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ABSTRACT
This paper criticises the notion that long-range dependence
is an important contributor to the queuing behaviour of real
Internet traffic. The idea is questioned in two different ways.
Firstly, a class of models used to simulate Internet traffic
is shown to have important theoretical flaws. It is shown
that this behaviour is inconsistent with the behaviour of real
traffic traces. Secondly, the notion that long-range correla-
tions significantly affects the queuing performance of traffic
is investigated by destroying those correlations in real traf-
fic traces (by reordering). It is shown that the longer ranges
of correlations are not important except in one case with an
extremely high load.

1. INTRODUCTION
Since the seminal paper of Leland et al [6] it has been

considered important that a statistical model of Inter-
net traffic captures the phenomenon of Long-Range De-
pendence (LRD). In particular it has often been sug-
gested that a model of Internet traffic must capture the
Hurst parameter H ∈ (1/2, 1) of real traffic. LRD is
characterised by the unsummability of the autocorrela-
tion function (ACF). It is often stated that this is an
important characteristic for the queuing performance of
the traffic.

A related topic is that of heavy-tailed distributions.
A commonly suggested origin for the LRD in Internet
traffic is the heavy-tailed distribution of traffic on peri-
ods .

Definition 1. A random variable X is heavy-tailed
if, for all ε > 0 it satisfies

P [X > x] eεx →∞ as x→∞. (1)

A specific functional form is usually assumed (and will
be throughout this paper)

P [X > x] ∼ Cx−β , (2)

where C > 0 is a constant and 2 > β > 0. The symbol
∼ means asymptotically equal to. If β < 1 then E [X]
is infinite and therefore most models use β ∈ (1, 2).

Suggested models for Internet traffic which generate
LRD include fractional Gaussian noise and the related

fractional Brownian motion (fGn, fBm) [8], chaotic maps
[4], wavelets [10, 9] and Markov modulated processes [1,
3]. Some of these models output a “traffic level” which
represents the mean arrival rate in some notional time
period but others are packet based models, that is they
produce a model of packets and inter-arrival times. It
is the latter class of models (including [4, 1, 3] which
are covered by theorem 1 in this paper.

This paper criticises the notion that the long-range
correlations in traffic are important to queuing in two
ways. In section 2 it is shown that a class of models
used to simulate traffic with LRD arising from heavy
tails gives an infinite result when queued in infinite
buffers. Section 3 describes the simulation framework
used for the rest of the paper. It is demonstrated in
section 4 that this is at odds with the behaviour of
real traffic. In section 5 real traffic traces are anal-
ysed again and reordered to break up correlations be-
yond a certain level. It is shown that this reordering
does not affect the queueing behaviour of the traffic
beyond a certain time-scale except when unrealistically
high loads are used. The behaviour of the long-range de-
pendent models (and in particular a certain class based
on heavy-tails) is theoretically undesirable and funda-
mentally different to that of real traffic.

2. THEORETICAL RESULTS
Let {At : t ≥ 0} be an arrival process to a queue

drained by a deterministic server which serves at a con-
stant rate assumed without loss of generality to be one.
The mean arrival rate λ is given by λ = limT→∞

∫ T
0
A(t)dt/T

and it is assumed throughout that At is such that this
limit exists and λ ∈ (0, 1). Since the server rate is one
then λ is equal to the utilisation ρ (the ratio of the rate
at which work enters to the maximum rate at which it
can be served). Let {Qt : t ≥ 0} be the queue pro-
cess where it is assumed that Q0 = 0. Assume that the
queue evolves according to

dQt
dt

=

{
At − 1 Qt > 0
max(0, At − 1) Qt = 0.
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Let E [Q(s, t)] =
∫ t
s

E [Qu] du/(t − s) where t > s and
E [·] denotes expectation. Let E [Q] = limt→∞ E [Q(0, t)]
and note that this limit is not guaranteed to exist (and
may tend to infinity). The mean arrival rate at time
t is λt = E [At] and the overall mean arrival rate λ =
limT→∞

∫ T
0
λt/Tdt. If λ > 1 then ρ > 1 and the queue

must eventually grow to infinity regardless of the details
of the arrival process.

Theorem 1. Let {At : t ∈ R+} be an ergodic, weakly
stationary arrival process. This is drained by a queue
which drains at a fixed rate r. Let At be such that the
utilisation ρ is in (0, 1). Call At on when At ≥ m
(where m is any constant such that m > r) and off oth-
erwise. Let {Xn : n ∈ N} be the length of the nth on
period . If the Xn are i.i.d. with a heavy-tailed distribu-
tion P [Xn > x] ∼ x−α for α ∈ (1, 2) then as t→∞ the
expected queue length (and hence the expected waiting
time) is infinite.

This theorem can be restated as: if an infinite buffer
queuing model is driven by a single on/off source with
the utilisation in 0, 1, i.i.d. heavy-tailed on periods then
the expected queue length is either zero (if m ≤ r)
or infinite. This remains true even if the utilisation is
arbitrarily close to zero and the amount by which the
demand exceeds the queue drain rate m−r is arbitrarily
small. It may seem paradoxical that a queue which is
empty arbitrarily often can have an infinite expected
length. However, this has parallels with the classical
Pollaczek–Khinchine formula for an M/G/1 queue [5]
where a server with an infinite variance in the service
time has an infinite expected queue length even if the
mean service time is arbitrarily small and the queue
empty an arbitrarily large proportion of the time.

Note that for α < 1 the mean length of an on pe-
riod will not converge, the utilisation will not be in the
range (0, 1) and such processes will not, in general, be
useful for a queuing system. However, for 1 < α < 2
the mean length of an on period will be finite and such
a process could be used to produce a time series with a
known Hurst parameter.

The strategy of the proof below is to find a simple
process A′t which gives a lower bound on the queuing
delay for any At meeting the conditions of the theorem.
It is then shown that the mean queue length and hence
mean delay for A′t is infinite.

Proof. Without loss of generality, let r = 1. In
this case the arrival rate λ is equal to the utilisation ρ.
Assume At is such that At = m during an on period and
At = 0 during an off period (such a process will always
have a smaller queue than the specified process where
At > m in an on period and At ∈ [0, a) and thus can be
considered a lower bound).

First consider a single on period followed by a sin-
gle off period of such length that the entire queue has

drained by the end of the off period . Consider the
time period (t1, t2) where Qt1 = Qt2 = 0, consisting of
an on period (t1, t1 + X) (where mX < (t2 − t1)) and
an off period (t1 +X, t2). Within the period (t1, t2) the
queue peaks at time t1 + X when Qt1+X = (m − 1)X
and drains completely by time t1 +mX after which the
queue is zero until t2. It can be readily seen that, since
the queuing process is triangular in shape (rising at rate
m− 1 during the on period and falling at rate 1 during
the off period ), then

∫ t2
t1

E [Qu] du = (m − 1)mX2/2
and E [Q(t1, t2)] = (m− 1)mX2/2(t2 − t1).

Now consider some time period (t1, t2) again where
Qt1 = Qt2 = 0. Let this period contain exactly two on
periods of lengths X1 and X2 where m(X1+X2) < (t2−
t1). It is clear that

∫ t2
t1

E [Qu] du ≥ (m−1)m(X1+X2)/2
with equality occurring only when the queue empties
completely between the two on periods . This argu-
ment can be trivially extended to n on periods of lengths
X1, X2, . . . , Xn all occurring within (t1, t2) with Qt1 =
Qt2 = 0. The mean queue size is minimised if the on
periods are such that the generated queues do not over-
lap.

Consider the process A′t which has the same mean
arrival rate and is the process At reordered in time ac-
cording to the following rules:

• on periods occur in the same order and have the
same length as At with the first on period starting
at t = 0,

• an on period of length Xi is followed by an off
period of length exactly Xi(m/λ− 1).

This off period is long enough that the queue has al-
ways completely drained before the end of the off pe-
riod (since λ < 1). It can easily be shown that such
a reordering is possible since the on periods are of ex-
actly the same length in the same order and the off
periods have the same mean length.

Let Q′t be the queue process for A′t (assuming the
same server process). Clearly E [Q′] ≤ E [Q] since the
queues due to A′t never overlap (with equality occurring
only when the queues never overlap in At either).

It can be shown that

E [Q′] = lim
N→∞

∑N
i=1

∫ ti+1

ti
Q′tdt

tN+1

= lim
N→∞

a(a− 1)
∑N
i=1X

2
i

2
∑N
j=1Xj

.

Taking expectations a second time gives

E [E [Q′]] = E [Q′] = lim
N→∞

m(m− 1)
∑N
i=1 E

[
X2
i

]
2
∑N
j=1 E [Xj ]

=
m(m− 1)E

[
X2
]

2E [X]
,
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where the last equality follows since the Xi are i.i.d.
E [Q′] is a lower bound for E [Q]. E [Q] does not con-

verge if E
[
X2
]

does not converge. If 1 < α < 2 then
E [X] is finite but E

[
X2
]

is not and the expected queue
is infinite. The result follows.

A similar result holds for discrete time on-off arrival
processes {An : n ∈ N} with heavy-tailed on periods .
However, the result is not true, for example, if the queue
is driven by two or more heavy-tailed sources each of
which has an arrival rate less than one but together hav-
ing an arrival rate over one. Processes such as fractional
Gaussian noise exhibit LRD but have a finite expected
queue length in an infinite buffer. In fact the theorem
has an obvious corollary.

It should be noted that heavy-tailed arrival processes
of the type from Theorem 1 which give rise to a fi-
nite value of E [Q] are possible but paradoxically these
have an arrival rate λ = 0. For example, assume the
queue drains at rate r, let q > 0 and let every on pe-
riod of length Xi (with arrivals at exactly rate m) be
followed by an off period of length max((m−1)Xi, (m−
1)mX2

i /2q − Xi). The queue drains completely in ev-
ery off period and the mean queue size for that on pe-
riod and off period is at most q (with equality attained
when ((m−1)mX2

i /2q−Xi) ≥ (m−1)Xi) and therefore
E [Q] ≤ q. However, in the heavy-tailed case, E

[
X2
i

]
does not converge and hence neither does the expected
length of an off period . This implies a proportion of
time in the off period tending to one and a mean arrival
rate λ of zero.

It might still be argued that real traffic traces have
this property but the outcome of infinite queue size is
not seen in real life because they are fed to a finite sized
array. This possibility will be investigated in section 4.

3. SIMULATION FRAMEWORK FOR THIS
PAPER

CAIDA data: This data set is taken from a trace
approximately an hour long. It is referred to on the
CAIDA website 1 as
20030424-000000-0-anon.pcap.gz and was captured
on the 24th April 2003. It was captured on an OC48 link
with a rate of 2.45 Gb/s. The first 2,320,137 packets
(five minutes) are used in the analysis here. This trace
has a relatively low Hurst parameter H = 0.6 (see [2]).

Bellcore data: This is a much studied data set and,
while certainly not representative of modern traffic, it
is included as one of the original traces from [6]. The
data here is taken from an August 1989 measurement
referred to as BC-pAug89.TL. The data was collected
on an Ethernet link2. The first 1,000,000 packets are
1See http://www.caida.org/data/passive/ for more infor-
mation about this trace.
2See http://ita.ee.lbl.gov/html/contrib/BC.html for

studied here. This trace has a relatively high Hurst
parameter H = 0.8 (see [2]).

The simulations used in this paper are all based upon
an extremely simple queuing model. Packets arrive in
a FIFO buffer which never drops packets. The buffer
has a given bandwidth b (in bytes/second) – which can
be adjusted to give a specific level of utilisation. While
the absolute level of the queue changes, the results pre-
sented here are not very sensitive to this parameter. A
packet of length l bytes takes l/b seconds to depart the
queue. If Qt is the queue length in packets at time t
and the simulation runs until time T then the mean
queue Q is evaluated as Q =

∫ T
0
Qt/Tdt (this integral

can be evaluated exactly since Qt is a constant between
arrivals and departures from the queue).

This simple model has been used by the first author to
assess several the queuing performance of several mod-
els which attempt to replicate the statistical nature of
Internet traffic. This work is reported in [2]. None of
the long-range dependence based models replicated the
queuing performance of the real traffic traces they were
tuned to match. Such a simple model is, of course, open
to much criticism. It does not account for TCP feedback
mechanisms. However, if the question being addressed
is about an “open loop” model of traffic and whether
it replicates the characteristics of real traffic then we
should expect both to have the same behaviour at a
queue.

In all the experiments here each data point is con-
structed by performing ten repetitions of the experi-
ment. The error bars represent one standard deviation
each side of the mean. Because of the nature of long-
range dependent statistics, in simulation experiments
(where the data is truly long-range dependent) the er-
ror bars are often extremely large.

4. SIMULATION RESULTS ON REAL VER-
SUS HEAVY-TAILED TRAFFIC

The first simulations here consider the theoretical re-
sults presents in section 2. The first results show how
the infinite expected queue size in the model reveals
itself in simulation results. Obviously any experiment
with a model of the form in Theorem 1 will produce a
finite value for Q the mean queue size. However, this
finite value will increase as the model is run for longer
and longer (up to the numerical accuracy of the model).
The value of Q generated will (in theory at least – in
practice the finite accuracy of computers limits this) in-
crease as the runtime increases. The question may be
asked if this is true of real data.

The experiment performed here is to take different
sized samples of the real data and to queue those sam-
ples with the model from the previous section. The

more information about this traffic
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behaviour of the mean queue length versus sample size
is investigated. Experiments on LRD are notorious for
their high (often theoretically infinite) variability. Here
ten replications are performed for each size are used and
the mean plotted. In addition error bars of the size of
the standard deviation (one standard deviation above
and below the mean) are added (standard confidence in-
terval techniques are not applicable in the case of LRD
data).
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Figure 1: Mean queue size versus number of
packets for the CAIDA data set – real data (top)
and simulated (bottom).

Figure 1 (top) shows the results for the CAIDA data.
The x axis shows the number of packets in the sample
and the y axis the mean queue size (or rather the mean
of the ten means for the ten experiments with that sam-
ple size). Since the queue is assumed to start empty
then very small sample sizes would naturally have a
smaller expected queue. However, beyond this, figure
1(top) shows no clear influence of the sample size on the
expected queue. As the samples get larger the standard
deviation bounds from the ten experiments gets smaller.

Figure 1 (bottom) shows the same experiment but
performed on a simulated data set with the same mean
arrival rate and the same Hurst parameter using the
techniques described in [2] (the Wang model from that
paper). The simulation does not well reflect the queuing

performance of the trace and this is because of theorem
1 which applies here. In contrast with figure 1 the mean
queue size increases with the number of packets in the
sample. In addition the error bars (representing one
standard deviation either side of the mean) stay as large
or become larger. The increase predicted from theory
is somewhat disguised by the extremely large error bars
particularly in the middle part of the diagram.
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Figure 2: Mean queue size versus number of
packets for the Bellcore data – real data (top)
and simulated (bottom).

Figure 2 (top) shows the same experiment for the
Bellcore data. This data has a higher Hurst parameter.
Again this figure is not consistent with the idea that
the mean queue rises as the length of the sample rises
apart from in the early part of the plot. (The rise in
the mean and the larger error bars in the center of the
plot coincides with a single very large burst of a partic-
ular duration). Figure 2 (bottom) shows simulated data
with the same Hurst parameter and same mean arrival
rate as the Bellcore data. As in figure 1 (bottom) and
in accordance with theorem 1 the mean queue size rises
with the number of packets simulated. The correlation
here is again slightly ambiguous because of the large
standard deviation on medium sized samples. As can
be seen, these simulations can be problematic to work
with and a researcher looking only at the early part of
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the graphs could be convinced that they had used suffi-
ciently many packets for the simulation to converge to
a good estimation of the mean queue length.

It may be thought that the problem may be con-
nected with the fact that the LRD based methods dra-
matically overestimated levels of queuing. However, re-
peating the experiment with lower bandwidth on the
real data for both Bellcore and CAIDA traces does not
dramatically alter the shape of the graph although ob-
viously the mean queue level increases.

To recap then, the results in this section show that for
the simulated data the results are inline with Theorem
1 from which it is expected that the actual mean queue
length is infinite and the finite queue length is merely a
result of the finite experiment length. This is indicated
by the fact that longer samples have a longer queue
length in the data here. The results on real data are
not consistent with this behaviour and longer sample
sizes do not always produce a longer queue length.

5. SIMULATION RESULTS ON REORDER-
ING OF REAL TRAFFIC TRACES

This section takes a different approach by deliberately
destroying correlations in the data to see which scales
of correlation are important to the queuing properties.
It is often stated that LRD is an extremely important
property for queuing in real data. If this is the case,
then deliberately truncating the correlation beyond a
certain scale should have important effect on the queu-
ing.

The experiment performed in this section is to take a
certain blocksize B and to split the data into blocks each
containing B packets (and associated delays). The or-
der of these blocks is then randomised so no correlation
can persist beyond B packets. The entire trace is then
queued and the mean queue length recorded. Again
ten replications are performed to assess the repeatabil-
ity. The important point here is that after reordering,
only correlations of less than the blocksize can possibly
remain. If the correlations in the data are having an
important effect on queuing then breaking those corre-
lations should have a significant effect on queue size.

Figure 3 (top) shows this experiment on the CAIDA
data. Again there are ten repetitions of each blocksize
and the graph shows mean of the means and the stan-
dard deviation of the means above and below. Note the
extremely small scale on the y axis. Even for very small
block sizes the variation in the queuing performance is
not great. Beyond a block size of 1,000 the correlation
seems unimportant to the queuing performance and the
resultant mean queue size is the same to several decimal
places.

By contrast, in figure 3 (bottom) for the LRD simu-
lation almost all scales of correlation theoretically affect
queuing performance (within the bounds implied by the
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Figure 3: Mean queue size versus blocksize for
CAIDA data – real data (top) and simulated
(bottom).

fact that only a finite sample of data is used). Here, the
relationship between correlation and queuing is clearly
shown. Correlations of block sizes up to 10,000 packets
are important to the queuing performance of the sim-
ulated data. It is somewhat surprising that block sizes
above this don’t affect queuing performance suggesting
that in this simulated data set correlations above 10,000
packets were not important. This is perhaps due to the
relatively low Hurst parameter.

Figure 4 shows the same experiment on the Bellcore
data. This data has a higher Hurst parameter and the
effect is more pronounced. Again the LRD method used
drastically over predicts the level of queuing compared
to the real data when the same mean arrival rate and
Hurst parameter is used. Again the same result is seen
only a small difference in the amount of queuing when
the correlations are broken up. The correlations of long
time scale are unimportant in the real data but impor-
tant in the artificial data.

Again the question might be asked would the same
conclusion hold true for the real data if the bandwidth
used for the experiment were reduced. Figure 5 (top)
shows this for the Bellcore data with the bandwidth re-
duced so the queue occupancy is extremely high (0.46).
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Figure 4: Mean queue size versus blocksize for
Bellcore data – real data (top) and simulated
(bottom).

Similarly 5 (bottom) shows this for the CAIDA data
(with an even higher queue occupancy of 0.62). These
traffic levels would be extremely (unrealistically) high
for a real network even at peak periods [7].

In the CAIDA data not much has changed except for
the vertical axis scale. In the Bellcore data, however,
with the much higher occupancy, more time scales are
important. This would, to some degree, be expected
since at high occupancy queues are more likely to persist
for long periods of time.

The conclusion of this section is clear. The claim
that correlations over long scales is important to queu-
ing behaviour is not true of the CAIDA data and ar-
guably true of the Bellcore data only when the system
occupancy is extremely high.

6. CONCLUSIONS
This paper criticises long-range dependence as a use-

ful model for packet traffic. Firstly, a theoretical prob-
lem with a class of models used to simulate LRD is
shown. This class of models predicts either no queuing
or an infinite expected queue length when fed into an
infinite buffer. At the very least, experimenters should
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Figure 5: Mean queue size versus blocksize for
real data with high load – Bellcore data (top)
and CAIDA data (bottom)

be aware of this problem to ensure that simulations are
not affected by it (the answer given by the simulation is
a product of the runtime of the simulation rather than a
stable reflection of queuing performance). This effect is
shown to be totally different to the queuing performance
of real traffic. The queuing behaviour of real network
traffic queued at a buffer which generates queues is to-
tally different from that of any single source based on a
single heavy-tailed process which can generate a queue
at the buffer.

In the second part of the paper it is shown using sim-
ulated queuing on real traffic that for real traffic traces
long-range correlations are not important for queuing
behaviour except with extremely high traffic. On the
data sets tests correlations over long time scales are not,
in fact, important for queuing behaviour with the ar-
guable exception of the Bellcore trace at extremely un-
realistically high occupancy levels. These results should
be replicated on more traffic traces to work out how
general this conclusion is.
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