|
|
|
Constructors | for Vector<Object> | public Stat(Vector<Object> vec) |
for ArrayList<Object> | public Stat(ArrayList<Object> list) | |
for double[] array | public Stat(Object[] array) | |
for double[] array | public Stat(double[] array) | |
for Double[] array | public Stat(Double[] array) | |
for float[] array | public Stat(float[] array) | |
for Float[] array | public Stat(Float[] array) | |
for long[] array | public Stat(long[] array) | |
for Long[] array | public Stat(Long[] array) | |
for int[] array | public Stat(int[] array) | |
for Integer[] array | public Stat(Integer[] array) | |
for short[] array | public Stat(short[] array) | |
for Short[] array | public Stat(Short[] array) | |
for byte[] array | public Stat(byte[] array) | |
for Byte[] array | public Stat(Byte[] array) | |
for BigDecimal[] array | public Stat(BigDecimal[] array) | |
for BigInteger[] array | public Stat(BigInteger[] array) | |
for Complex[] array | public Stat(Complex[] array) | |
for Phasor[] array | public Stat(Phasor[] array) | |
Enter array of weights | as Vector<Object> | public void setWeights(Vector<Object> vec) |
as ArrayList<Object> | public void setWeights(ArrayList<Object> list) | |
as double[] array | public void setWeights(Object[] array) | |
as double[] array | public void setWeights(double[] array) | |
as Double[] array | public void setWeights(Double[] array) | |
as float[] array | public void setWeights(float[] array) | |
as Float[] array | public void setWeights(Float[] array) | |
as long[] array | public void setWeights(long[] array) | |
as Long[] array | public void setWeights(Long[] array) | |
as int[] array | public void setWeights(int[] array) | |
as Integer[] array | public void setWeights(Integer[] array) | |
as short[] array | public void setWeights(short[] array) | |
as Short[] array | public void setWeights(Short[] array) | |
as byte[] array | public void setWeights(byte[] array) | |
as Byte[] array | public void setWeights(Byte[] array) | |
as BigDecimal[] array | public void setWeights(BigDecimal[] array) | |
as BigInteger[] array | public void setWeights(BigInteger[] array) | |
as Complex[] array | public void setWeights(Complex[] array) | |
as Phasor[] array | public void setWeights(Phasor[] array) | |
Weighting Factor Options | Instance methods | public void setWeightsToBigW() |
public void setWeightsToLittleW() | ||
public void convertBigWtoLittleW() [deprecated] | ||
Static methods | public void setStaticWeightsToBigW() | |
public void setStaticWeightsToLittleW() | ||
public double[] convertBigWtoLittleW(double[] bigW) [deprecated] | ||
Effective Sample Number Instance methods | Set to n | public void useTrueN() |
Set to nEff | public void useEffectiveN() | |
Effective Sample Number Static methods | Set to n | public double setStaticTrueN() |
Set to n-1 | public double setStaticEffectiveN() | |
Arithmetic Mean Instance methods | Arithmetic Mean | public double mean_as_double() |
public BigDecimal mean_as_BigDecimal() | ||
public Complex mean_as_Complex() | ||
Weighted Arithmetic Mean | public double weightedMean_as_double() | |
public BigDecimal weightedMean_as_BigDecimal() | ||
public Complex weightedMean_as_Complex() | ||
Subtract Arithmetic Mean from the Array | public double subtractMean_as_double() | |
public BigDecimal subtractMean_as_BigDecimal() | ||
public Complex subtractMean_as_Complex() | ||
Subtract Weighted Arithmetic Mean from the Array | public double subtractWeightedMean_as_double() | |
public BigDecimal subtractWeightMean_as_BigDecimal() | ||
public Complex subtractWeightedMean_as_Complex() | ||
Arithmetic Mean Static methods | Arithmetic Mean | public static double mean(double[] a) |
public static double mean(float[] a) | ||
public static BigDecimal mean(BigDecimal[] a) | ||
public static BigInteger mean(BigInteger[] a) | ||
public static Complex mean(Complex[] a) | ||
public static double mean(int[] a) | ||
public static double mean(long[] a) | ||
public static double mean(short[] a) | ||
public static double mean(byte[] a) | ||
Weighted Arithmetic Mean | public static double mean(double[] a, double[] w) | |
public static float mean(float[] a, float[] w) | ||
public static BigDecimal mean(BigDecimal[] a, BigDecimal[] w) | ||
public static BigInteger mean(BigInteger[] a, BigInteger[] w) | ||
public static Complex mean(Complex[] a, Complex[] w) | ||
Subtract the Arithmetic Mean | public static double[] subtractMean(double[] a) | |
public static float[] subtractMean(float[] a) | ||
public static BigDecimal[] subtractMean(BigDecimal[] a) | ||
public static BigDecimal[] subtractMean(BigInteger[] a) | ||
public static Complex[] subtractMean(Complex[] a) | ||
Subtract the Weighted Arithmetic Mean | public static double[] subtractMean(double[] a, double[] w) | |
public static float[] subtractMean(float[] a, float[] w) | ||
public static BigDecimal[] subtractMean(BigDecimal[] a, BigDecimal[] w) | ||
public static BigDecimal[] subtractMean(BigInteger[] a, BigInteger[] w) | ||
public static Complex[] subtractMean(Complex[] a, Complex[] w) | ||
Geometric Mean Instance methods | Geometric Mean | public static double geometricMean_as_double() |
public static Complex geometricMean_as_Complex() | ||
Weighted Geometric Mean | public static double weightedGeometricMean_as_double() | |
public static Complex weightedGeometricMean_as_Complex() | ||
Geometric Mean Static methods | Geometric Mean | public static double geometricMean(double[] a) |
public static float geometricMean(float[] a) | ||
public static Complex geometricMean(Complex[] a) | ||
public static double geometricMean(BigDecimal[] a) | ||
public static double geometricMean(BigInteger[] a) | ||
Weighted Geometric Mean | public static double geometricMean(double[] a, double[] w) | |
public static float geometricMean(float[] a, float[] w) | ||
public static Complex geometricMean( Complex[] a, Complex[] w) | ||
public static double geometricMean(BigDecimal[] a, BigDecimal[] w) | ||
public static double geometricMean(BigInteger[] a, BigInteger[] w) | ||
Harmonic Mean Instance methods | Harmonic Mean | public double harmonicMean_as_double() |
public Complex harmonicMean_as_Complex() | ||
public bigDecimal harmonicMean_as_BigDecimal() | ||
Weighted Harmonic Mean | public double weightedHarmonicMean_as_double() | |
public Complex weightedHarmonicMean_as_Complex() | ||
public bigDecimal weightedHarmonicMean_as_BigDecimal() | ||
Harmonic Mean Static methods | Harmonic Mean | public static double harmonicMean(double[] a) |
public static float harmonicMean(float[] a) | ||
public static Complex harmonicMean(Complex[] a) | ||
public static BigDecimal harmonicMean(BigDecimal[] a) | ||
public static BigDecimal harmonicMean(BigInteger[] a) | ||
Weighted Harmonic Mean | public static double harmonicMean(double[] a, double[] w) | |
public static float harmonicMean(float[] a, float[] w) | ||
public static Complex harmonicMean(Complex[] a, Complex[] w) | ||
public static BigDecimal harmonicMean(BigDecimal[] a, BigDecimal[] w) | ||
public static BigDecimal harmonicMean(BigInteger[] a, BigInteger[] w) | ||
Generalised Mean (Power Mean) Instance methods |
Generalised Mean (Power Mean) | public double generalisedMean_as_double(double m) |
public double generalisedMean_as_double(BigDecimal m) | ||
public Complex generalisedMean_as_Complex(double m) | ||
public Complex generalisedMean_as_Complex(Complex m) | ||
Weighted Generalised Mean (Weighted Power Mean) | public double weightedGeneralisedMean_as_double(double m) | |
public double weightedGeneralisedMean_as_double(BigDecimal m) | ||
public Complex weightedGeneralisedMean_as_Complex(double m) | ||
public Complex weightedGeneralisedMean_as_Complex(Complex m) | ||
Generalised Mean (Power Mean) Static methods |
Generalised Mean (Power Mean) | public static double generalisedMean(double[] a, double m) |
public static float generalisedMean(float[] a, float m) | ||
public static Complex generalisedMean(Complex[] a, double m) | ||
public static Complex generalisedMean(Complex[] a, Complexdouble m) | ||
public static double generalisedMean(BigDecimal[] a, double m) | ||
public static double generalisedMean(BigDecimal[] a, BigDecimal m) | ||
public static double generalisedMean(BigInteger[] a, double m) | ||
public static double generalisedMean(BigInteger[] a, BigInteger m) | ||
Weighted Generalised Mean (Weighted Power Mean) | public static double generalisedMean(double[] a, double[] w, double m) | |
public static float generalisedMean(float[] a, float[] w,float m) | ||
public static Complex generalisedMean(Complex[] a, Complex[] w, double m) | ||
public static Complex generalisedMean(Complex[] a, Complex[] w, Complexdouble m) | ||
public static double generalisedMean(BigDecimal[] a, BigDecimal[] w, double m) | ||
public static double generalisedMean(BigDecimal[] a, BigDecimal[] w, BigDecimal m) | ||
public static double generalisedMean(BigInteger[] a, BigInteger[] w, double m) | ||
public static double generalisedMean(BigInteger[] a, BigInteger[] w, BigInteger m) | ||
Interquartile Mean Instance methods | Interquartile Mean | public double interQuartileMean_as_double() |
public BigDecimal interQuartileMean_as_BigDecimal() | ||
Interquartile Mean Static methods | Interquartile Mean | public static double interQuartileMean(double[] a) |
public static float interQuartileMean(float[] a) | ||
public static BigDecimal interQuartileMean(BigDecimal[] a) | ||
public static BigDecimal interQuartileMean(BigInteger[] a) | ||
Root Mean Square (rms) Instance method | Root Mean Square (rms) | public double rms() |
Weighted Root Mean Square (wrms) | public double weightedRms() | |
Root Mean Square (rms) Static methods | Root Mean Square (rms) | public static double rms(double[] a) |
public static float rms(float[] a) | ||
public static BigDecimal rms(BigDecimal[] a) | ||
public static BigDecimal rms(BigInteger[] a) | ||
Weighted Root Mean Square (wrms) | public static double rms(double[] a, (double[] w) | |
public static float rms(float[] a, float[] w) | ||
public static BigDecimal rms(BigDecimal[] a, BigDecimal[] w) | ||
public static BigDecimal rms(BigInteger[] a, BigInteger[] w) | ||
Median Instance methods | Median | public double median_as_double() |
public BigDecimal median_as_BigDecimal() | ||
Median Static methods | Median | public static double median(double[] a) |
public static float median(float[] a) | ||
public static double median(int[] a) | ||
public static double median(long[] a) | ||
public static BigDecimal median(BigDecimal[] a) | ||
public static BigDecimal median(BigInteger[] a) | ||
Set the denominator Instance methods | Set to n | public void setDenominatortoN() |
Set to n-1 | public void setDenominatortoNminusOne() | |
Set the denominator Static methods | Set to n | public double setStaticDenominatortoN() |
Set to n-1 | public double setStaticDenominatortoNminusOne() | |
Standard Deviation Instance methods | Standard Deviation | public double standardDeviation_as_double() |
public Complex standardDeviation_as_Complex() | ||
public double standardDeviation_as_Complex_ConjugateCalcn() | ||
public double standardDeviation_of_ComplexModuli() | ||
public double standardDeviation_of_ComplexRealParts() | ||
public double standardDeviation_of_ComplexImaginaryParts() | ||
Weighted Standard Deviation | public double weightedStandardDeviation_as_double() | |
public Complex weightedStandardDeviation_as_Complex() | ||
public double weightedStandardDeviation_as_Complex_ConjugateCalcn() | ||
public oubled weightedStandardDeviation_of_ComplexModuli() | ||
public oubled weightedStandardDeviation_of_ComplexRealParts() | ||
public double weightedStandardDeviation_of_ComplexImaginaryParts() | ||
Standard Deviation Static methods | Standard Deviation | public static double standardDeviation(double[] a) |
public static float standardDeviation(float[] a) | ||
public static double standardDeviation(int[] a) | ||
public static double standardDeviation(long[] a) | ||
public static double standardDeviation(BigDecimal[] a | ||
public static double standardDeviation(BigInteger[] a) | ||
public static Complex standardDeviation(Complex[] a) | ||
public static double standardDeviationConjugateCalcn(Complex[] a) | ||
public static double standardDeviationModuli(Complex[] a) | ||
public static double standardDeviationRealParts(Complex[] a) | ||
public static double standardDeviationImaginaryParts(Complex[] a) | ||
Weighted Standard Deviation | public static double standardDeviation(double[] a, double[] w) | |
public static float standardDeviation(float[] a, float[] w) | ||
public static double standardDeviation(BigDecimal[] a, BigDecimal[] w) | ||
public static double standardDeviation(BigInteger[] a, BigInteger[] w) | ||
public static Complex standardDeviation(Complex[] a, Complex[] w) | ||
public static double standardDeviationConjugateCalcn(Complex[] a, Complex[] w) | ||
public static double standardDeviationModuli(Complex[] a, Complex[] w) | ||
public static double standardDeviationRealParts(Complex[] a, Complex[] w) | ||
public static double standardDeviationImaginaryParts(Complex[] a, Complex[] w) | ||
Standard Error of the Mean Instance methods | Standard Error | public double standardError_as_double() |
public Complex standardError_as_Complex() | ||
public double standardError_as_Complex_ConjugateCalcn() | ||
public double standardError_of_ComplexModuli() | ||
public double standardError_of_ComplexRealParts() | ||
public double standardError_of_ComplexImaginaryParts() | ||
Weighted Standard Error | public double weightedStandardError_as_double() | |
public Complex weightedStandardError_as_Complex() | ||
public double weightedStandardError_as_Complex_ConjugateCalcn() | ||
public double weightedStandardError_of_ComplexModuli() | ||
public double weightedStandardError_of_ComplexRealParts() | ||
public double weightedStandardError_of_ComplexImaginaryParts() | ||
Standard Error of the Mean Static methods | Standard Error | public static double standardError(double[] a) |
public static float standardError(float[] a) | ||
public static double standardError(int[] a) | ||
public static double standardError(long[] a) | ||
public static double standardError(BigDecimal[] a) | ||
public static double standardError(BigInteger[] a) | ||
public static Complex standardError(Complex[] a) | ||
public static double standardErrorConjugateCalcn(Complex[] a) | ||
public static double standardErrorModuli(Complex[] a) | ||
public static double standardErrorRealParts(Complex[] a) | ||
public static double standardErrorImaginaryParts(Complex[] a) | ||
Weighted Standard Error | public static double standardError(double[] a, double[] w) | |
public static float standardError(float[] a, float[] w) | ||
public static double standardError(BigDecimal[] a, BigDecimal[] w) | ||
public static double standardError(BigInteger[] a, BigInteger[] w) | ||
public static Complex standardError(Complex[] a, Complex[] w) | ||
public static double standardErrorConjugateCalcn(Complex[] a, Complex[] w) | ||
public static double standardErrorModuli(Complex[] a, Complex[] w) | ||
public static double standardErrorRealParts(Complex[] a, Complex[] w) | ||
public static double standardErrorImaginaryParts(Complex[] a, Complex[] w) | ||
Volatility Instance methods | Volatility | public double volatilityLogChange() |
public double volatilityPerCentChange() | ||
Volatility Static methods | Volatility | public static double volatilityLogChange(double[] a) |
public static float volatilityLogChange(float[] a) | ||
public static double volatilityLogChange(BigDecimal[] a) | ||
public static double volatilityLogChange(Biginteger[] a) | ||
public static double volatilityPerCentChange(double[] a) | ||
public static float volatilityPerCentChange(float[] a) | ||
public static double volatilityPerCentChange(BigDecimal[] a) | ||
public static double volatilityPerCentChange(BigInteger[] a) | ||
Coefficient of variation Instance methods | Coefficient of variation | public double coefficientOfVariation() |
Weighted coefficient of variation | public double weightedCoefficientOfVariation() | |
Coefficient of variation Static methods | Coefficient of variation | public static double coefficientOfVariation(double[] a) |
public static float coefficientOfVariation(float[] a) | ||
public static double coefficientOfVariation(BigDecimal[] a) | ||
public static double coefficientOfVariation(BigInteger[] a) | ||
Weighted coefficient of variation | public static double coefficientOfVariation(double[] a, double[] w) | |
public static float coefficientOfVariation(float[] a, float[] w) | ||
public static double coefficientOfVariation(BigDecimal[] a,BigDecimal[] w) | ||
public static double coefficientOfVariation(BigInteger[] a, BigInteger[] w) | ||
Skewness Instance methods | Moment skewness | public double momentSkewness() |
public double momentSkewness_as_double() | ||
Median skewness | public double medianSkewness() | |
public double medianSkewness_as_double() | ||
Quartile skewness | public double quartileSkewness() | |
public double quartileSkewness_as_double() | ||
public BigDecimal quartileSkewness_as_BigDecimal() | ||
Skewness Static methods | Moment skewness | public static double momentSkewness(double[] a) |
public static float momentSkewness(float[] a) | ||
public static double momentSkewness(BigDecimal[] a) | ||
public static double momentSkewness(BigInteger[] a) | ||
public static double momentSkewness(int[] a) | ||
public static double momentSkewness(long[] a) | ||
Median skewness | public static double medianSkewness(double[] a) | |
public static float medianSkewness(float[] a) | ||
public static double medianSkewness(BigDecimal[] a) | ||
public static double medianSkewness(BigInteger[] a) | ||
public static double medianSkewness(int[] a) | ||
public static double medianSkewness(long[] a) | ||
Quartile skewness | public static double quartileSkewness(double[] a) | |
public static float quartileSkewness(float[] a) | ||
public static BigDecimal quartileSkewness(BigDecimal[] a) | ||
public static BigDecimal quartileSkewness(BigInteger[] a) | ||
public static double quartileSkewness(int[] a) | ||
public static double quartileSkewness(long[] a) | ||
Kurtosis (Curtosis) Instance methods | Kurtosis | public double kurtosis() |
public double kurtosis_as_double() | ||
public BigDecimal kurtosis_as_BigDecimal() | ||
Excess Kurtosis | public double excessKurtosis() | |
public double excessKurtosis_as_double() | ||
public BigDecimal excessKurtosis_as_BigDecimal() | ||
Kurtosis (Curtosis) Static methods | Kurtosis | public static double kurtosis(double[] a) |
public static float kurtosis(float[] a) | ||
public static BigDecimal kurtosis(BigDecimal[] a) | ||
public static BigDecimal kurtosis(BigInteger[] a) | ||
public static double kurtosis(int[] a) | ||
public static double kurtosis(long[] a) | ||
Excess Kurtosis | public static double excessKurtosis(double[] a) | |
public static float excessKurtosis(float[] a) | ||
public static BigDecimal excessKurtosis(BigDecimal[] a) | ||
public static BigDecimal excessKurtosis(BigInteger[] a) | ||
public static double excessKurtosis(int[] a) | ||
public static double excessKurtosis(long[] a) | ||
Standardisation to a mean of 0 and standard deviation of 1 Instance methods | return standardised data | public double[] standardise() |
Standardisation to a mean of 0 and standard deviation of 1 Static methods | return standardised data | public static double[] standardise(double[] a) |
public static float[] standardise(float[] a) | ||
public static double[] standardise(BigDecimal[] a) | ||
public static double[] standardise(BigInteger[] a) | ||
public static double[] standardise(long[] a) | ||
public static double[] standardise(int[] a) | ||
Scale to a new mean of and standard deviation Instance methods | return scaled data | public double[] scale(double mean, double sd) |
Scale to a new mean of and standard deviation Static methods | return scaled data | public static double[] scale(double[] a, double mean, double sd) |
public static float[] scale(float[] a, float mean, float sd) | ||
public static double[] scale(BigDecimal[] a, double mean, double sd) | ||
public static double[] scale(BigInteger[] a, double mean, double sd) | ||
public static double[] scale(long[] a, double mean, double sd) | ||
public static double[] scale(int[] a, double mean, double sd) | ||
Variance Instance methods | Variance | public double variance_as_double() |
public BigDecimal variance_as_BigDecimal() | ||
public Complex variance_as_Complex() | ||
public double variance_as_Complex_ConjugateCalcn() | ||
public double variance_of_ComplexModuli() | ||
public double variance_of_ComplexRealParts() | ||
public double variance_of_ComplexImaginaryParts() | ||
Weighted Variance | public double weightedVariance_as_double() | |
public BigDecimal weightedVariance_as_BigDecimal() | ||
public Complex weightedVariance_as_Complex() | ||
public double weightedVariance_as_Complex_ConjugateCalcn() | ||
public double weightedVariance_of_ComplexModuli() | ||
public double weightedVariance_of_ComplexRealParts() | ||
public double weightedVariance_of_ComplexImaginaryParts() | ||
Variance Static Methods | Variance | public static double variance(double[] a) |
public static float variance(float[] a) | ||
public static double variance(int[] a) | ||
public static double variance(long[] a) | ||
public static BigDecimal variance(BigDecimal[] a) | ||
public static BigDecimal variance(BigInteger[] a) | ||
public static Complex variance(Complex[] a) | ||
public static double varianceConjugateCalcn(Complex[] a) | ||
public static double varianceModuli(Complex[] a) | ||
public static double varianceRealParts(Complex[] a) | ||
public static double varianceImaginaryParts(Complex[] a) | ||
Weighted Variance | public static double variance(double[] a, double[] w) | |
public static float variance(float[] a, float[] w) | ||
public static BigDecimal variance(BigDecimal[] a, BigDecimal[] w) | ||
public static BigDecimal variance(BigInteger[] a, BigInteger[] w) | ||
public static Complex variance(Complex[] a, Complex[] w) | ||
public static double varianceConjugateCalcn(Complex[] a, Complex[] w) | ||
public static double varianceModuli(Complex[] a, Complex[] w) | ||
public static double varianceRealParts(Complex[] a, Complex[] w) | ||
public static double varianceImaginaryParts(Complex[] a, Complex[] w) | ||
Linear Correlation Coefficient | Correlation Coefficient | public static double corrCoeff(double[ ] x, double[ ] y) |
public static float corrCoeff(float[ ] x, float[ ] y) | ||
public static double corrCoeff(int[ ] x, int[ ] y) | ||
public static double corrCoeff(int[ ][] freqMatrix) | ||
public static double corrCoeff(int freqZeroZero, int freqZeroOne, int freqOneZero, int freqOneOne) | ||
Weighted Correlation Coefficient | public static double corrCoeff(double[ ] x, double[ ] y, double[ ] w) | |
Cumulative Distribution Function(cdf) | public static double corrCoeffCDFtwoTailed(double rCoeff, int nu) | |
public static double corrCoeffCDFoneTailed(double rCoeff, int nu) | ||
InverseCumulative Distribution Function(cdf) |
public static double corrCoeffInverseCDFtwoTailed(double prob, int nu) | |
public static double corrCoeffInverseCDFoneTailed(double prob, int nu) | ||
Probability Density Function (pdf) | public static double corrCoeffPDF(double rCoeff, int nu) | |
Covariance | Covariance | public static double covariance(double[ ] x, double[ ] y) |
public static float covariance(float[ ] x, float[ ] y) | ||
public static double covariance(int[ ] x, int[ ] y) | ||
Weighted Covariance | public static double covariance(double[ ] x, double[ ] y, double[ ] w) | |
Order Statistic Medians | Uniform Order Statistic Medians | public static double[] uniformOrderStatisticMedians(int n) |
Gaussian [normal] Order Statistic Medians |
public static double[ ] gaussianOrderStatisticMedians(double mean, double sd, int n) public static double[ ] normalOrderStatisticMedians(double mean, double sd, int n) | |
public static double[ ] gaussianOrderStatisticMedians(int n) public static double[ ] normalOrderStatisticMedians(int n) | ||
Exponential Order Statistic Medians |
public static double[ ] exponentialOrderStatisticMedians(double mu, double sigma, int n) | |
F-Distribution Order Statistic Medians |
public static double[ ] fDistributionOrderStatisticMedians(int nu1, int nu2, int n) | |
Fréchet Order Statistic Medians |
public static double[ ] frechetOrderStatisticMedians(double mu, double sigma, double gamma, int n) public static double[ ] frechetOrderStatisticMedians(double sigma, double gamma, int n) public static double[ ] frechetOrderStatisticMedians(double gamma, int n) | |
Gumbel (minimum order statistic) Order Statistic Medians |
public static double[ ] gumbelMinOrderStatisticMedians(double mu, double sigma, int n) | |
Gumbel (maximum order statistic) Order Statistic Medians |
public static double[ ] gumbelMaxOrderStatisticMedians(double mu, double sigma, int n) | |
Logistic Order Statistic Medians |
public static double[ ] logisticOrderStatisticMedians(double mu, double beta, int n) | |
Lorentzian Order Statistic Medians |
public static double[ ] lorentzianOrderStatisticMedians(double mu, double gamma, int n) | |
Rayleigh Order Statistic Medians |
public static double[ ] rayleighOrderStatisticMedians(double beta, int n) | |
Weibull Order Statistic Medians |
public static double[ ] weibullOrderStatisticMedians(double mu, double sigma, double gamma, int n) public static double[ ] weibullOrderStatisticMedians(double sigma, double gamma, int n) public static double[ ] weibullOrderStatisticMedians(double gamma, int n) | |
Gaussian (Normal) Distribution | Cumulative Distribution Function(cdf) |
public static double gaussianCDF(double mean, double sd, double limit) public static double normalCDF(double mean, double sd, double limit) |
public static double gaussianCDF(double mean, double sd, double lowerlimit, double upperlimit) public static double normalCDF(double mean, double sd, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double gaussianInverseCDF(double mean, double sd, double cdf) public static double normalInverseCDF(double mean, double sd, double cdf) public static double gaussianInverseCDF(double cdf) public static double normalInverseCDF(double cdf) | |
Probability Density Function (pdf) |
public static double gaussianPDF(double mean, double sd, double x) public static double normalPDF(double mean, double sd, double x) | |
Generate Gaussian [normal] random deviates |
public static double[ ] gaussianRand(double mean, double sd, int n) public static double[ ] normalRand(double mean, double sd, int n) | |
public static double[ ] gaussianRand(double mean, double sd, int n, long seed) public static double[ ] normalRand(double mean, double sd, int n, long seed) | ||
Gaussian [normal] Order Statistic Medians |
public static double[ ] gaussianOrderStatisticMedians(double mean, double sd, int n) public static double[ ] normalOrderStatisticMedians(double mean, double sd, int n) | |
public static double[ ] gaussianOrderStatisticMedians(int n) public static double[ ] normalOrderStatisticMedians(int n) | ||
Gaussian [normal] Probability Plot | See separate class ProbabilityPlot Gaussian Probability Plot methods | |
Fit data to a Gaussian [normal] distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Gaussian Probability Plot methods are also fitting methods | ||
See also Regression class method gaussian() | ||
See also Regression class method gaussianPlot() | ||
Box-Cox transformation | See separate class BoxCox | |
Log-Normal Distributions Two parameter log-normal distribution (see below for the three parameter statistic) | Cumulative Distribution Function(cdf) |
public static double logNormalCDF(double mu, double sigma, double limit) public static double logNormalTwoParCDF(double mu, double sigma, double limit) |
public static double logNormalCDF(double mu, double sigma, double lowerlimit, double upperlimit) public static double logNormalTwoParCDF(double mu, double sigma, double lowerlimit, double upperlimit) | ||
Probability Density Function (pdf) |
public static double logNormalPDF(double[] array=blue>double mu, double sigma, double x) public static double logNormalTwoParPDF(double mu, double sigma, double x) | |
Generate two parameter log-normal distribution random deviates |
public static double[ ] logNormalRand(double mu, double sigma, int n) public static double[ ] logNormalTwoParRand(double mu, double sigma, int n) | |
public static double[ ] logNormalRand(double mu, double sigma, int n, long seed) public static double[ ] logNormalTwoParRand(double mu, double sigma, int n, long seed) | ||
Mean |
public static double logNormalMean(double mu, double sigma) public static double logNormalTwoParMean(double mu, double sigma) | |
Median |
public static double logNormalMedian(double mu) public static double logNormalTwoParMedian(double mu) | |
Mode |
public static double logNormalMode(double , double sigmamu) public static double logNormalTwoParMode(double mu, double sigma) | |
Standard deviation |
public static double logNormalStandardDeviation(double mu, double sigma) public static double logNormalTwoParStandardDeviation(double mu, double sigma) | |
Fit data to a Two Parameter Log-Normal distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
Regression class method logNormal() Regression class method logNormalTwpPar() | ||
Regression class method logNormalPlot() Regression class method logNormalTwoParPlot() | ||
Log-Normal Distributions Three parameter log-normal distribution (see above for the two parameter statistic) | Cumulative Distribution Function(cdf) | public static double logNormalThreeParCDF(double alpha, double beta, double gamma, double limit) |
public static double logNormalThreeParCDF(double alpha, double beta, double gamma, double lowerlimit, double upperlimit) | ||
Probability Density Function (pdf) | public static double logNormalThreeParPDF(double alpha, double beta, double gamma, double x) | |
Generate three parameter log normal distribution random deviates | public static double[ ] logNormalThreeParRand(double alpha, double beta, double gamma, int n) | |
public static double[ ] logNormalThreeParRand(double alpha, double beta, double gamma, int n, long seed) | ||
Mean | public static double logNormalThreeParMean(double alpha, double beta, double gamma) | |
Median | public static double logNormalThreeParMedian(double alpha, double gamma) | |
Mode | public static double logNormalThreeParMode(double alpha, double beta, double gamma) | |
Standard deviation | public static double logNormalThreeParStandardDeviation(double alpha, double beta, double gamma) | |
Fit data to a Three Parameter Log-Normal distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
Regression class method logNormalThreePar() | ||
Regression class method logNormalThreeParPlot() | ||
Logistic Distribution (Sech squared Distribution) | Cumulative Distribution Function(cdf) |
public static double logisticCDF(double mu, double beta, double limit) |
public static double logisticCDF(double mu, double beta, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double logisticInverseCDF(double mu, double beta, double cdf) | |
Probability Density Function (pdf) |
public static double logisticPDF(double mu, double beta, double x) | |
Generate logistic distribution random deviates |
public static double[ ] logisticRand(double mu, double beta, int n) | |
public static double[ ] logisticRand(double mu, double beta, int n, long seed) | ||
Mean | public static double logisticMean(double mu) | |
Median | public static double logisticMedian(double mu) | |
Mode | public static double logisticMode(double mu) | |
Standard deviation | public static double logisticStandardDeviation(double beta) | |
Logistic Order Statistic Medians |
public static double[ ] logisticOrderStatisticMedians(double mu, double beta, int n) | |
Logistic Probability Plot | See separate class ProbabilityPlot Logistic Probability Plot methods | |
Fit data to a logistic distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Logistic Probability Plot methods are also fitting methods | ||
Regression class method logistic() | ||
Regression class method logisticPlot() | ||
Lorentzian Distribution (Cauchy Distribution) | Cumulative Distribution Function(cdf) | public static double lorentzianCDF(double mean, double sd, double limit) |
public static double lorentzianCDF(double mean, double gamma, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double lorentzianInverseCDF(double mu, double gamma, double cdf) | |
Probability Density Function (pdf) | public static double lorentzianPDF(double mean, double gamma, double x) | |
Generate Lorentzian random deviates | public static double[ ] lorentzianRand(double mu, double gamma, int n) | |
public static double[ ] lorentzianRand(double mu, double gamma, int n, long seed) | ||
Lorentzian Order Statistic Medians |
public static double[ ] lorentzianOrderStatisticMedians(double mu, double gamma, int n) | |
Lorentzian Probability Plot | See separate class ProbabilityPlot Lorentzian Probability Plot methods | |
Fit data to a Lorentzian distribution | The ProbabilityPlot class Lorentzian Probability Plot methods are also fitting methods | |
public static void fitOneOrSeveralDistributions() | ||
public void fitOneOrSeveralDistributions(double[] array) | ||
Regression class method lorentzianPlot() | ||
Regression class method lorentzian() | ||
Poisson Distribution | Cumulative Distribution Function(cdf) | public static double poissonCDF(int k, double mean) |
Probability Density Function (pdf) | public static double poissonPDF(int k, double mean) | |
Generate Poisson random deviates | public static double[ ] poissonRand(double mean, int n) | |
public static double[ ] poissonRand(double mean, int n, long seed) | ||
Fit data to a Poisson distribution | Regression class method poissonPlot() | |
Regression class method poisson() | ||
Type 1 Extreme Value Distribution (minimum order statistic) Gumbel Distribution (minimum order statistic) | Cumulative Distribution Function(cdf) | public static double gumbelMinCDF(double mu, double sigma, double limit) |
public static double gumbelMinCDF(double mean, double sigma, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double gumbelMinInverseCDF(double mu, double sigma, double cdf) | |
Probability Density Function (pdf) | public static double gumbelMinPDF(double mu, double sigma, double x) | |
Generate Minimal Gumbel random deviates | public static double[ ] gumbelMinRand(double mu, double sigma, int n) | |
public static double[ ] gumbelMinRand(double mu, double sigma, int n, long seed) | ||
Mean | public static double gumbelMinMean(double mu, double sigma) | |
Median | public static double gumbelMinMedian(double mu, double sigma) | |
Mode | public static double gumbelMinMode(double mu, double sigma) | |
Standard deviation | public static double gumbelMinStandardDeviation(double sigma) | |
Gumbel (minimum order statistic) Order Statistic Medians |
public static double[ ] gumbelMinOrderStatisticMedians(double mu, double sigma, int n) | |
Gumbel [minimum order statistic] Probability Plot | See separate class ProbabilityPlot Gumbel [[minimum order statistic] Probability Plot methods | |
Fit data to a Gumbel distribution (minimum order statistic) | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Gumbel (minimum order statistic) Probability Plot methods are also fitting methods | ||
Regression class method gumbelMinPlot() | ||
Regression class method gumbelMin() | ||
Regression class method gumbelMinOneParPlot() | ||
Regression class method gumbelMinOnePar() | ||
Regression class method gumbelMinStandardPlot() | ||
Regression class method gumbelMinStandard() | ||
Type 1 Extreme Value Distribution (maximum order statistic) Gumbel Distribution (maximum order statistic) | Cumulative Distribution Function(cdf) | public static double gumbelMaxCDF(double mu, double sigma, double limit) |
public static double gumbelMaxCDF(double mean, double sigma, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double gumbelMaxInverseCDF(double mu, double sigma, double cdf) | |
Probability Density Function (pdf) | public static double gumbelMaxPDF(double mu, double sigma, double x) | |
Generate Maximal Gumbel random deviates | public static double[ ] gumbelMaxRand(double mu, double sigma, int n) | |
public static double[ ] gumbelMaxRand(double mu, double sigma, int n, long seed) | ||
Mean | public static double gumbelMaxMean(double mu, double sigma) | |
Median | public static double gumbelMaxMedian(double mu, double sigma) | |
Mode | public static double gumbelMaxMode(double mu, double sigma) | |
Standard deviation | public static double gumbelMaxStandardDeviation(double sigma) | |
Gumbel (maximum order statistic) Order Statistic Medians |
public static double[ ] gumbelMaxOrderStatisticMedians(double mu, double sigma, int n) | |
Gumbel [maximum order statistic] Probability Plot | See separate class ProbabilityPlot Gumbel [[maximum order statistic] Probability Plot methods | |
Fit data to a Gumbel Distribution (maximum order statistic) | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Gumbel (maximum order statistic) Probability Plot methods are also fitting methods | ||
Regression class method gumbelMaxPlot() | ||
Regression class method gumbelMax() | ||
Regression class method gumbelMaxOneParPlot() | ||
Regression class method gumbelMaxOnePar() | ||
Regression class method gumbelMaxStandardPlot() | ||
Regression class method gumbelMaxStandard() | ||
Type 2 Extreme Value Distribution Fréchet Distribution | Cumulative Distribution Function(cdf) | public static double frechetCDF(double mu, double sigma, double gamma, double limit) |
public static double frechetCDF(double mean, double sigma, double gamma, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double frechetInverseCDF(double mu, double sigma, double gamma, double cdf) public static double frechetInverseCDF(double sigma, double gamma, double cdf) public static double frechetInverseCDF(double gamma, double cdf) | |
Probability Density Function (pdf) | public static double frechetPDF(double mu, double sigma, double gamma, double x) | |
Generate Fréchet random deviates | public static double[ ] frechetRand(double mu, double sigma, double gamma, int n) | |
public static double[ ] frechetRand(double mu, double sigma, double gamma, int n, long seed) | ||
Mean | public static double frechetMean(double mu, double sigma, double gamma) | |
Mode | public static double frechetMode(double mu, double sigma, double gamma) | |
Standard deviation | public static double frechetStandardDeviation(double sigma, double gamma) | |
Fréchet Order Statistic Medians |
public static double[ ] frechetOrderStatisticMedians(double mu, double sigma, double gamma, int n) public static double[ ] frechetOrderStatisticMedians(double sigma, double gamma, int n) public static double[ ] frechetOrderStatisticMedians(double gamma, int n) | |
Fréchet Probability Plot | See separate class ProbabilityPlot Fréchet Probability Plot methods | |
Fit data to a Fréchet distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Fréchet Probability Plot methods are also fitting methods | ||
Regression class method frechetPlot() | ||
Regression class method frechet() | ||
Regression class method frechetTwoParPlot() | ||
Regression class method frechetTwoPar() | ||
Regression class method frechetStandardPlot() | ||
Regression class method frechetStandard() | ||
Type 3 Extreme Value Distribution Weibull Distribution | Cumulative Distribution Function(cdf) | public static double weibullCDF(double mu, double sigma, double gamma, double limit) |
public static double weibullCDF(double mean, double sigma, double gamma, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double weibullInverseCDF(double mu, double sigma, double gamma, double cdf) public static double weibullInverseCDF(double sigma, double gamma, double cdf) public static double weibullInverseCDF(double gamma, double cdf) | |
Probability Density Function (pdf) | public static double weibullPDF(double mu, double sigma, double gamma, double x) | |
Generate Weibull random deviates | public static double[ ] weibullRand(double mu, double sigma, double gamma, int n) | |
public static double[ ] weibullRand(double mu, double sigma, double gamma, int n, long seed) | ||
Mean | public static double weibullMean(double mu, double sigma, double gamma) | |
Median | public static double weibullMedian(double mu, double sigma, double gamma) | |
Mode | public static double weibullMode(double mu, double sigma, double gamma) | |
Standard deviation | public static double weibullStandardDeviation(double sigma, double gamma) | |
Weibull Order Statistic Medians |
public static double[ ] weibullOrderStatisticMedians(double mu, double sigma, double gamma, int n) public static double[ ] weibullOrderStatisticMedians(double sigma, double gamma, int n) public static double[ ] weibullOrderStatisticMedians(double gamma, int n) | |
Weibull Probability Plot | See separate class ProbabilityPlot Weibull Probability Plot methods | |
Fit data to a Weibull distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Weibull Probability Plot methods are also fitting methods | ||
Regression class method weibullPlot() | ||
Regression class method weibull() | ||
Regression class method weibullTwoParPlot() | ||
Regression class method weibullTwoPar() | ||
Regression class method weibullStandardPlot() | ||
Regression class method weibullStandard() | ||
Type 3 Extreme Value Distribution Exponential Distribution | Cumulative Distribution Function(cdf) | public static double exponentialCDF(double mu, double sigma, double limit) |
public static double exponentialCDF(double mean, double sigma, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double exponentialInverseCDF(double mu, double sigma, double cdf) | |
Probability Density Function (pdf) | public static double exponentialPDF(double mu, double sigma, double x) | |
Generate exponential random deviates | public static double[ ] exponentialRand(double mu, double sigma, int n) | |
public static double[ ] exponentialRand(double mu, double sigma, int n, long seed) | ||
Mean | public static double exponentialMean(double mu, double sigma) | |
Median | public static double exponentialMedian(double mu, double sigma) | |
Mode | public static double exponentialMode(double mu) | |
Standard deviation | public static double exponentialStandardDeviation(double sigma) | |
Exponential Order Statistic Medians |
public static double[ ] exponentialOrderStatisticMedians(double mu, double sigma, int n) | |
Exponential Probability Plot | See separate class ProbabilityPlot Exponential Probability Plot methods | |
Fit data to a exponential distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Exponential Probability Plot methods are also fitting methods | ||
Regression class method exponentialPlot() | ||
Regression class method exponential() | ||
Regression class method exponentialOneParPlot() | ||
Regression class method exponentialOnePar() | ||
Regression class method exponentialStandardPlot() | ||
Regression class method exponentialStandard() | ||
Type 3 Extreme Value Distribution Rayleigh Distribution | Cumulative Distribution Function(cdf) | public static double rayleighCDF(double beta, double limit) |
public static double rayleighCDF(double beta, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double rayleighInverseCDF(double beta, double cdf) | |
Probability Density Function (pdf) | public static double rayleighPDF(double beta, double x) | |
Generate Rayleigh random deviates | public static double[ ] rayleighRand(double beta, int n) | |
public static double[ ] rayleighRand(double beta, int n, long seed) | ||
Mean | public static double rayleighMean(double beta) | |
Median | public static double rayleighMedian(double beta) | |
Mode | public static double rayleighMode(double beta) | |
Standard deviation | public static double rayleighStandardDeviation(double beta) | |
Rayleigh Order Statistic Medians |
public static double[ ] rayleighOrderStatisticMedians(double beta, int n) | |
Rayleigh Probability Plot | See separate class ProbabilityPlot Rayleigh Probability Plot methods | |
Fit data to a Rayleigh distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Rayleigh Probability Plot methods are also fitting methods | ||
Regression class method rayleighPlot() | ||
Regression class method rayleigh() | ||
Pareto Distribution | Cumulative Distribution Function(cdf) | public static double paretoCDF(double alpha, double beta, double limit) |
public static double paretoCDF(double alpha, double beta, double lowerlimit, double upperlimit) | ||
Inverse Cumulative Distribution Function |
public static double paretoInverseCDF(double alpha, double beta, double cdf) | |
Probability Density Function (pdf) | public static double paretoPDF(double alpha, double beta, double x) | |
Generate Pareto random deviates | public static double[ ] paretoRand(double alpha, double beta, int n) | |
public static double[ ] paretoRand(double alpha, double beta, int n, long seed) | ||
Mean | public static double paretoMean(double alpha, double beta) | |
Mode | public static double paretoMode(double beta) | |
Standard deviation | public static double paretoStandardDeviation(double alpha, double beta) | |
Pareto Order Statistic Medians |
public static double[ ] paretoOrderStatisticMedians(double alpha, double beta, int n) | |
Pareto Probability Plot | See separate class ProbabilityPlot Pareto Probability Plot methods | |
Fit data to a Pareto distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
The ProbabilityPlot class Pareto Probability Plot methods are also fitting methods | ||
Regression class method paretoThreeParPlot() | ||
Regression class method paretoThreePar() | ||
Regression class method paretoTwoParPlot() Regression class method paretoPlot() | ||
Regression class method paretoTwoPar() Regression class method pareto() | ||
Regression class method paretoOneParPlot() | ||
Regression class method paretoOnePar() | ||
Binomial Distribution | Cumulative Distribution Function (cdf) | public static double binomalCDF(double p, int n, int k) |
probability density function (pdf) | public static double binomialPDF(double p, int n, int k) | |
Generate Binomial random deviates | public static double binomialRand(int p , int nTrials, int nArrays) | |
public static double binomialRand(int p , int nTrials, int nArrays, long seed) | ||
Binomial Coefficients | public static double binomialCoeff(int n , int k) | |
Student's t Distribution | Cumulative Distribution Function (cdf) | public static double studentstCDF(double tValue, int nu) |
public static double studentstCDF(double lowerLimit, double upperLimit, int nu) | ||
P-value | public static double pValue(double tValue, int nu) | |
Probability density function (pdf) | public static double studentstPDF(double tValue, int nu) | |
Student's t value for a given cdf | public static double studentstValue(double cdf, int nu) | |
Generate Student's t random deviates | public static double[] studentstRand(int nu, int n) | |
public static double[] studentstRand(int nu, int n, long seed) | ||
Mean | public static double studentstMean(int nu) | |
Median | public static double studentstMedian() | |
Mode | public static double studentstMode() | |
Standard deviation | public static double studentstStandardDeviation(int nu) | |
A(t|n) distribution | public static double probAtn(double tValue, int nu) | |
Beta Distribution and Beta Functions | Cumulative Distribution Function(cdf) | public static double betaCDF(double min, double max, double alpha, double beta, double limit) |
public static double betaCDF(double alpha, double beta, double limit) | ||
Probability Density Function (pdf) | public static double betaPDF(double min, double max, double alpha, double beta, double x) | |
public static double betaPDF(double alpha, double beta, double x) | ||
Generate Beta random deviates | public static double[ ] betaRand(double min, double max, double alpha, double beta, int n) | |
public static double[ ] betaRand(double alpha, double beta, int n) | ||
public static double[ ] betaRand(double min, double max, double alpha, double beta, int n, long seed) | ||
public static double[ ] betaRand(double alpha, double beta, int n, long seed) | ||
Mean | public static double betaMean(double min, double max, double alpha, double beta) | |
public static double betaMean(double alpha, double beta) | ||
Mode | public static double betaMode(double mu, , double beta, double beta,) | |
public static double betaMode(double alpha, double beta) | ||
Standard deviation | public static double betaStandardDeviation(double beta, double beta,) | |
public static double betaStandardDeviation(double alpha, double beta) | ||
Fit data to a Beta distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
Regression class method beta() | ||
Regression class method betaPlot() | ||
Regression class method betaMinMax() | ||
Regression class method betaMinMaxPlot() | ||
Beta Function | public static double betaFunction(double z , double w) | |
Regularised Incomplete Beta Function |
public static double regularisedBetaFunction(double z , double w, double x) public static double regularizedBetaFunction(double z , double w, double x) public static void resetCFmaxIter(int maxit) public static int getCFmaxIter() public static void resetCFtolerance(double tolerance) public static double getCFtolerance() | |
Gamma Distribution and Gamma Functions | Cumulative Distribution Function(cdf) | public static double gammaCDF(double mu, double beta, double gamma, double limit) |
public static double gammaCDF(double gamma, double limit) | ||
Probability Density Function (pdf) | public static double gammaPDF(double mu, double beta, double gamma, double x) | |
public static double gammaPDF(double gamma, double x) | ||
Generate Gamma random deviates | public static double[ ] gammaRand(double mu, double beta, double gamma, int n) | |
public static double[ ] gammaRand(double mu, double beta, double gamma, int n, long seed) | ||
Mean | public static double gammaMean(double mu, double beta, double gamma) | |
Mode | public static double gammaMode(double mu, , double beta, double gamma,) | |
Standard deviation | public static double gammaStandardDeviation(double beta, double gamma) | |
Fit data to a Gamma distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
Regression class method gamma() | ||
Regression class method gammaPlot() | ||
Regression class method gammaStandard() | ||
Regression class method gammaStandardPlot() | ||
Gamma Function | public static double gammaFunction(double x) | |
Lanczos approximation settings | public static double getLanczosGamma() | |
public static int getLanczosN() | ||
public static double[] getLanczosCoeff() | ||
log(Gamma Function) | public static double logGammaFunction(double x) | |
Inverse Gamma Function | public static double[] inverseGammaFunction(double gamma) | |
Regularised Incomplete Gamma Function |
public static double regularisedGammaFunction(double a, double x) public static double regularizedGammaFunction(double a, double x) | |
Complementary Regularised Incomplete Gamma Function |
public static double complementaryRegularisedGammaFunction(double a, double x) public static double complementaryRegularizedGammaFunction(double a, double x) | |
Incomplete Gamma Function approximation settings | public static void setIncGammaMaxIter(int nmax) | |
public static int getIncGammaMaxIter() | ||
public static void setIncGammaTol(double tol) | ||
public static double getIncGammaTol() | ||
Gamma Function Minimum | public static double[] gammaFunctionMinimum() | |
Erlang Distribution and Erlang connections busy, B and C Equations | Cumulative Distribution Function(cdf) |
public static double erlangCDF(double lambda, int kay, double limit) public static double erlangCDF(double lambda, long kay, double limit) public static double erlangCDF(double lambda, double kay, double limit) |
Probability Density Function (pdf) |
public static double erlangPDF(double lambda, int kay, double x) public static double erlangPDF(double lambda, long kay, double x) public static double erlangPDF(double lambda, double kay, double x) | |
Generate Erlang random deviates |
public static double[ ] erlangRand(double lambda, int kay, int n) public static double[ ] erlangRand(double lambda, long kay, int n) public static double[ ] erlangRand(double lambda, double kay, int n) | |
public static double[ ] erlangRand(double lambda, int kay, int n, long seed) public static double[ ] erlangRand(double lambda, long kay, int n, long seed) public static double[ ] erlangRand(double lambda, double kay, int n, long seed) | ||
Mean |
public static double erlangMean(double lambda, int kay) public static double erlangMean(double lambda, long kay) public static double erlangMean(double lambda, double kay) | |
Mode |
public static double erlangMode(double lambda, int kay) public static double erlangMode(double lambda, long kay) public static double erlangMode(double lambda, idouble kay) | |
Standard deviation |
public static double erlangStandardDeviation(double lambda, int kay) public static double erlangStandardDeviation(double lambda, long kay) public static double erlangStandardDeviation(double lambda, break kay) | |
Fit data to an Erlang distribution | public void fitOneOrSeveralDistributions() | |
public static void fitOneOrSeveralDistributions(double[] array) | ||
Regression class method erlang() | ||
Regression class method erlangPlot() | ||
Erlang connections busy probability | public static double erlangMprobability(double totalTraffic, double totalResources, double em) public static double erlangMprobability(double totalTraffic, long totalResourceslong em) public static double erlangMprobability(double totalTraffic, int totalResourcesint em) | |
Erlang B Equation |
public static double erlangBprobability(double totalTraffic, double totalResources) public static double erlangBprobability(double totalTraffic, long totalResources) public static double erlangBprobability(double totalTraffic, int totalResources) | |
public static double erlangBload(double blockingProbability, double totalResources) public static double erlangBload(double blockingProbability, long totalResources) public static double erlangBload(double blockingProbability, int totalResources) | ||
public static double[] erlangBresources(double blockingProbability, double totalTraffic) | ||
Erlang C Equation |
public static double erlangCprobability(double totalTraffic, double totalResources) public static double erlangCprobability(double totalTraffic, long totalResources) public static double erlangCprobability(double totalTraffic, int totalResources) | |
public static double erlangCload(double nonZeroDelayProbability, double totalResources) public static double erlangCload(double nonZeroDelayProbability, long totalResources) public static double erlangCload(double nonZeroDelayProbability, int totalResources) | ||
public static double[] erlangCresources(double nonZeroDelayProbability, double totalTraffic) | ||
Engset Equation | Engset probability |
public static double engsetProbability(double offeredTraffic, double totalResources, double numberOfSources) public static double engsetProbability(double offeredTraffic, long totalResources, long numberOfSources) public static double engsetProbability(double offeredTraffic, int totalResources, int numberOfSources) |
Engset load |
public static double engsetLoad(double blockingProbability, double totalResources, double numberOfSources) public static double engsetLoad(double blockingProbability, long totalResources, long numberOfSources) public static double engsetLoad(double blockingProbability, int totalResources, int numberOfSources) | |
Engset resources |
public static double[] engsetResources(double blockingProbability, double offeredTraffic, double numberOfSources) public static double[] engsetResources(double blockingProbability, double offeredTraffic, long numberOfSources) public static double[] engsetResources(double blockingProbability, double offeredTraffic, int numberOfSources) | |
Engset number of sources |
public static double[] engsetSources(double blockingProbability, double offeredTraffic, double reources) public static double[] engsetSources(double blockingProbability, double offeredTraffic, long resources) public static double[] engsetSources(double blockingProbability, double offeredTraffic, int resources) | |
Chi-Square Distribution and Chi-Square Statistic | Cumulative Distribution Function (cdf) | public static double chiSquareCDF(double chiSquare, int nu) | Inverse Cumulative Distribution Function | public static double chiSquareInverseCDF(int nu, double cdfProb) |
Probability Density Function (pdf) | public static double chiSquarePDF(double chiSquare, int nu) | |
Generate exponential random deviates | public static double[ ] chiSquareRand(int nu, int n) | |
public static double[ ] chiSquareRand(int nu, int n, long seed) | ||
Mean | public static double chiSquareMean(int nu) | |
Mode | public static double chiSquareMode(int nu) | |
Standard Deviation | public static double chiSquareStandardDeviation(int nu) | |
Statistic | public static double chiSquare(double[ ] observed, double[ ] expected, double[ ] variance) | |
public static double chiSquareFreq(int[ ] observedFreq, int[ ] expectedfreq) | ||
public static double chiSquareFreq(double[ ] observedFreq, double[ ] expectedFreq) | ||
Wilson-Hilferty Transform | public static double wilsonHilferty(double chiSquare, int nu) | |
public static double wilsonHilferty(double reducedChiSquare, double variance) | ||
F-Distribution | Cumulative Distribution Function (cdf) [Complement]; |
public static double fCompCDF(double fValue, int nu1, int nu2) |
public static double fCompCDF(double var1, int nu1, double var2, int nu2) | ||
public static double fTestValueGivenFprob(double fProb, int nu1, int nu2) | ||
Inverse Cumulative Distribution Function |
public static double fdistributionInverseCDF(int nu1, int nu2, double cdf) | |
Probability Density Function (pdf) ; |
public static double fPDF(double fValue, int nu1, int nu2) | |
public static double fPDF(double var1, int nu1, double var2, int nu2) | ||
Generate F-distribution random deviates | public static double[ ] fRand(int nu1, int nu2, int n) | |
public static double[ ] fRand(int nu1, int nu2, int n, long seed) | ||
F-Distribution Order Statistic Medians |
public static double[ ] fDistributionOrderStatisticMedians(int nu1, int nu2, int n) | |
F-Distribution Probability Plot | See separate class ProbabilityPlot F-Distribution Probability Plot methods | |
Fit data array to one or several distributions | Instance method | public void fitOneOrSeveralDistributions() |
Static method | public static void fitOneOrSeveralDistributions(double[] array) | |
Error Functions | Error Function | public static double erf(double x) |
Complementary Error Function | public static double erfc(double x) | |
Factorials | Factorial | public static int factorial(int n) |
public static long factorial(long n) | ||
public static BigInteger factorial(BigInteger n) | ||
public static double factorial(double n) | ||
public static BigDecimal factorial(BigDecimal n) | ||
log(factorial) | public static double logFactorial(int n) | |
public static double logFactorial(long n) | ||
public static double logFactorial(double n) | ||
Shannon Entropy Instance methods | Shannon entropy as bits | public double shannonEntropy() |
public double shannonEntropyBit() | ||
Shannon entropy as nats | public double shannonEntropyNat() | |
Shannon entropy as dits | public double shannonEntropyDit() | |
Shannon Entropy Static methods | Shannon entropy as bits | public static double shannonEntropy(double[] p) |
public static double shannonEntropyBit(double[] p) | ||
Shannon entropy as nats | public static double shannonEntropyNat(double[] p) | |
Shannon entropy as dits | public static double shannonEntropyDit(double[] p) | |
Binary Shannon entropy as bits | public static double binaryShannonEntropy(double p) | |
public static double binaryShannonEntropyBit(double p) | ||
Binary Shannon entropy as nats | public static double binaryShannonEntropyNat(double p) | |
Binary Shannon entropy as dits | public static double binaryShannonEntropyDit(double p) | |
Rényi Entropy Instance methods | Rényi entropy as bits | public double renyiEntropy(double alpha) |
public double renyiEntropyBit(double alpha) | ||
Rényi entropy as nats | public double renyiEntropyNat(double alpha) | |
Rényi entropy as dits | public double renyiEntropyDit(double alpha) | |
Rényi Entropy Static methods | Rényi entropy as bits | public static double renyiEntropy(double[] p, double alpha) |
public static double renyiEntropyBit(double[] p, double alpha) | ||
Rényi entropy as nats | public static double renyiEntropyNat(double[] p, double alpha) | |
Rényi entropy as dits | public static double renyiEntropyDit(double[] p, double alpha) | |
Tsallis Entropy Instance method | Tsallis Entropy (as nats) | public double tsallisEntropyNat(double q) |
Tsallis Entropy Static method | Tsallis Entropy (as nats) | public static double tsallisEntropyNat(double[] p, double q) |
A Generalised Entropy Instance method | A Generalised Entropy (as nats) | public double generalisedEntropyOneNat(double q, double r) |
A Generalised Entropy Static method | A Generalised Entropy (as nats) | public static double generalisedEntropyOneNat(double[] p, double q, double r) |
Histograms | public static double histogramBins(double[ ] data, double binWidth, double lowerLimit, double upperLimit) | public static double histogramBins(double[ ] data, double binWidth, double lowerLimit) |
public static double histogramBins(double[ ] data, doublebinWidth) | ||
public static double histogramBinsPlot(double[ ] data, double binWidth, double lowerLimit, double upperLimit) | ||
public static double histogramBinsPlot(double[ ] data, double binWidth, double lowerLimit, double upperLimit, String xLegend) | ||
public static double histogramBinsPlot(double[ ] data, double binWidth, double lowerLimit) | ||
public static double histogramBinsPlot(double[ ] data, double binWidth, double lowerLimit, String xLegend) | ||
public static double histogramBinsPlot(double[ ] data, double binWidth) | ||
public static double histogramBinsPlot(double[ ] data, double binWidth, String xLegend) | ||
Outlier detection | Outlier detection methods are now included in a separate class, Outliers |
Mode
public static double weibullMode(double mu, double sigma, double gamma)
Usage:
mode = Stat.weibullMode(mu, sigma, gamma);
Returns the mode, i.e. the x value at which the Weibull distribution is at a maximum, where
and μ [argument double mu] is the location parameter, σ [argument double sigma] is the scale parameter and γ [argument double gamma] is the shape parameter.
Standard Deviation
public static double weibullStandardDeviation(double sigma, double gamma)
Usage:
sd = Stat.weibullStandardDeviation(sigma, gamma);
Returns the standard deviation of a Weibull distribution, where
and σ [argument double sigma] is the scale parameter and γ [argument double gamma] is the shape parameter.
Weibull Probabilty Plot
Probabilty Plots are now handled by a separate dedicated class, ProbabilityPlot
Fit data to a Weibull Distribution
If the data is in the form of an x and a y data set, e..g. xdata and ydata, use the constructor:
Regression reg = new Regression(xdata, ydata)
or
Regression reg = new Regression(xdata, ydata, weight)
Then:
Fitting data to the Three Parameter Weibull Distribution function
use either the method:
reg.weibullPlot()
or
reg.weibull()
Fitting data to the Two Parameter Weibull Distribution function
use either the method:
reg.weibullTwoParPlot()
or
reg.weibullTwoPar()
Fitting data to the Standard Weibull Distribution function
use either the method:
reg.weibullStandardPlot()
or
reg.weibullStandard()
See Regression class for details of these constructors and methods and for the methods by which the results may be accessed.