net-
work. The final section presents our conclusions.

ABSTRACT

We present a system for streaming live enter-
tainment content over the Internet originating
from a single source to a scalable number of
consumers without resorting to centralized or
provider-provisioned resources. The system cre-
ates a peer-to-peer overlay network, which
attempts to optimize use of existing capacity to
ensure quality of service, delivering low startup
delay and lag in playout of the live content.
There are three main aspects of our solution:
first, a swarming mechanism that constructs an
overlay topology for minimizing propagation
delays from the source to end consumers; sec-
ond, a distributed overlay anycast system that
uses a location-based search algorithm for
peers to quickly find the closest peers in a given
stream; and finally, a novel incentive mecha-
nism that encourages peers to donate capacity
even when the user is not actively consuming
content.

CONSUMER COMMUNICATIONS AND NETWORKING

Eleni Mykoniati, Raul Landa, Spiros Spirou, Richard G. Clegg, Lawrence Latif, David Griffin,
and Miguel Rio, University College London

Scalable Peer-to-Peer Streaming for
Live Entertainment Content

GRIFFIN LAYOUT 11/17/08 4:52 PM Page 40

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 28, 2008 at 15:29 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2008 41

REAL-TIME SWARMING

Peer-to-peer live streaming systems overcome
the lack of native multicast and QoS by imple-
menting such functionality at the application
layer. The resultant overlay receives the live
stream from an encoding element (e.g., a capture
device) at the peercaster, distributes it through
the peers, and delivers it to a decoding element
(e.g., a player) at the consumer. The system per-
formance generally differs across consumers and
is correlated to QoE through three metrics:
• Startup delay: The time between a con-

sumer’s request to view a particular stream
and the stream beginning to play. Low start-
up delay allows quick switching between
channels.

• Playout lag: The delay between a stream
data unit being sent by the peercaster and
the same data unit being viewed by the con-
sumer. Low playout lag means that stream
viewing is more “live.”

• Playout continuity: The percentage of stream
data units successfully played at the correct
time by the consumer. High playout conti-
nuity enables viewing with minimal distor-
tion.
Early peer-to-peer streaming systems mim-

icked native multicast and organized peers in a
tree with the peercaster at the root. After an ini-
tial consumer request, the entire stream would
be pushed to the consumer from a peer with
available upload bandwidth and probably in
close network proximity [1]. This scheme gives
good startup delay and playout continuity if the
tree is stable under churn, and good playout lag
if the tree is also short (low number of peers
between peercaster and consumer). The highly
dynamic Internet environment has so far kept
tree/push systems within research settings.

Recent deployments of peer-to-peer live
streaming systems [3] are based on the funda-
mentally different and inherently resilient
mesh/pull (swarming) scheme: a stream is seg-
mented at the peercaster into data units called
chunks, and each consumer independently opti-
mizes its playout by selecting which chunks to
pull from which peers. The resultant intercon-
nection graph, as shown in Fig. 1, is not a regu-
lar grid or fully connected, but it is called a mesh
nonetheless. Mesh/pull streaming systems have
built on the success of the BitTorrent file distri-
bution mechanism, and owe their resilience to
local optimization of delivery and free selection
of peers and chunks. Similar to BitTorrent, the
set of peers exchanging chunks constitute a
swarm. Unlike BitTorrent, chunks must leave the
overlay and reach the decoder at the consumer
in order and in real time. Furthermore, unlike
video on demand (VoD), all chunks are not
available at the time a peer selects the stream;
future chunks can only be distributed by the
peercaster after they have been generated.

A mesh/pull peer requests and receives
chunks from different peers in the swarm. To
absorb the variance in chunk reception over dif-
ferent sources and cope with peer failures in
times of high churn, a consumer maintains a
playout buffer. The playout buffer contains
chunks yet to be played out and slots for chunks

yet to be retrieved. It is marked by the playout
point, which indicates the next chunk to be deliv-
ered to the decoder. Playout begins once the
number of received consecutive chunks is con-
sidered sufficient to support playout continuity
at the stream rate, marking the startup delay and
initial playout lag.

A large playout buffer increases playout con-
tinuity because it absorbs more jitter, but it also
incurs higher startup delay and playout lag. The
variance experienced in chunk reception is typi-
cally smaller for less live chunks, as these are
already distributed across a large set of peers.
More live chunks, on the other hand, are harder
to find, so retrieving them in time to preserve
continuity requires a very aggressive strategy.
The particular choice in the trade-off between
playout lag and playout continuity depends on
the capabilities and position of each peer in the
swarm, and must follow the preferences of the
user; it is therefore subject to local optimization
by the peer.

The best performance of currently deployed
swarming systems can be summarized as having
20 s startup delay and 1 min playout lag with
acceptable playout continuity for streams of 350
kb/s [4]. This is far from even the average perfor-
mance of current IPTV walled gardens that exhib-
it 2 s of startup delay and 2 s playout lag with
good playout continuity for streams of 3.5 Mb/s.

The following section discusses principles for
selecting peers from which to retrieve chunks,
with the objective to improve both playout lag
and continuity for all peers in the system, irre-
spective of their position in the trade-off between
playout lag and playout continuity.

A QOS-BASED OVERLAY
The data connections for retrieving chunks,
determined by the local strategies of the individ-
ual peers, form an overlay network. The delay
and throughput (QoS) over each connection and
along the end-to-end path have direct impact on
the QoE experienced by each consumer. The

! Figure 1. Real-time swarming.

7

7

8

7

Peercaster

Consumer

Playout
point

Chunk playing time

1

Chunk production time

82 3 4 5 6

1 2 3 4 5 6

7

6

6
2

55

3

3

3

1

1

4

4

4

GRIFFIN LAYOUT 11/17/08 4:52 PM Page 41

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 28, 2008 at 15:29 from IEEE Xplore. Restrictions apply.

total throughput achieved over all the incoming
connections of a consumer must be enough to
sustain the stream rate to ensure playout conti-
nuity. Also, minimizing the playout lag is
achieved by minimizing the delay over the end-
to-end path from the peercaster to the con-
sumer. We define this path delay as the
accumulated link propagation and processing/
queuing delays at each sending peer.

A poor overlay topology is one where traffic
traverses long overlay links disregarding direc-
tion or locality. In addition to the negative
impact on playout lag for the peers, this also
increases traffic in the underlying network. If the
overlay is designed more intelligently by inter-
connecting local peers whenever possible, this
has the side-effect of benefiting the Internet ser-
vice providers (ISPs), who will experience less
traffic over expensive interdomain links.

Peers need an estimate of network delay to
other peers to determine which ones are in prox-
imity. It is impractical to establish a connection,
probe, and measure the delay to every peer
before selecting only the nearest few. To address
this issue, recently developed techniques can
obtain delay space coordinates based on only a
few prior measurements [5]. Network delays are
mapped to a synthetic coordinate space using
metric space embedding (Fig. 2); delay between
any two peers can be approximated with their
distance in delay space.

A star (client/server) topology where all
peers directly connect to the peercaster is ideal
for minimizing delay. However, this is unrealis-
tic as it implies that the peercaster has sufficient
upload capacity to serve all peers. The best
approximation of ideal direct connections to the
peercaster is achieved when peers establish con-
nections with their closest peers in the direction
of the peercaster. Always favoring short connec-
tions, though, results in paths with a large hop
count, and thus potentially long delays due to
accumulated processing and queuing times at
each hop. Our simulation results [6] indicate
that a compromise of establishing a few longer
connections to serve as “jumps” toward the
peercaster is beneficial in terms of reducing hop
count without requiring increased capacity at
the peercaster.

Peers are not uniformly distributed across the
delay space. Rather, they tend to cluster follow-

ing population density modified by the Internet
topology and associated delays. Connections
within the same domain have small delays,
whereas one satellite interdomain link is enough
for the delay to soar. Peers that only select fast
local connections may fail to reach other peers
that are close enough to the peercaster to actu-
ally get the stream. Therefore, a cluster of peers
needs to have enough long-distance (slow) con-
nections to reach other remote peers with the
required upload capacity and access to the
stream data.

Once a peer has determined the set of feasi-
ble peers it prefers on topological and delay
grounds, it will usually request and receive data
from only a subset. Decisions on from which
peers to download a particular chunk depend on
the potential senders’ playout lag and chunk
availability, and other factors such as the actual
network delay experienced over the links, their
available upload bandwidth, stability, trust, and
past performance.

The following section elaborates on the dis-
tributed discovery of peers to establish the
required connections in the direction of the
peercaster.

SCALABLE PEER DISCOVERY
A critical aspect of our system is the search for
other peers that are available to send chunks of
the stream. When first connecting to a stream, a
peer wishes to quickly determine which other
peers can provide chunks and are also close in
terms of delay. To achieve this we introduce the
concept of a local tracker (LT). Local trackers
are ordinary peers that have the additional func-
tion of listing peers carrying a stream in their
local area. The scope of local areas is dynamic:
they split or merge as they become over-/under-
loaded as peers join/leave the stream. Figure 3
shows an example of three streams, their local
areas, and the underlying distribution of nodes
on all streams.

As already mentioned, low startup delay is an
important goal for the system and involves peers
being able to quickly obtain a list of nearby
peers carrying the stream in which they are
interested. To achieve this task we developed a
distributed overlay anycast table (DOAT)
inspired by the Chord DHT system [7].

While an LT maintains the list of peers carry-
ing a particular stream in the local area, the
DOAT maintains the list of all the LTs for all
the streams across the entire network. Only a
small set of peers that are stable across all the
streams become DOAT nodes. When queried by
a peer about a particular stream, the DOAT has
to quickly search for the LT which is near that
peer in terms of delay. The discovered LT then
replies to the querying peer with the list of peers
in its local area (the related interactions are dis-
cussed later).

To facilitate the search task within the syn-
thetic coordinate domain, network coordinates
are transformed to a single dimension. This is
achieved using a space-filling curve which has
the property that if two locations are “close” on
the curve, they are also close in the original
space (but not vice versa). One particular curve

IEEE Communications Magazine • December 200842

! Figure 2. Mapping peers to synthetic delay coordinates.

Geographical space

Delay space

GRIFFIN LAYOUT 11/17/08 4:52 PM Page 42

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 28, 2008 at 15:29 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2008 43

that has been shown to have this property is the
H curve [8]. Figure 4 shows a space-filling curve
generated with three iterations and how nodes
map to it. In our system this space-filling curve
replaces the ring structure of a typical Chord
DHT; thus, the distance in the DOAT ring struc-
ture corresponds to the distance in the network
delay space (with the potential error introduced
by the space-filling curve).

The routing table of a DOAT node is, simi-
lar to Chord, populated with neighbor DOAT
nodes at exponentially increasing distances in
either direction of the DOAT ring. A DOAT
routing entry contains the next-hop DOAT
neighbor node and the list of identifiers of the
streams for which LT data can be reached
through this DOAT neighbor node. To acceler-
ate the process of matching a stream identifier
to a list and reduce the overhead of routing
table updates, the list of stream identifiers is
aggregated into a Bloom filter [9]. In this case
the Bloom filter is the result of setting to logical
1 all the bits corresponding to each of the k
hash values of all the identifiers in the list, and
provides an efficient data structure to store and
verify set membership.

Whenever a new LT for a particular stream
is added, it registers with the closest DOAT
node in delay space, and the stream identifier is
added to the Bloom filter of the local routing
entry of that DOAT node. Furthermore, if the
DOAT node had no previous route for the
stream identifier of the newly added LT, a rout-
ing update is sent to all its neighbors, signaling
the existence of the new route. Upon receiving
a routing update from neighbor node A, DOAT
node B updates the routing entry associated
with A and further forwards the update to its
neighbors that are further away, in terms of
their distance along the space-filling curve, than
node A (closer nodes will receive the update
from nodes nearer to them). In order to reduce
the frequency of messages, a minimum interval
is introduced over which routing updates are
aggregated and sent over a single routing
update message.

To obtain the IP address of the closest LT
carrying a given stream, peers issue a query with
the stream identifier to their closest DOAT
node. The DOAT node then searches its routing
table in increasing order of distance, and the
query is forwarded to the next-hop DOAT node
of the first routing entry whose Bloom filter
matches the stream identifier. This is done recur-
sively at each DOAT node, and the query propa-
gates in logarithmically decreasing distances
until reaching the DOAT node with an LT for
the requested stream identifier in its local rout-
ing entry. The LT discovered by this process is
the closest LT to the querying peer in the
requested stream.

We have evaluated DOAT in a network of
1000 DOAT nodes, distributed uniformly across
a coordinates space with 104 ms average delay
between any two points. For a 100-LT stream,
the average query time is 28 ms, while the equiv-
alent time to a central server would be the aver-
age round-trip time (208 ms). Unlike a central
server system, DOAT scales with the number of
peers.

DISTRIBUTED
CAPACITY PROVISIONING

Traditionally, QoS for multimedia services is
provided through capacity overprovisioning and
service differentiation. These are impossible for
large-scale real-time video distribution overlays
with no control over their underlying infra-
structure. Instead, the idea is to exploit the large
aggregate upload bandwidth of the system to
serve the consuming peers. This is possible
assuming that some peers will participate in the
system without consuming stream content. We
call these non-consuming peers (NCPs). Through
our incentives mechanism (see the next section),
NCPs contribute to the distribution of chunks in
order to “redeem” these contributions later by
“purchasing” chunks for their own consumption.

! Figure 3. Peer clustering in local areas across multiple streams.

Stream-2
local areas

Stream-1
local areas

Active peers
across the

delay space

Stream-3
local areas

Area-3A

Area-2A

Area-1A
Area-1B Area-1C

Area-3B
Area-3C

Pe
er

 p
ar

tic
ip

at
in

g
in

 s
tr

ea
m

-1
, s

tr
ea

m
-3

! Figure 4. Distributed overlay anycast table.

Routing table at DOAT node A

Next-hop
Identifier Distance Bloom filterH-curve value

A
B
C
D
E
F

0.00
0.03
0.07
0.24
0.28
0.48

BF.local
BF.B
BF.C
BF.D
BF.E
BF.F

0.43
0.40
0.50
0.19
0.71
0.95

H curve value
F(0.95)

E(0.71)

C(0.50)
A(0.43)

B(0.40)

D(0.19)

0

GRIFFIN LAYOUT 11/17/08 4:52 PM Page 43

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 28, 2008 at 15:29 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 200844

When an NCP downloads a chunk, it uses the
upload bandwidth of another peer. To offset this
loss of system resources and further optimize
distribution, an NCP conducts bandwidth multi-
plication by downloading only a fraction of a
stream’s chunks and uploading them as many
times as possible. Thus, NCPs increase the QoS
for consuming peers instead of just distributing
media traffic between themselves.

Another advantage of NCPs is reduction of
the playout lag when they are deployed appro-
priately. This can be accomplished by encourag-
ing NCPs, at stream bootstrap, to join in order
of their delay from the peercaster. The result is
an interconnected web of bandwidth multipliers
with low playout lag. Consuming peers inherit
this low playout lag when they connect to a
stream containing such organized NCPs.

This effect can be seen in Fig. 5, depicting
the playout lag for a simulation of 100 NCPs and
1000 peers, distributed uniformly across a delay
space with 76 ms average delay between any
peer and the peercaster. We model a 1.5 Mb/s
rate stream split into five substreams, each of
which has the same bandwidth. All peers have
sufficient download capacity and an upload
capacity of 2.1 Mb/s. NCPs join at stream boot-
strap and subscribe to only one substream.

INCENTIVES
As has been shown repeatedly [10], peer-to-peer
systems where there is no contribution account-
ing and associated incentive mechanism can suf-
fer from pervasive freeloading and widespread
quality degradation. Additionally, as detailed in
the previous section, a QoS-based overlay net-
work requires peers to contribute resources to
the system even if they are not interested in con-
suming resources at the same time. This means
that peers must be able to make contributions
toward some set of peers, and then redeem
those contributions at a later time from a differ-
ent set of peers.

This problem is usually solved using reputa-

tion systems [11], where peers implement extend-
ed “word-of-mouth” recommendation networks.
However, most reputation systems are vulnera-
ble to identity-based attacks where a single peer
commands legions of disposable identities, or
peers lie about the contributions of other peers
in an attempt to deny them access to network
resources. We propose an incentives mechanism
where peers only keep track of the contributions
they have given or received to/from specific
neighbor peers, but are able to use with all
peers. Additionally, our protocol is designed to
ensure that peers are unable to profit from mul-
tiple identities and do not need to rely on possi-
bly false third-party information about the
contributions of other peers.

In order to address these identity manage-
ment issues peers use signed pseudonyms that
their neighbors can verify with public keys
exchanged when the peers initially come into
contact. From then on, all communication
between peers is digitally signed. Thus, contribu-
tions are always bound to an identity, and peers
gain nothing from having multiple identities:
their contributions will simply be split among
them. Additionally, we propose the translation
of contributions to an abstract numerical trust
value, which can be directly manipulated by the
peers and reconverted into contributions when
necessary. The trust peer A has with peer B cor-
responds to the contribution peer A has received
from peer B in the past without offering any-
thing in return, and ought therefore to return to
peer B in the future. Note that there is no explic-
it interaction for payment. Instead, each peer
maintains trust from/to other peers locally.

To enable peers to contribute to a set of
peers but receive contributions from another, we
propose trust shifting. Trust shifting enables a
peer to receive a contribution from a peer with
which it has no previously established trust, by
shifting trust along a path of trust relationships
among other peers. Thus, any peer can provide
contributions to a given peer and then request to
have this trust shifted to a different peer from
which it can now request any service.

To accomplish this, each peer constructs a
local view of the trust network. Its immediate
neighbors are found by direct experience, but
neighbors further away are discovered using a
truncated self-avoiding random walk algorithm
that discovers high-trust paths preferentially. In
essence, each peer periodically advertises its
local trust accounts. As these advertisements
necessarily traverse the peers who actually per-
formed the contributions represented in their
account values, it is trivial to ensure that only
truthful messages are propagated. Messages are
propagated preferentially through links with high
trust in a probabilistic fashion. The probability
of messages being forwarded to a given neighbor
peer is proportional to the local trust account of
this neighbor. Thus, an announcement has
greater probability of traversing paths where
trust links have consistently high trust values.

In order to determine the maximum amount
of trust that can be shifted to any particular des-
tination along the discovered trust connections,
each peer runs an instance of a MaxFlow-Min-
Cut algorithm [12]. The shift itself is implement-

! Figure 5. Performance enhancement with non-consuming peers.

Peer arrival sequence number
1000

100

Pl
ay

ou
t

la
g

(m
s)

0

200

300

400

500

600

700

800

200 300 400 500 600 700 800 900 1000

Without NCPs
With NCPs

GRIFFIN LAYOUT 11/17/08 4:52 PM Page 44

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 28, 2008 at 15:29 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2008 45

ed through trust shift request messages that are
source-routed and execute the trust exchanges
on a hop-by-hop basis. Once trust has been shift-
ed, it is essentially indistinguishable from trust
acquired by direct contribution, allowing peers
to flexibly decide where to “spend” their accu-
mulated trust.

Since peer-to-peer streaming is a delay-sensi-
tive system built over the best effort Internet,
peers are unable to determine whether long
delays are due to the queuing at their serving
peer or the congestion across the overlay link
between them. We address this by enabling
peers to draft quality-dependent contracts [13]
and conduct payments through trust shifting.

PUTTING IT ALL TOGETHER
As discussed in the previous sections, the system
consists of multiple independent swarms carrying
different streams of real-time content. Peers par-
ticipate in one or more streams when they wish
to consume or just distribute their content. To
participate in a stream, a peer must discover and
connect to other peers in the swarm carrying it
and exchange chunks of content. Knowledge
about other peers is obtained from a distributed
set of per-stream LTs, and knowledge about the
LT per stream is maintained by the DOAT sys-
tem. The following paragraphs illustrate the
interactions between our system components
and the actions necessary for a peer to receive
swarmed content (Fig. 6).

When a peer wishes to join the system and
subsequently participate in particular streams, its
first task is to discover its closest DOAT node.
The peer must first position itself in delay space
by performing a series of delay measurements to
a set of locations, as in Vivaldi [5], and use these
to calculate its synthetic coordinates. Armed
with these coordinates, the peer queries any
known node on the DOAT overlay for the clos-
est DOAT node in the synthetic coordinate
space (A1, Fig. 6). The DOAT node receiving
the query forwards it to the node closest in delay
space to the querying peer (A2, Fig. 6), and the
identifier of the nearest DOAT node is returned
(A3, Fig. 6). This is the point of contact for all
subsequent queries made by that peer, and
because it is the closest, it is the best in terms of
minimizing stream startup delay for that peer.

Before joining a particular stream, a peer
must first find its LT. It is assumed that peers
discover the identifiers of the streams they wish
to view through an out-of-band process (e.g.,
Webpage hyperlinks, electronic program guide,
or gossip through a social network). The peer
uses the stream identifier to query the DOAT
node identified in the previous steps for the clos-
est LT for that stream (B1, Fig. 6). The DOAT
system then routes the query to the closest LT,
as described earlier. The query is first routed to
the DOAT node closest to the LT closest to the
peer (B2, Fig. 6), who subsequently forwards the
request to the LT (B3). The LT then registers
the peer in its database, together with its coordi-
nates and other attributes such as upload capaci-
ty, and returns the list of registered peers back
to the peer who originated the query (B4, Fig.
6). At this point the peer has a list of all the

peers participating in the desired stream in the
local area together with their attributes, such as
coordinates in delay space and capacity.

Given the list of peers participating in the
stream and their attributes, the peer can deter-
mine to which peers it should connect according
to the principles of real-time swarming over a
QoS-based overlay, outlined previously. Peers
issue requests for chunks to other peers (C1,
Fig. 6). The chunks are transmitted to the
requesting peer (C2, Fig. 6), and payments are
made (C3, Fig. 6). Payments are shown in the
figure as being passed in the direction of receiv-
er to sender, although this is only a logical trans-
fer as trust is the basis of our incentive
mechanism, and the establishment of trust fol-
lowing any transaction happens in the opposite
direction: the receiver has more trust in the
sender after a chunk has been received.

Figure 6 also shows an example of an NCP
supplying the peer with chunks. The NCP
receives payment (actually the NCP builds trust
in the peer receiving the chunk), which is stored
and can be used in other streams at other times,
thanks to the trust shifting mechanism described
in the previous section, to pay for chunks in
those other streams and therefore improve expe-
rienced QoS. Although the peer acting in the
NCP role does not benefit directly by consuming
the content of the stream, it is incentivized to
participate in the local area shown in Fig. 6,
increasing the capacity of the overlay for that
stream and reducing overall playout lag for the
peers. This is an example of the incentive mecha-
nism working in practice.

CONCLUSIONS
This article has discussed the problems of deliv-
ering real-time content over the Internet and has
outlined a novel approach for swarming such
content over peer-to-peer networks in a scalable
manner without resorting to centralized
resources. Synthetic network coordinates model

! Figure 6. Peer interactions overview.

DOAT node Peercaster Local tracker Consumer NCP

A2
A2

A1
B1

B2

B3

A3 C3

C3
C2

C2
C1

B4

GRIFFIN LAYOUT 11/17/08 4:52 PM Page 45

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 28, 2008 at 15:29 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 200846

the position of peers in delay space, and are
used to assist peers in building a QoS-aware
overlay network, and schedule chunk requests
and transfers over the overlay so as to reduce
playout lag and increase playout continuity. Scal-
ability and resilience are enhanced by the use of
distributed local trackers, which are in turn man-
aged by a novel distributed overlay anycast table.
The design of the DOAT overlay and the use of
local trackers are to ensure that queries are
resolved quickly, so startup delay is kept small.
Non-consuming peers are encouraged to partici-
pate in streams by use of an incentive mecha-
nism that allows contributions by a peer to be
rewarded in other streams at different times.
This is achieved in an entirely distributed man-
ner without requiring a central currency reposi-
tory. We have demonstrated that NCPs not only
increase the available bandwidth to a swarm but
also reduce playout lag.

REFERENCES
[1] V. Venkataraman, K. Yoshida, and P. Francis,

“Chunkyspread: Heterogeneous Unstructured Tree-
Based Peer-to-Peer Multicast,” Proc. IEEE Int’l. Conf.
Network Protocols, K. Yoshida, Ed., Santa Barbara, CA,
2006, pp. 2–11.

[2] B. Cohen, “Incentives Build Robustness in BitTorrent,” Proc.
Wksp. Econ. Peer-to-Peer Sys., Berkeley, CA, June 2003.

[3] X. Hei et al., “A Measurement Study of a Large-Scale
P2P IPTV System,” IEEE Trans. Multimedia, vol. 9, Dec.
2007, pp. 1672–87.

[4] A. Sentinelli et al., “Will IPTV Ride the Peer-To-Peer Stream?,”
IEEE Commun. Mag., vol. 45, June 2007, pp. 86–92.

[5] F. Dabek et al., “Vivaldi: a Decentralized Network Coor-
dinate System,” Proc. 2004 Conf. Apps., Tech., Archi-
tectures, Protocols Comp. Commun., Portland, OR, Aug.
2004, pp. 15–26.

[6] R. G. Clegg et al., “The Performance of Locality-Aware
Topologies for Peer-To-Peer Live Streaming,” Proc. UK
Perf. Eng. Wksp., 2008.

[7] I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” Proc. ACM
SIGCOMM, San Diego, CA, Aug. 2001, pp. 149–60.

[8] R. Niedermeier, K. Reinhardt, and P. Sanders, “Towards
Optimal Locality in Mesh-Indexings,” Discrete Applied
Mathematics, vol. 117, Mar. 2002, pp. 211–37.

[9] B. H. Bloom, “Space/Time Trade-Offs in Hash Coding
with Allowable Errors,” ACM Commun., vol. 13, no. 7,
1970, pp. 422–26.

[10] D. Hughes, G. Coulson, and J. Walkerdine, “Free Rid-
ing on Gnutella Revisited: The Bell Tolls?,” IEEE Distrib.
Sys. Online, vol. 6, no. 6, June 2005.

[11] P. Resnick et al., “Reputation Systems,” ACM Com-
mun., vol. 43, no. 12, Dec. 2000, pp. 45–48.

[12] A. V. Goldberg and R. E. Tarjan, “A New Approach to
the Maximum-Flow Problem,” J. ACM, vol. 35, no. 4,
1988, pp. 921–40.

[13] R. Landa et al., “Incentives against Hidden Action in
QoS Overlays,” Proc. 8th Int’l. Conf. Peer-to-Peer
Comp., Germany, Sept. 2008.

BIOGRAPHIES
ELENI MYKONIATI (e.mykoniati@ee.ucl.ac.uk) received a B.Sc. in
computer science from Piraeus University, Greece, in 1996 and
a Ph.D. degree from the National Technical University of
Athens (NTUA), Greece, in 2003. She has worked as a research
associate for Telscom S.A. Switzerland, the NTUA DB and Tele-
com Labs, and Algonet S.A. Greece. Since 2007 she is a
research fellow in the Department of Electronic and Electrical
Engineering at University College London, United Kingdom.
Her research interests include business-driven traffic engineer-
ing in IP networks, QoS, and peer-to-peer networking.

RAUL LANDA (raul.landa@ieee.org) is currently a Ph.D. student
in the Department of Electronic and Electrical Engineering at
University College London. His research interests involve apply-
ing models from economics and sociology to networking
problems. He received a B.Eng. in communications engineer-
ing from ITESM, Mexico City, an M.Sc. in data communica-
tions from the University of Sheffield, United Kingdom, and a
Diploma in information security from UNAM, Mexico City.

SPIROS SPIROU (spiros.spirou@ucl.ac.uk) holds a Ptychion in
computer systems engineering, a postgraduate diploma in
mathematics, and an M.Sc. in information processing and
neural networks. He is currently studying part-time for the
Ph.D. in peer-to-peer streaming at University College London.
Currently, he is a project manager and software engineer at
Intracom Telecom, Greece, and a research associate at NCSR
Demokritos, Greece. His research interests are broadband tele-
vision, peer-to-peer networking, and network management.

RICHARD G. CLEGG (richard@richardclegg.org) is a senior
research fellow in the Department of Electronic and Electrical
Engineering at University College London. He gained a Ph.D.
in mathematics from the University of York in 2005. His
research interests include long-range dependence, queuing
theory, peer-to-peer networking, and network topologies.

LAWRENCE LATIF (llatif@ee.ucl.ac.uk) is currently a Ph.D. stu-
dent in the Department of Electronic and Electrical Engi-
neering at University College London. His current research
area is resilient distributed searching mechanisms and over-
lays. He received a B.Sc. in computer science with manage-
ment from Kings College, London, and an M.Sc. in systems
engineering management from University College London.

DAVID GRIFFIN (dgriffin@ee.ucl.ac.uk) is a senior research fel-
low in the Department of Electronic and Electrical Engineer-
ing, University College London. He has a B.Sc. in electrical
engineering from Loughborough University, United Kingdom,
and is currently completing a part-time Ph.D. in electrical
eengineering from the University of London. Before joining
University College London he was a systems design engineer
at GEC-Plessey Telecommunications, United Kingdom, and
then a researcher at the Foundation for Research and Tech-
nology-Hellas, Institute of Computer Science, Crete, Greece.

MIGUEL RIO (m.rio@ee.ucl.ac.uk) is a lecturer in telecommu-
nications and computer networks at the Department of
Electronic and Electrical Engineering, University College
London. He holds B.Eng. and M.Sc. degrees from the Uni-
versity of Minho, Portugal, and a Ph.D. from the University
of Kent, United Kingdom. He is the principal investigator of
several research projects in the area of computer networks.
His current interests are peer-to-peer multimedia, QoS
routing, network measurement, and Internet topologies.

We have discussed
the problems of

delivering real-time
content over the
Internet and have
outlined a novel

approach for
swarming such
content over
peer-to-peer
networks in a

scalable manner
without resorting to
centralized resources.

GRIFFIN LAYOUT 11/17/08 4:52 PM Page 46

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 28, 2008 at 15:29 from IEEE Xplore. Restrictions apply.

